Skip to main content

Table 4 Effects of milk-derived exosomes in the intestinal cell and animal models

From: Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals

Model of study

Stress by

MDEs/MDE-miRNAs from

Immune response and morphological changes

Reference

In vitro

 Porcine IPEC-J2 cells

Non-stimulated

Porcine milk

↑(Cell proliferation, CDX2, IGF-1R, PCNA, miRNAs targeting FAS, SERPINE and p53 pathways); ↓(FAS, SERPINE, p53)

[138]

 Rat IEC-18 cells

Non-stimulated

Rat milk

↑(Cell viability, proliferation, PCNA, LGR5)

[145]

 Human CCD841 cells or human LS123 cells

Non-stimulated

Human milk

↑(Cell proliferation, collagen type-I); ↓(twist1, PTEN) in CCD841 cells; = LS123 cells

[146]

 Human LS174T cells

Non-stimulated

Bovine milk

↑(Mucin secretion, TFF3, MUC2, GRP94)

[147]

 Human FHC cells

Mechanical wound

Human term or

preterm milk

↑(Cell proliferation, migration and wound healing)

[38]

 Porcine IPEC-J2 cells

LPS

Porcine milk

↑(Cell viability, IκBα); ↓(TLR4, MyD88, p-IκBα, p-NF-κB-p65, p-NF-κB, NF-κB nuclear translocation, Tp53, FAS, Caspase-3, IL-1β, IL-6, TNF-α)

[148]

 Porcine IPEC-J2 cells

LPS

Porcine milk

↑(Cell viability, IκBα); ↓(TLR4, p-IκBα, p-NF-κB-p65, p-NF-κB, NF-κB, Tp53, p53, FAS, Caspase-3, IL-1β, IL-6, TNF-α)

[149]

 Porcine IPEC-J2 cells

DON

Porcine milk

↑(Cell viability, proliferation, β-catenin, CCND1, Akt, ZO-1, OCLN, CLDN1, PCNA, miRNAs targeting p53 pathway); ↓(Tp53, FAS, SERPINE1, p21)

[150]

 Rat IEC-6 cells

Hypoxia

Yak milk

↑(Cell viability, proliferation, PHD-1); ↓(HIF-1α, VEGF, p53)

[151]

 Rat IEC-6 cells

Hypoxia

Yak milk

↑(Cell viability, Ki67+ cells, PHD-1); ↓(HIF-α, VEGFA, p53, Bax, caspase-3/-9)

[39]

 Rat IEC-6 cells or human FHS-74 cells

Hypoxia/reoxygenation

Human milk

↑(Living cell count, proliferation); ↓apoptosis

[152]

 Rat IEC-6 cells

H2O2

Bovine milk

↑(Cell viability, superperoxide dismutase, glutathione peroxidase); ↓(ROS, LDH, malondialdehyde, NRF2, HO-1)

[153]

 Neonate mice intestinal organoids

LPS

Human colostrum, transitional or matured milk

↓(Structural damage, TNF-α, TLR4, LGR5, Ki67)

[154]

 Neonate mice intestinal organoids

Hypoxia and LPS

Human raw or pasteurized milk

↓(Structural damage, IL-6, MPO); ↑(MUC2, goblet cell abundance)

[155]

In vivo

 Mice

Non-stimulated

Porcine milk

↑(Small intestinal V/C ratio, CDX2, PCNA, IGF-1R); ↓p53

[138]

 Mice

Non-stimulated

Bovine milk

↑(MUC2, RegIIIγ, MyD88, GATA4, IgA, secretory IgA, enterocyte abundance, V/C, cecum surface area)

[156]

 Mice

LPS

Porcine milk

↓(IL-1β, IL-6, TNF-α); ↑(jejunum morphology, villi structure, V/C ratio)

[148]

 Mice

DON-colitis

Porcine milk

↓(p53, p21, caspase-3/-9, villi damage); ↑(jejunum villus height, crypt depth, V/C ratio, intestinal length, β-catenin, CCND1, phospho-Akt, ZO-1, OCLN, CLDN1, miRNAs targeting p53 pathway)

[150]

 Mice

DSS-colitis

Human milk

↑(TGF-β1, miRNAs targeting DNMT1/DNMT3); ↓(colon shortening, inflammatory cell infiltration, tissue damage, lesions, DNMT1/DNMT3, IL-6, TNF-α)

[157]

 Transgenic mice

Tamoxifen-ulcerative colitis

Bovine milk

↑(Colon length and weight); ↓mucosal injury

[158]

 Neonate rats

Formula feeding and hypoxia-induced NEC

Human preterm milk

↑(Villus integrity, enterocyte proliferation); ↑(peptides promoting epithelial proliferation, migration, regeneration and immunomodulation)

[38]

 Neonate mice

Formula feeding, LPS and hypoxia-induced NEC

Bovine milk

↓(Intestinal damage, MPO); ↑(MUC2+/GRP94+ goblet cell abundance)

[147]

 Neonate mice

Formula feeding, LPS and hypoxia-induced NEC

Human milk

↓(Intestinal damage, severity and incidence of disease)

[152]

 Neonate mice

Formula feeding, LPS and hypoxia-induced NEC

Human raw or pasteurized milk

↑(Goblet/MUC2+ cell abundance);↓(MPO, IL-6, mucosal injury)

[155]

  1. The arrow indicates an increase (↑) or decrease (↓) in the level or activity of the different parameters analysed, “=” symbol designates unchanged parameters. Akt Protein kinase B, Bax B-cell lymphoma 2-associated X protein, CCND1 Cyclin D1, CDX2 Homeobox transcription factor-2, CLDN Claudin, DNMT DNA methyltransferase, DON Deoxynivalenol, DSS Dextran sulphate sodium, FAS Cell surface death receptor, GATA4 GATA binding protein 4, GRP94 Glucose-regulated protein-94, HIF-1α Hypoxia-inducible factor-1α, HO-1 Heme oxygenase-1, H2O2 Hydrogen peroxide, Ig Immunoglobulin, IGF-1R Insulin-like growth factor 1 receptor, IL Interleukin, Ki67 Cell proliferation marker, LDH Lactate dehydrogenase, LGR5 Leucine-rich repeat-containing G-protein coupled receptor 5, LPS Lipopolysaccharides, miRNA microRNA, MPO Myeloperoxidase, MUC2 Mucin 2, MyD88 Myeloid differentiation primary response 88, NF-κB Nuclear factor-κB, NEC Necrotizing enterocolitis, NRF Nuclear factor erythroid 2-related factor, OCLN Occludin, PCNA Proliferating cell nuclear antigen, PHD-1 Prolyl hydroxylases-1, p-IκBα phospho-Nuclear factor-κB inhibitor α, p-NF-κB phospho-Nuclear factor-κB, p-NF-κB-p65 phospho-Nuclear factor-κB p65 subunit, PTEN Phosphatase and tensin homolog, Ki67 Cell proliferation marker, RegIIIγ Regenerating islet-derived protein 3 gamma, ROS Reactive oxygen species, SERPINE Serine protease inhibitor clade E, TGF Transforming growth factor, TFF3 Trefoil factor family-3, TLR Toll-like receptor, TNF Tumour necrosis factor, Tp53 or p53 Tumour protein 53, V/C Villus height/crypt depth, VEGFA Vascular endothelial growth factor-A, ZO Zonula occludens