Wu GY. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol. 2014;5:34.
Article
Google Scholar
Yin YL, Tan B. Manipulation of dietary nitrogen, amino acids and phosphorus to reduce environmental impact of swine production and enhance animal health. J Food Agric Environ. 2010;8(3–4):447–62.
CAS
Google Scholar
Weurding RE, Veldman A, Veen WAG, van der Aar PJ, Verstegen MWA. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J Nutr. 2001;131(9):2329–35.
Article
CAS
Google Scholar
Van Der Schoor SR, Reeds PJ, Stoll B, Henry JF, Rosenberger JR, Burrin DG, et al. The high metabolic cost of a functional gut. Gastroenterology. 2002;123(6):1931–40.
Article
Google Scholar
Xiong X, Yang HS, Tan B, Yang CB, Wu MM, Liu G, et al. Differential expression of proteins involved in energy production along the crypt-villus axis in early-weaning pig small intestine. Am J Physiol-Gastr L. 2015;309(4):G229–37.
CAS
Google Scholar
Watford M, Lund P, Krebs HA. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J. 1979;178(3):589–96.
Article
CAS
Google Scholar
Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr. 1998;128(3):606–14.
Article
CAS
Google Scholar
Giuberti G, Gallo A, Cerioli C, Masoero F. In vitro starch digestion and predicted glycemic index of cereal grains commonly utilized in pig nutrition. Anim Feed Sci Technol. 2012;174(3–4):163–73.
Article
CAS
Google Scholar
Reeds PJ, Burrin DG, Stoll B, van Goudoever JB. Role of the gut in the amino acid economy of the host. Nestle Nutr Workshop Ser Clin Perform Programme. 2000;3:25–40 discussion 40-26.
Article
CAS
Google Scholar
Vaneijk HMH, Rooyakkers DR, Deutz NEP. Rapid routine determination of amino-acids in plasma by high-performance liquid-chromatography with a 2-3 mu-M Spherisorb Ods-ii column. J Chromatogr-Biomed. 1993;620(1):143–8.
Article
CAS
Google Scholar
Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.
Article
CAS
Google Scholar
del Alamo AG, Verstegen MW, Den Hartog LA, de Ayala PP, Villamide MJ. Wheat starch digestion rate affects broiler performance. Poult Sci. 2009;88(8):1666–75.
Article
Google Scholar
Enting H, Pos J, Weurding RE, Veldman A, Scott TA. Starch digestion rate affects broiler performance. In: Proceedings of the 17th Australian poultry science symposium, Sydney, New South Wales, Australia, 7–9 February 2005; 2005. p. 17–20.
Google Scholar
Weurding RE, Enting H, Verstegen MWA. The relation between starch digestion rate and amino acid level for broiler chickens. Poult Sci. 2003;82(2):279–84.
Article
CAS
Google Scholar
Weurding RE, Enting H, Verstegen MWA. The effect of site of starch digestion on performance of broiler chickens. Anim Feed Sci Technol. 2003;110(1–4):175–84.
Article
CAS
Google Scholar
Sydenham CJ, Truong HH, Moss AF, Selle PH, Liu SY. Fishmeal and maize starch inclusions in sorghum-soybean meal diets generate different responses in growth performance, nutrient utilisation, starch and protein digestive dynamics of broiler chickens. Anim Feed Sci Technol. 2017;227:32–41.
Article
CAS
Google Scholar
Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014;9(2):e89977.
Article
Google Scholar
Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA, Ionescu C, et al. Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate. Br J Nutr. 2010;104(5):647–55.
Article
CAS
Google Scholar
Kellett GL, Helliwell PA. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J. 2000;350:155–62.
Article
CAS
Google Scholar
Zwarycz B, Wong EA. Expression of the peptide transporters PepT1, PepT2, and PHT1 in the embryonic and posthatch chick. Poult Sci. 2013;92(5):1314–21.
Article
CAS
Google Scholar
D'Mello JPF. Amino acids in animal nutrition, 2nd edn. Wallingford: CABI; 2003.
Book
Google Scholar
Chen H, Pan Y, Wong EA, Webb KE Jr. Dietary protein level and stage of development affect expression of an intestinal peptide transporter (cPepT1) in chickens. J Nutr. 2005;135(2):193–8.
Article
CAS
Google Scholar
Gilbert ER, Li H, Emmerson DA, Webb KE Jr, Wong EA. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult Sci. 2007;86(8):1739–53.
Article
CAS
Google Scholar
Gilbert ER, Li H, Emmerson DA, Webb KE Jr, Wong EA. Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. J Nutr. 2008;138(2):262–71.
Article
CAS
Google Scholar
Moss AF, Sydenham CJ, Khoddami A, Naranjo VD, Liu SY, Selle PH. Dietary starch influences growth performance, nutrient utilisation and digestive dynamics of protein and amino acids in broiler chickens offered low-protein diets. Anim Feed Sci Technol. 2018;237:55–67.
Article
CAS
Google Scholar
Croom WJ, Brake J, Coles BA, Havenstein GB, Christensen VL, McBride BW, et al. Is intestinal absorption capacity rate-limiting for performance in poultry? J Appl Poult Res. 1999;8(2):242–52.
Article
Google Scholar
Wiegand G, Remington SJ. Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Biophys Chem. 1986;15:97–117.
Article
CAS
Google Scholar
Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633–7.
Article
CAS
Google Scholar
Wang B, Bobe G, Lapres JJ, Bourquin LD. High sucrose diets promote intestinal epithelial cell proliferation and tumorigenesis in APCMin mice by increasing insulin and IGF-I levels. Nutr Cancer. 2008;61(1):81–93.
Article
Google Scholar
Alalem M, Ray A, Ray B. Metformin Treatment Decreases mTOR mRNA Level in MCF-7 Breast Cancer Cells. Ibnosina J Med Biomed Sci. 2016;8(4):89–98.
Rhoads JM, Niu X, Odle J, Graves LM. Role of mTOR signaling in intestinal cell migration. Am J Physiol Gastrointest Liver Physiol. 2006;291(3):G510–7.
Article
CAS
Google Scholar
Sampson LL, Davis AK, Grogg MW, Zheng Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J. 2016;30(3):1263–75.
Article
CAS
Google Scholar
Burrin DG, Stoll B. Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr. 2009;90(3):850s–6s.
Article
CAS
Google Scholar
Souba WW, Smith RJ, Wilmore DW. Glutamine-metabolism by the intestinal-tract. Jpen-Parenter Enter. 1985;9(5):608–17.
Article
CAS
Google Scholar
Li TJ, Dai QZ, Yin YL, Zhang J, Huang RL, Ruan Z, et al. Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs. Animal. 2008;2(5):723–9.
Article
CAS
Google Scholar
VanderMeulen J, Bakker JGM, Smits B, DeVisser H. Effect of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. Brit J Nutr. 1997;78(4):533–44.
Article
CAS
Google Scholar
Yin FG, Zhang ZZ, Huang J, Yin YL. Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Brit J Nutr. 2010;103(10):1404–12.
Article
CAS
Google Scholar