Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336:1–17.
Article
CAS
Google Scholar
Wu Z, Hou YQ, Hu SD, Bazer FW, Meininger CJ, McNeal CJ, et al. Catabolism and safety of supplemental L-arginine in animals. Amino Acids. 2016;48:1541–52.
Article
CAS
Google Scholar
Wang B, Feng L, Chen GF, Jiang WD, Liu Y, Kuang SY, et al. Jian carp (Cyprinus carpio var. Jian) intestinal immune responses, antioxidant status and tight junction protein mRNA expression are modulated via Nrf2 and Pkc in response to dietary arginine deficiency. Fish Shellfish Immunol. 2016;51:116–24.
Article
Google Scholar
Jegatheesan P, Beutheu S, Ventura G, Sarfati G, Nubret E, Kapel N, et al. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin Nutr. 2016;35:175–82.
Article
CAS
Google Scholar
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem. 2006;17:571–88.
Article
CAS
Google Scholar
Tao YF, Qiang J, Bao JW, Chen DJ, Yin GJ, Xu P, et al. Changes in physiological parameters, lipid metabolism, and expression of microRNAs in genetically improved farmed tilapia (Oreochromis niloticus) with fatty liver induced by a high-fat diet. Front Physiol. 2018;9:1521.
Article
Google Scholar
Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab. 2016;13:13.
Article
Google Scholar
Wang XX, Li YJ, Hou CL, Gao Y, Wang YZ. Physiological and molecular changes in large yellow croaker (Pseudosciaena crocea R.) with high-fat diet-induced fatty liver disease. Aquacult Res. 2015;46:272–82.
Article
CAS
Google Scholar
Arendt BM, Comelli EM, Ma DWL, Lou W, Teterina A, Kim T, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61:1565–78.
Article
CAS
Google Scholar
Ma DWL, Arendt BM, Hillyer LM, Fung SK, McGilvray I, Guindi M, et al. Plasma phospholipids and fatty acid composition differ between liver biopsy-proven nonalcoholic fatty liver disease and healthy subjects. Nutr Diabetes. 2016;6:7.
Article
Google Scholar
Lau JKC, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol. 2017;241:36–44.
Article
Google Scholar
Du ZY. Causes of fatty liver in farmed fish: a review and new perspectives. J Fish China. 2014;38:1628–38.
Google Scholar
He AY, Ning LJ, Chen LQ, Chen YL, Xing Q, Li JM, et al. Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus). Physiol Rep. 2015;3:e12485.
Article
Google Scholar
Jobgen WJ, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, et al. Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr. 2009;139:230–7.
Article
CAS
Google Scholar
McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids. 2010;39:349–57.
Article
CAS
Google Scholar
Li SL, Ji H, Zhang BX, Tian JJ, Zhou JS, Yu HB. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture. 2016;465:43–52.
Article
CAS
Google Scholar
Wu G, Meininger CJ. Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. In: Cadenas E, Packer L, editors. Nitric oxide, part f: oxidative and nitrosative stress in redox regulation of cell signaling. San Diego: Elsevier Academic Press Inc; 2008. p. 177–89.
Chapter
Google Scholar
Thiex NJ, Anderson S, Gildemeister B. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): collaborative study. J AOAC Int. 2003;86:899–908.
Article
CAS
Google Scholar
Suarez-Sanchez F, Vazquez-Moreno M, Herrera-Lopez E, Gomez-Zamudio JH, Peralta-Romero JJ, Castelan-Martinez OD, et al. Association of rs2000999 in the haptoglobin gene with total cholesterol, HDL-c, and LDL-c levels in mexican type 2 diabetes patients. Medicine (Baltimore). 2019;98:e17298.
Article
CAS
Google Scholar
Tan B, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, et al. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. 2009;37:169–75.
Article
CAS
Google Scholar
Bullo M, Lamuela-Raventos R, Salas-Salvado J. Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem. 2011;11:1797–810.
Article
CAS
Google Scholar
Guil-Guerrero JL, Venegas-Venegas E, Rincon-Cervera MA, Suarez MD. Fatty acid profiles of livers from selected marine fish species. J Food Compos Anal. 2011;24:217–22.
Article
CAS
Google Scholar
Calvo N, Beltran-Debon R, Rodriguez-Gallego E, Hernandez-Aguilera A, Guirro M, Marine-Casado R, et al. Liver fat deposition and mitochondrial dysfunction in morbid obesity: an approach combining metabolomics with liver imaging and histology. World J Gastroenterol. 2015;21:7529–44.
Article
CAS
Google Scholar
Serkova NJ, Jackman M, Brown JL, Liu T, Hirose R, Roberts JP, et al. Metabolic profiling of livers and blood from obese Zucker rats. J Hepatol. 2006;44:956–62.
Article
CAS
Google Scholar
Miyazaki M, Ntambi JM. Fatty acid desaturation and chain elongation in mammals. In: Vance DE, Vance JE, editors. Biochemistry of lipids, lipoproteins and membranes. 5th ed. Amsterdam: Elsevier Science Bv; 2008. p. 191–211.
Chapter
Google Scholar
Wang SQ, Chen JL, Jiang DL, Zhang QH, You CH, Tocher DR, et al. Hnf4 alpha is involved in the regulation of vertebrate LC-PUFA biosynthesis: insights into the regulatory role of hnf4 alpha on expression of liver fatty acyl desaturases in the marine teleost siganus canaliculatus. Fish Physiol Biochem. 2018;44:805–15.
Article
CAS
Google Scholar
Qin Y, Dalen KT, Gustafsson JA, Nebb HI. Regulation of hepatic fatty acid elongase 5 by Lxr alpha-Srebp-1c. Biochim Biophys Acta Mol Cell Biol Lipids. 2009;1791:140–7.
Article
CAS
Google Scholar
Tan X, Lin H, Zhong H, Zhou C, Wang A, Qi C, et al. Effects of dietary leucine on growth performance, feed utilization, non-specific immune responses and gut morphology of juvenile golden pompano trachinotus ovatus. Aquaculture. 2016;465:100–7.
Article
CAS
Google Scholar
Cao W, Xiao L, Liu G, Fang T, Wu X, Jia G, et al. Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma against oxidative stress in rats. Food Funct. 2016;7:2303–11.
Article
CAS
Google Scholar
Silva EP, Borges LS, Mendes-da-Silva C, Hirabara SM, Lambertucci RH. L-arginine supplementation improves rats' antioxidant system and exercise performance. Free Radic Res. 2017;51:281–93.
Article
CAS
Google Scholar
Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct Srebp target genes. Proc Natl Acad Sci U S A. 2003;100:12027–32.
Article
CAS
Google Scholar