Benne R, Van Den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46:819–26.
Article
CAS
PubMed
Google Scholar
Farajollahi S, Maas S. Molecular diversity through RNA editing: a balancing act. Trends Genet. 2010;26:221–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tajaddod M, Jantsch MF, Licht K. The dynamic epitranscriptome: a to I editing modulates genetic information. Chromosoma. 2016;125:51–63.
Article
CAS
PubMed
Google Scholar
Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17:83–96.
Article
CAS
PubMed
Google Scholar
Chen J, Peng Z, Zhang R, Yang X, Tan BC, Fang H, et al. RNA editome in rhesus macaque shaped by purifying selection. PLoS Genet. 2014;10:e1004274.
Article
PubMed
PubMed Central
Google Scholar
Peng Z, Cheng Y, Tan BC-M, Kang L, Tian Z, Zhu Y, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol. 2012;30:253–60.
Article
CAS
PubMed
Google Scholar
Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol. 2005;79:299–338.
Article
CAS
PubMed
Google Scholar
Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficientin the RNA-editing enzyme ADAR2. Nature. 2000;406:78–81.
Article
CAS
PubMed
Google Scholar
Wang Q, Khillan J, Gadue P, Nishikura K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science. 2000;290:1765–8.
Article
CAS
PubMed
Google Scholar
Brennicke A, Marchfelder A, Binder S. RNA editing. FEMS Microbiol Rev. 1999;23:297–316.
Article
CAS
PubMed
Google Scholar
Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han L, et al. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res. 2017;27:1112–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Zou J, Ma X, Wang E, Peng G. Mechanisms and implications of ADAR-mediated RNA editing in cancer. Cancer Lett. 2017;411:27–34.
Article
CAS
PubMed
Google Scholar
Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017;550:249–54.
Article
PubMed
PubMed Central
Google Scholar
Picardi E, Manzari C, Mastropasqua F, Aiello I, D’Erchia AM, Pesole G. Profiling RNA editing in human tissues: towards the inosinome atlas. Sci Rep. 2015;5:14941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanc V, Park E, Schaefer S, Miller M, Lin Y, Kennedy S, et al. Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol. 2014;15:R79.
Article
PubMed
PubMed Central
Google Scholar
Lagarrigue S, Hormozdiari F, Martin LJ, Lecerf F, Hasin Y, Rau C, et al. Limited RNA editing in exons of mouse liver and adipose. Genetics. 2013;193:1107–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu T, Buaas FW, Simons AK, Ackert-Bicknell CL, Braun RE, Hibbs MA. Canonical A-to-I and C-to-U RNA editing is enriched at 3'UTRs and microRNA target sites in multiple mouse tissues. PLoS One. 2012;7:e33720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Nellaker C, McIntyre RE, Buendia-Buendia JE, Bumpstead S, Ponting CP, et al. High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol. 2012;13:26.
Article
CAS
PubMed
Google Scholar
Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science. 2011;333:53–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17:1586–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallo A, Locatelli F. ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev. 2012;87:95–110.
Article
PubMed
Google Scholar
Funkhouser SA, Steibel JP, Bates RO, Raney NE, Schenk D, Ernst CW. Evidence for transcriptome-wide RNA editing among Sus scrofa PRE-1 SINE elements. BMC Genomics. 2017;18:360.
Article
PubMed
PubMed Central
Google Scholar
Wang Z, Lian J, Li Q, Zhang P, Zhou Y, Zhan X, et al. RES-scanner: a software package for genome-wide identification of RNA-editing sites. GigaScience. 2016;5:37.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31:166–169
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang L, Han Y, He Q. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: J Integrative Biol. 2012;16:284–7.
Article
CAS
Google Scholar
Bakhtiarizadeh MR, Salehi A, Rivera RM. Genome-wide identification and analysis of A-to-I RNA editing events in bovine by transcriptome sequencing. PLoS One. 2018;13:e0193316.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
Article
PubMed
PubMed Central
Google Scholar
Lambert NJ, Gu SG, Zahler AM. The conformation of microRNA seed regions in native microRNPs is prearranged for presentation to mRNA targets. Nucleic Acids Res. 2011;39:4827–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA. Org resource: targets and expression. Nucleic Acids Res. 2008;36:D149–D53.
Article
CAS
PubMed
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldberg L, Abutbul-Amitai M, Paret G, Nevo-Caspi Y. Alternative splicing of STAT3 is affected by RNA editing. DNA Cell Biol. 2017;36:367–76.
Article
CAS
PubMed
Google Scholar
Picardi E, Pesole G. REDItools: high-throughput RNA editing detection made easy. Bioinformatics. 2013;29:1813–4.
Article
CAS
PubMed
Google Scholar
Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O'connell MA, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods. 2013;10:128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmi S, Borukhov I, Levanon EY. Identification of widespread ultra-edited human RNAs. PLoS Genet. 2011;7:e1002317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bass B, Hundley H, Li JB, Peng Z, Pickrell J, Xiao XG, et al. The difficult calls in RNA editing. Nat Biotechnol. 2012;30:1207.
Article
CAS
PubMed
Google Scholar
Bakhtiarizadeh MR, Shafiei H, Salehi A. Large-scale RNA editing profiling in different adult chicken tissues. bioRxiv. 2018:319871.
Yu H, Wu Q, Zhang J, Zhang Y, Lu C, Cheng Y, et al. Genome-wide characterization of PRE-1 reveals a hidden evolutionary relationship between suidae and primates. BioRxiv. 2015:025791.
Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB. Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods. 2012;9:579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porath HT, Carmi S, Levanon EY. A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat Commun. 2014;5:4726.
Article
CAS
PubMed
Google Scholar
Bazak L, Haviv A, Barak M, Jacobhirsch J, Deng P, Zhang R, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24:365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huntley MA, Lou M, Goldstein LD, Lawrence M, Dijkgraaf GJP, Kaminker JS, et al. Complex regulation of ADAR-mediated RNA-editing across tissues. BMC Genomics. 2016;17:61.
Article
PubMed
PubMed Central
Google Scholar
Rodriguez J, Menet JS, Rosbash M. Nascent-seq indicates widespread cotranscriptional rna editing in drosophila. Mol Cell. 2012;47:27–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moran C. Molecular Genetics. In: F.Rothschild M, Ruvinsky A, editors. The genetics of the pig. UK: CABI; 2011. p. 73–100.
Venø M, Bramsen JB, Bendixen C, Panitz F, Holm I, Öhman M, et al. Spatio-temporal regulation of ADAR editing during development in porcine neural tissues. RNA Biol. 2012;9:1054–65.
Article
PubMed
PubMed Central
Google Scholar
Köhler M, Burnashev N, Sakmann B, Seeburg PH. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron. 1993;10:491–500.
Article
PubMed
Google Scholar
Chan THM, Lin CH, Qi L, Fei J, Li Y, Yong KJ, et al. A disrupted RNA editing balance mediated by ADARs (adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut. 2014;63:832–43.
Article
CAS
PubMed
Google Scholar
Gonzalez C, Lopez-Rodriguez A, Srikumar D, Rosenthal JJ, Holmgren M. Editing of human K V 1.1 channel mRNAs disrupts binding of the N-terminus tip at the intracellular cavity. Nat Commun. 2011;2:436.
Article
PubMed
Google Scholar
Lomeli H, Mosbacher J, Melcher T, Hoger T, Kuner T, Monyer H, et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science. 1994;266:1709–13.
Article
CAS
PubMed
Google Scholar
Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387:303.
Article
CAS
PubMed
Google Scholar
Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, et al. The evolution of gene expression levels in mammalian organs. Nature. 2011;478:343.
Article
CAS
PubMed
Google Scholar
Shin Y, H-j J, Jung M, Yoo S, Subramaniyam S, Markkandan K, et al. Discovery of gene sources for economic traits in Hanwoo by whole-genome resequencing. Asian Australas J Anim Sci. 2016;29:1353.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Zhang M, Ma Y, Lu J, Pan J, Pan P, et al. 5-ALA ameliorates hepatic steatosis through AMPK signaling pathway. J Mol Endocrinol. 2017;59:121–8.
Article
CAS
PubMed
Google Scholar
Watt MJ, Holmes AG, Pinnamaneni SK, Garnham AP, Steinberg GR, Kemp BE, et al. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. American Journal of Physiology-Endocrinology and Metabolism. 2006;290:E500–E8.
Article
CAS
PubMed
Google Scholar
Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 2011;13:739–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frayn KN, Arner P, Ykijärvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006;42:89.
Article
CAS
PubMed
Google Scholar
Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oakes E, Anderson A, Cohen-Gadol A, Hundley HA. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem. 2017;292:4326.
Article
CAS
PubMed
PubMed Central
Google Scholar