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Abstract

Background: Recently, machine learning (ML) has become attractive in genomic prediction, but its superiority in
genomic prediction over conventional (ss) GBLUP methods and the choice of optimal ML methods need to be
investigated.

Results: In this study, 2566 Chinese Yorkshire pigs with reproduction trait records were genotyped with the
GenoBaits Porcine SNP 50 K and PorcineSNP50 panels. Four ML methods, including support vector regression (SVR),
kernel ridge regression (KRR), random forest (RF) and Adaboost.R2 were implemented. Through 20 replicates of
fivefold cross-validation (CV) and one prediction for younger individuals, the utility of ML methods in genomic
prediction was explored. In CV, compared with genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP) and the
Bayesian method BayesHE, ML methods significantly outperformed these conventional methods. ML methods
improved the genomic prediction accuracy of GBLUP, ssGBLUP, and BayesHE by 19.3%, 15.0% and 20.8%,
respectively. In addition, ML methods yielded smaller mean squared error (MSE) and mean absolute error (MAE) in
all scenarios. ssGBLUP yielded an improvement of 3.8% on average in accuracy compared to that of GBLUP, and the
accuracy of BayesHE was close to that of GBLUP. In genomic prediction of younger individuals, RF and
Adaboost.R2_KRR performed better than GBLUP and BayesHE, while ssGBLUP performed comparably with RF, and
ssGBLUP yielded slightly higher accuracy and lower MSE than Adaboost.R2_KRR in the prediction of total number
of piglets born, while for number of piglets born alive, Adaboost.R2_KRR performed significantly better than
ssGBLUP. Among ML methods, Adaboost.R2_KRR consistently performed well in our study. Our findings also
demonstrated that optimal hyperparameters are useful for ML methods. After tuning hyperparameters in CV and in
predicting genomic outcomes of younger individuals, the average improvement was 14.3% and 21.8% over those
using default hyperparameters, respectively.

Conclusion: Our findings demonstrated that ML methods had better overall prediction performance than
conventional genomic selection methods, and could be new options for genomic prediction. Among ML methods,
Adaboost.R2_KRR consistently performed well in our study, and tuning hyperparameters is necessary for ML
methods. The optimal hyperparameters depend on the character of traits, datasets etc.
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Background
Genomic selection (GS) has been widely recognized and
successfully implemented in animal and plant breeding
programs [1–3]. It has been reported that the breeding
costs of dairy cattle using GS were 92% lower than those
of traditional progeny testing [4]. At present, the genetic
gain rate of the annual yield traits of US Holstein dairy
cattle has increased from approximately 50% to 100%
[5]. The accuracy of GS is impacted by a number of fac-
tors, such as analytical methods of genomic prediction,
reference population size, marker density, and heritabil-
ity values. Currently, parametric methods are most com-
monly used for livestock and poultry genomic selection,
mainly including genomic BLUP (GBLUP) [6], single-
step GBLUP (ssGBLUP) [7, 8], ridge regression (RR) [9],
least absolute shrinkage and selection operator (LASSO)
[10], and Bayesian regression models [11, 12] with the dif-
ference mainly depending on the prior distribution of
marker effects. Nevertheless, these linear models usually
only take into account the additive inheritance and ignore
the complex nonlinear relationships that may exist be-
tween markers and phenotypes (e.g. epistasis, dominance,
or genotype-by-environment interactions). In addition,
parametric methods usually provide limited flexibility for
handling nonlinear effects in high-dimensional genomic
data, resulting in large computational demands [13]. How-
ever, studies have shown that considering nonlinearity
may enhance the genomic prediction ability of complex
traits [14]. Therefore, new strategies should be explored to
more accurately estimate genomic breeding values.
Driven by applications in intelligent robots, self-driving

cars, automatic translation, face recognition, artificial
intelligence games and medical services, machine learning
(ML) has gained considerable attention in the past decade.
Some characteristics of ML methods make them potentially
attractive for dealing with high-order nonlinear relation-
ships in high-dimensional genomic data, e.g. allowing the
number of variables larger than the sample size [15], cap-
able of capturing the hidden relationship between genotype
and phenotype in an adaptive manner, and imposing little
or no specific distribution assumptions about the predictor
variables as GBLUP and Bayesian methods [16, 17].
Studies have shown that random forest (RF), support

vector regression (SVR), kernel ridge regression (KRR)
and other machine learning methods have advantages
over GBLUP and Bayes B [18–20]. Ornella et al. com-
pared the genomic prediction performance of support
vector regression, random forest regression, reproducing
kernel Hilbert space (RKHS), ridge regression, and
Bayesian Lasso in maize and wheat datasets with differ-
ent trait-environment combinations, and found that
RKHS and random forest regression were the best [21].
González-Camacho et al. reported that the support vec-
tor machine (SVM) with linear kernel performed the

best in comparison with other ML methods and linear
models in the genomic prediction of the rust resistance
of wheat [20]. Additionally, ML methods have also been
widely used in the fields of gene screening, genotype im-
putation, and protein structure and function prediction
[22–25], demonstrating its superiority as well. However,
one challenge for ML is choosing the optimum ML
method as a series of ML methods have been proposed
and each has its own characteristics and shows different
prediction abilities in different datasets and traits.
Therefore, the objectives of this study were to 1) assess

the performance of ML methods in genomic prediction
in comparison with existing prevail methods of GBLUP,
ssGBLUP, and BayesHE and 2) evaluate the efficiency of
different ML methods to explore the ideal ML method
for genomic prediction.

Materials and methods
Ethics statement
The whole procedure for blood sample collection was
carried out in strict accordance with the protocol ap-
proved by the Animal Care and Use Committee of China
Agricultural University (Permit Number: DK996).

Population and phenotypes
A purebred Yorkshire pig population from DHHS, a
breeding farm in Hebei Province, China, was studied.
Animals from this farm were descendants of Canadian
Yorkshires, and they were reared under the same feeding
conditions. A total of 2566 animals born between 2016
and 2020 were sampled, their 4274 reproductive records
of the total number of piglets born (TNB) and the num-
ber of piglets born alive (NBA) with delivery dates ran-
ging from 2017 to 2021 were available, and 3893 animals
were traced back to construct the pedigree relationship
matrix (A matrix). The numbers of full-sib and half-sib
families were 339 and 301, respectively. A single-trait re-
peatability model was used to estimate the heritability.
The fixed effect included herd-year-season, and random
effects included additive genetic effects, random resid-
uals, and permanent environment effects of sows (envir-
onmental effects affecting litter size across parities of
sows). The information of animals, phenotypes and gen-
etic components, as well as the estimated heritability, are
listed in Table 1. The estimated heritability of TNB and
NBA were both 0.12.

Derivation of corrected phenotypes
To avoid double counting of parental information, the
corrected phenotypes (yc) derived from the estimated
breeding values (EBVs) were used as response variables
in genomic prediction. The pedigree-based BLUP and
single-trait repeatability model was performed to esti-
mate the breeding values for each trait separately.
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y ¼ Xbþ Zaaþ Zpepeþ e; ð1Þ

where y was the vector of raw phenotypic values; b was
the vector of fixed effects including herd-year-season, in
which season consisted of four levels (1st = December to
February; 2nd =March to May; 3rd = June to August;
4th = September to November); a was the vector of addi-
tive genetic effects; pe was the vector of permanent en-
vironment effects of sows; and e was the vector of
random error. X, Za, and Zpe are the incidence matrices
linking b, a and pe to y. The random effects were as-
sumed to be normally distributed as follows: a ~ N (0,
Aσ2a), pe ~ N (0, Iσ2pe), and e ~ N (0, Iσ2e), where A was
the pedigree-based relationship matrix; I was the identity
matrix; and σ2a, σ

2
pe, and σ2e were the variances of addi-

tive genetic effects, permanent environment effects of
sows, and residuals, respectively. A total of 3893 individ-
uals were traced to construct matrix A. Their EBVs were
calculated using the DMUAI procedure of the DMU
software [26]. The yc were calculated as EBV plus the
average estimated residuals for multiple parties of a sow
following Guo et al. [27].

Genotype data and imputation
Two kinds of 50 K define SNP panels, PorcineSNP50
BeadChip (Illumina, CA, USA) and GenoBaits Porcine
SNP 50 K (Molbreeding, China) were used for genotyp-
ing. A total of 1189 sows were genotyped with the Porci-
neSNP50 BeadChip, which included 50,697 SNPs across
the genome, and 1978 individuals were genotyped using
the GenoBaits Porcine SNP 50 K with 52,000 SNPs.
There were 30,998 common SNPs between these two
SNP panels, and 601 individuals were genotyped with
both SNP panels; therefore, 2566 genotyped individuals
were finally used for further analysis, including 1189 ani-
mals with the PorcineSNP50 BeadChip and 1377 pigs
with the GenoBaits Porcine SNP 50 K. The animals ge-
notyped with GenoBaits Porcine SNP 50 K were imputed
to the PorcineSNP50 BeadChip using Beagle 5.0 [28].
The reference population size for genotype imputation
was 3720. Imputation accuracy was assessed by the dos-
age R-squared measure (DR2), which is the estimated
squared correlation between the estimated allele dose
and the true allele dose. The genotype correlation (COR)
and the genotype concordance rate (CR) were also cal-
culated based on the 601 overlapped animals to evaluate
the imputation accuracy. After imputation, quality

control of the genotype was carried out using PLINK
software [29]. SNPs with a minor allele frequency (MAF)
lower than 0.01 and call rate lower than 0.90 were re-
moved, and individuals with call rates lower than 0.90
were excluded. Finally, all animals and 44,922 SNPs on
autosomes remained for further analysis.

Statistical models
GBLUP, ssGBLUP, Bayesian Horseshoe (BayesHE) and
four ML regression methods, support vector regression
(SVR), kernel ridge regression (KRR), random forest
(RF), and Adaboost.R2 were used to perform genomic
prediction.

GBLUP

yc¼1μþZgþe

in which yc is the vector of corrected phenotypes of ge-
notyped individuals. μ is the overall mean, 1 is a vector
of 1 s, g is the vector of genomic breeding values, e is
the vector of random errors, and Z is an incidence
matrix allocating records to g. The distributions of ran-
dom effects were: g ~ N (0, G σ2

g ) and e ~ N (0, I σ2e ),
where G was the genomic relationship matrix (G
matrix), and σ2g and σ2e were the additive genetic vari-

ance and the residual variance, respectively.

ssGBLUP
ssGBLUP had the same expression as GBLUP, except that
it used yc of both genotyped and nongenotyped individ-
uals by combining the G matrix and A matrix. It was as-
sumed that g followed a normal distribution N (0, H σ2g ).

The inverse of matrix H was:

H−1 ¼ G−1
w −A−1

22 0
0 0

� �
þ A−1

To prevent the problem that the singular matrix can-
not be inverted, Gw = (1-w) Ga + wA22, and w was equal
to 0.05 [30].

BayesHE
BayesHE was developed by Shi. et al. [31], it was based
on global-local priors to increase the flexibility and
adaptability of the Bayesian model. In this study, the first
form of BayesHE (BayesHE1) was used [31], and the
Markov chain Monte Carlo (MCMC) chain was run for

Table 1 Summary of two reproduction traits of Yorkshire pigs

Traita Number of records Birth year Genotyped animals Mean SD Minimum Maximum σ2a σ2e h2(SE)

TNB 4274 2016–2020 2566 13 3.38 3 24 1.26 8.95 0.12 (0.034)

NBA 4274 2016–2020 2566 12 3.13 3 24 0.98 7.13 0.12 (0.032)
a TNB: total number of piglets born; NBA: number of piglets born alive
SE standard error
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50,000 cycles, with the first 20,000 cycles being discarded
as burn-in and every 50 samples of the remaining 30,000
iterations saved to infer posterior statistics. In-house
scripts written in Fortran 95 were used for BayesHE ana-
lyses [31], and the DMUAI procedure implemented in
DMU software [26] was used for GBLUP and ssGBLUP
analyses.

Support vector regression
Support vector machine (SVM) was based on statistical
learning theory. SVR was the application of SVM in re-
gression for dealing with quantitative responses, which
used a linear or nonlinear kernel function to map the in-
put space (the marker dataset) to a higher dimensional
feature space [32], and performed modelling and predic-
tion on the feature space. In other words, we can build a
linear model in the feature space to deal with regression
problems. The model formulation of SVR can be
expressed as:

f xð Þ ¼ β0 þ h xð ÞTβ ð2Þ
in which h(x)Tβ is the kernel function, β is the vector of
weights, and β0 is the bias. Generally, the formalized
SVR was given by minimizing the following restricted
loss function:

min
β0;β

1
2

βk k2 þ C
Xn

i¼1
V yi− f xið Þð Þ; ð3Þ

in which

V ε rð Þ ¼ 0; if rj j < ε
rj j−ε; otherwise

�
: ð4Þ

Vε(r) is the ε-insensitive loss and C (“cost parameter”)
is the regularization constant that controls the trade-off
between prediction error and model complexity. y is a
quantitative response, and ||·|| is the norm in Hilbert
space. After optimization, the final form of SVR can be
written as:

f xð Þ ¼
Xm

i¼1
âi−aið Þk x; xið Þ; ð5Þ

in which k(xi, xj) = ϕ(xi)
Tϕ(xj) is the kernel function. In

this research, grid search was used to find the best ker-
nel function and the optimal hyperparameters of C and
gamma. An internal fivefold cross-validation (5-fold CV)
strategy was performed to tune the hyperparameters
when performing a grid search.

Kernel ridge regression
Kernel ridge regression (KRR) is a nonlinear regression
method that can effectively discover the nonlinear struc-
ture of the data [33]. KRR uses a nonlinear kernel func-
tion to map the data to a higher dimensional kernel

space, and then builds a ridge regression model to make
the data linearly separable in this kernel space. The lin-
ear function in the kernel space was selected according
to the mean squared error loss of ridge regularization
[33]. The final KRR prediction model can be written as:

y xið Þ ¼ k 0 K þ λIð Þ−1ŷ ð6Þ
where λ is the regularization constant, and K is the Gram
matrix with entries Kij =K(xi, xj) = ϕ(xi) · ϕ(xj)

T; thus, for n
training samples, the obtained kernel matrix is:

K ¼

Kðx1; x1Þ Kðx1; x2Þ ⋯ Kðx1; xnÞ
Kðx2; x1Þ Kðx2; x2Þ ⋯ Kðx2; xnÞ

⋮ ⋮ ⋮ ⋮

Kðxn; x1Þ Kðxn; x2Þ ⋯ Kðxn; xnÞ

2
66664

3
77775
n�n

ð7Þ
I is the identity matrix, k′ = K(xi, xj) with j = 1,2,3, …,n,

n is the number of training samples, and xi is the test
sample. In the expanded form,

k ¼

Kðxi; x1Þ
Kðxi; x2Þ

⋮

Kðxi; xnÞ

2
66664

3
77775 ð8Þ

The grid search was used to find the most suitable
kernel function and λ in this study, and an internal 5-
fold CV strategy was used for tuning the
hyperparameters.

Random forest
Random forest (RF) is an ML method that uses voting
or the average of multiple decision trees to determine
the classification or predicted values of new instances
[34]. Random forest was essentially a collection of deci-
sion trees, and each decision tree was slightly different
from other trees. Random forest reduced the risk of
overfitting by averaging the prediction results of many
decision trees [20]. Random forest regression can be
written in the following form:

y ¼ 1
M

XM

m¼1
tm ψm y : Xð Þð Þ ð9Þ

in which y is the predicted value of random forest re-
gression, tm(ψm(y : X)) is an individual regression tree,
and M is the number of decision trees in the forest. The
prediction was obtained by passing down the predictor
variables in the flowchart of each tree, and the corre-
sponding estimated value at the terminal node was used
as the predicted value. Finally, the predictions of each
tree in RF were averaged to calculate the final prediction
of unobserved data. The grid search was used to find the
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most suitable hyperparameter M and the maximum
depth of the tree, and the inner 5-fold CV was per-
formed to tune the hyperparameters.

Adaboost.R2
Adaboost.R2 is an ad hoc modification of Adaboost. R
and an extension of Adaboost.M2 created to deal with
regression problems, which repeatedly used a regression
tree as a weak learner followed by increasing the weights
of incorrectly predicted samples and decreasing the
weights of correctly predicted samples. It builds a “com-
mittee” by integrating multiple weak learners [35], mak-
ing its prediction effect better than those of weak
learners. Adaboost.R2 regression model can be written
as:

y ¼ inf y∈Y :
X

t: f t xð Þ≤ y log
1
εt
≥
1
2

X
t
log

1
εt

� �
;

ð10Þ

where y is the predicted value, ft(x) is the predicted value
of the t-th weak learner, εt is the error rate of ft(x) and εt
¼ �Lt � ð1−�LtÞ, Lt is the average loss and Lt ¼

Pm
i¼1LtðiÞ

DtðiÞ; Lt(i) is the error between the actual observation
value and the predicted value of the i-th predicted indi-
vidual, and Dt(i) is the weight distribution of ft(x). After
ft(x) is trained, the weight distribution Dt(i) becomes Dt +

1(i),

Dtþ1 ið Þ ¼ Dt ið Þβ 1−Lt ið Þð Þ
t

Zt
; ð11Þ

in which Zt is a normalization factor chosen such that
Dt + 1(i) will be a distribution. In the current study, SVR
and KRR were used as weak learners of Adaboost.R2.
For these four ML methods, the vectors of genotypes

(coded as 0, 1, 2) were the input independent variables,
corrected phenotypes yc was used as the response vari-
able, and the Sklearn package for Python (V0.22) was
used for genomic prediction. We sought the optimal
hyperparameter combination from a grid of values with
different hyperparameter combinations, and the combin-
ation in the grid with the highest Pearson correlation
was selected as the optimal hyper-parameter in each fold
(grid search). Meanwhile, the optimal hyperparameters
for SVR, KRR, RF and Adaboost.R2 in CV according to
the grid search are shown in Table 2.

Accuracy of genomic prediction
Fivefold cross-validation (5-fold CV) was used to esti-
mate the accuracies of genomic prediction, in which
2566 individuals were randomly split into five groups
with 513 individuals each. For each CV, four of the five
groups were defined as the reference population, and the

remaining group was treated as the validation popula-
tion. The genotyped reference and validation sets in each
replicate of 5-fold CV were the same for all methods,
and it should be noted that nongenotyped individuals
were added to the reference population in ssGBLUP. For
all methods, the accuracy of genomic prediction was cal-
culated as the Pearson correlation of yc (corrected phe-
notypes) and PV (predicted values). In addition, the
prediction unbiasedness was also calculated as the re-
gression of yc on PV of the validation population. The 5-
fold CV scheme was repeated 20 times, and the overall
prediction accuracy and unbiasedness were the averages
of 20 replicates. The Hotelling-Williams Test [36] was
performed to compare the prediction accuracy of differ-
ent methods after parameter optimization.
Meanwhile, prediction ability metrics, e.g., mean

squared error (MSE) and mean absolute error (MAE),
were also used to evaluate the performance of regression
models in the present study. MSE can take both predic-
tion accuracy and bias into account [37], and the smaller
the value of MSE is, the better the accuracy of the model
to describe the experimental data. The MAE could bet-
ter reflect the actual situation of the predicted value
error. Their formulas can be written as follows.

MSE ¼ 1
m

Xm

i¼1
f i−yið Þ2; and MAE ¼ 1

m

Xm

i¼1
f i−yij j ð12Þ

where m represents the number of animals in each CV
test fold of 5-fold CV, f is the vector of predicted values
(PV) and y is the vector of observed values (yc). The final
MSE and MAE were the average of 20 replicates.
In addition, to be more in line with the actual situation

of genomic selection, we compared ML methods and
traditional genomic selection methods in using early-
generation animals to predict the performance of ani-
mals of later generations. Therefore, the younger ani-
mals born after January 2020 were chosen as the
validation population, and the population sizes of the
reference and validation were 2222 and 344, respectively.
The accuracy of genomic prediction was evaluated as r
(yc, PV), the Pearson correlation between corrected phe-
notypes yc and predicted values PV.

Table 2 The optimal hyperparameters of each ML model
obtained through a grid search for TNB and NBA traits in 20
replicates of 5-fold CV
Method Optimal hyperparametersa

SVR kernel = ‘rbf’, C = 7, gamma = 0.0001

KRR kernel = ‘rbf’, λ =0.1, gamma = 0.0001

RF n_estimators = 250, max_depth = None

Adaboost.R2_SVR n_estimators = 50, kernel = ‘rbf’, C = 7, gamma = 0.0001

Adaboost.R2_KRR n_estimators = 50, kernel = ‘rbf’, λ =0.01, gamma = 0.0001
a Optimal hyperparameters: The optimal hyperparameters of each machine
learning method obtained by using a grid search
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Results
Genotype imputation accuracy
Figure 1 illustrates the accuracy of imputing GenoBaits
Porcine SNP 50 K to PorcineSNP50 BeadChip across
minor allele frequency (MAF) intervals and chromo-
somes. DR2, CR and COR were not sensitive to MAF
except that COR was lower when the MAF was less than
0.05 and in the range of 0.45 to 0.5 (Fig. 1a). DR2, CR
and COR on each chromosome were 0.978 ~ 0.988,
0.984 ~ 0.988 and 0.957 ~ 0.972, respectively, and no sig-
nificant differences were observed in DR2, CR and COR
between chromosomes (Fig. 1b). In the same scenarios,
the COR values were smaller than those of DR2 and CR.
The averaged DR2, CR and COR across all variants were
0.984, 0.985 and 0.964, respectively, indicating that the
imputation was sufficiently accurate to analyse the two
SNP panels together.

Accuracy of genomic prediction in cross-validation
Comparison of ML methods with (ss) GBLUP and BayesHE
Table 3 shows the prediction accuracies and unbiased-
ness of the ML methods, (ss) GBLUP and BayesHE on
traits of TNB and NBA in 20 replicates of 5-fold CV.
The accuracies of the ML methods after tuning the
hyperparameters were significantly (P < 0.05) higher than
those of (ss) GBLUP and BayesHE. The improvements
of ML methods over GBLUP, ssGBLUP and BayesHE
were 19.3%, 15.0% and 20.8% on average, ranging from

8.9% to 24.0%, 7.6% to 17.5% and 11.1% to 24.6%, re-
spectively. For trait TNB, compared with that of GBLUP,
the average accuracy of all ML methods was improved,
and support vector regression (SVR) showed an im-
provement of 19.0%, similar to the outcomes of kernel
ridge regression (KRR) and Adaboost.R2 based on SVR
and KRR, which obtained improvements of 18.1% and
17.7%, respectively; random forest (RF) yielded the low-
est improvement of 8.9%. The similar advantages of ML
were also over ssGBLUP and the improvements of SVR,
KRR, RF, Adaboost.R2_SVR and Adaboost.R2_KRR were
17.5%, 17.5%, 7.6%, 16.7% and 16.3%, respectively. ML
methods gained the largest advantage over BayesHE, the
accuracy from SVR, KRR, RF, Adaboost.R2_SVR and
Adaboost.R2_KRR were improved by 21.4%, 21.4%,
11.1%, 20.6% and 20.2%, respectively, compared with
BayesHE. For trait NBA, although ML methods still per-
formed better than GBLUP, ssGBLUP and BayesHE,
Adaboost.R2_KRR gained the largest improvement in all
comparisons, and KRR obtained the second largest im-
provement. SVR and Adaboost.R2 based on SVR yielded
the same improvements on GBLUP, ssGBLUP and
BayesHE. RF still gained the lowest improvement com-
pared with other ML methods.
Meanwhile, GBLUP, ssGBLUP and BayesHE had simi-

lar performance, and no significant differences in predic-
tion accuracy were found among them. Nevertheless,
ssGBLUP produced an average improvement of 3.7%

Fig. 1 Imputation accuracy. Imputation accuracy of GenoBaits Porcine SNP 50 K to PorcineSNP50 BeadChip at different minor allele frequency
(MAF) intervals (a) and chromosomes (b). DR2, the estimated squared correlation between the estimated allele dose and the true allele dose;
Genotype concordance rate (CR), the ratio of correctly imputed genotypes; Genotype correlation (COR), the correlation coefficient between the
imputed variants and the true variants
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compared with GBLUP (1.2% for TNB; 6.3% for NBA),
while less bias was observed by GBLUP in all scenarios.
BayesHE yielded similar accuracy to GBLUP (0.243 and
0.248 for TNB; 0.207 and 0.208 for NBA), but the unbi-
asedness of BayesHE was much closer to 1 (1.015 for
TNB; 1.009 for NBA).
On the other hand, the mean squared error (MSE) and

mean absolute error (MAE) were also used to assess the
performance of different methods. As shown in Table 4,
after tuning the hyperparameters, the ML methods were
generally superior to GBLUP, ssGBLUP and BayesHE in
terms of MSE and MAE. For two reproduction traits
TNB and NBA, all ML methods yielded lower MSE and
MAE than GBLUP, ssGBLUP and BayesHE. The per-
formance of GBLUP, ssGBLUP and BayesHE was very
close, and ssGBLUP produced a slightly lower MSE
(5.26 for TNB; 3.95 for NBA) and MAE (1.748 for TNB;
1.532 for NBA) among these three methods, while they
were still higher than those obtained from RF, which
performed the worst among the four ML methods and
generated 5.212 and 3.901 of MSE and 1.747 and 1.527
of MAE on TNB and NBA, respectively.

Comparison among ML methods
Tables 3 and 4 indicate that the ML methods performed
better than GBLUP, ssGBLUP and BayesHE. They also
showed that RF had the lowest accuracy even though no
significant differences were observed among the ML
methods in this study. After tuning the parameters, the
accuracies of SVR, KRR, Adaboost.R2_SVR and Ada-
boost.R2_KRR was improved by an average of 5.8%,

6.2%, 5.5% and 6.1% compared to RF, ranging from 8.1%
to 9.3% for TNB and from 2.4% to 4.0% for NBA. For
TNB, SVR and KRR showed the highest accuracies
(0.295 for both), and Adaboost.R2_KRR yielded the
highest accuracies on NBA (0.258). In the comparison of
unbiasedness, SVR produced the lowest genomic predic-
tion bias, and the regression coefficient was close to 1.0,
while Adaboost.R2 method with both base learner SVR
and KRR produced larger bias. As a trade-off between

Table 3 Accuracies and unbiasedness of genomic prediction on TNB and NBA from seven methods in 20 replicates of 5-fold CV

Hyper-
parameters

Method TNB1 NBA2

Accuracy3 Unbiasedness4 Accuracy3 Unbiasedness4

GBLUP 0.248a ± 0.026 0.958 ± 0.132 0.208a ± 0.025 0.931 ± 0.142

ssGBLUP 0.251a ± 0.026 0.901 ± 0.121 0.221ab ± 0.026 0.844 ± 0.113

BayesHE 0.243a ± 0.025 1.015 ± 0.148 0.207a ± 0.026 1.009 ± 0.171

Tuning SVR 0.295b ± 0.025 1.23 ± 0.119 0.254b ± 0.023 1.106 ± 0.11

KRR 0.295b ± 0.025 1.266 ± 0.125 0.256b ± 0.023 1.151 ± 0.113

RF 0.270ab ± 0.029 1.229 ± 0.152 0.248ab ± 0.028 1.188 ± 0.147

Adaboost.R2_SVR 0.293b ± 0.025 1.363 ± 0.138 0.254b ± 0.024 1.256 ± 0.131

Adaboost.R2_KRR 0.292b ± 0.025 1.344 ± 0.136 0.258b ± 0.024 1.249 ± 0.129

Default SVR 0.255 ± 0.027 1.275 ± 0.147 0.224 ± 0.023 1.098 ± 0.126

KRR 0.264 ± 0.025 1.007 ± 0.108 0.222 ± 0.024 0.879 ± 0.101

RF 0.246 ± 0.028 1.064 ± 0.142 0.225 ± 0.027 1.002 ± 0.128

Adaboost.R2_SVR 0.273 ± 0.024 0.998 ± 0.106 0.228 ± 0.026 0.822 ± 0.099

Adaboost.R2_KRR 0.254 ± 0.024 0.759 ± 0.085 0.209 ± 0.027 0.636 ± 0.085
1 TNB: total number of piglets born
2 NBA: number of piglets born alive
3 Accuracy: the correlation between corrected phenotypes and predicted values of the validation population;
4 Unbiasedness: the regression of corrected phenotypes onto the predicted values
The different superscript of accuracy indicates the significant difference by the Hotelling-Williams test

Table 4 Mean squared error (MSE) and mean absolute error
(MAE) of seven methods for TNB and NBA as assessed with 20
replicates of 5-fold CV

Hyperparameters Method TNB NBA

MSE MAE MSE MAE

GBLUP 5.259 1.749 4.168 1.606

ssGBLUP 5.26 1.748 3.95 1.532

BayesHE 5.32 1.763 4.023 1.556

Tuning SVR 5.129 1.730 3.880 1.521

KRR 5.134 1.731 3.876 1.521

RF 5.212 1.747 3.901 1.527

Adaboost.R2_SVR 5.158 1.739 3.892 1.528

Adaboost.R2_KRR 5.153 1.737 3.883 1.526

Default SVR 5.271 1.748 3.956 1.522

KRR 5.21 1.743 3.944 1.531

RF 5.266 1.756 3.93 1.531

Adaboost.R2_SVR 5.202 1.75 3.95 1.541

Adaboost.R2_KRR 5.309 1.771 4.04 1.566
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accuracy and unbiasedness, SVR and KRR had the most
robust prediction ability, which was also confirmed by
the results of MSE and MAE, in which SVR and KRR
had the smallest MSE and MAE in all scenarios.
It should be noted that the better performance of the

ML methods was acquired by tuning the hyperpara-
meters (Tables 2,3). Compared with using hyperpara-
meters set to default, the accuracy was improved by
14.3% on average from the ML methods with optimal
hyperparameters; the accuracy of SVR, KRR, RF and
Adaboost.R2 with optimal hyperparameters improved
the genomic prediction accuracies for TNB by 15.7%,
11.7%, 9.8% and 15.0%, respectively; and for NBA, the
improvements were 13.4%, 15.3%, 10.2% and 23.4%, re-
spectively. For unbiasedness, except for SVR on TNB,
the unbiasedness of all ML methods using the default
parameters was lower than the unbiasedness using the
optimal parameters. On the other hand, Tables 3 and 4
indicate that ML methods with default hyperparameters
did not yield advantages over GBLUP, ssGBLUP and
BayesHE.

Accuracy of genomic prediction in predicting younger
animals
Table 5 presents the accuracy and MSE of genomic pre-
diction on TNB and NBA by applying different methods
to predict younger animals. On the one hand, a similar
trend was obtained for GBLUP, BayesHE and ssGBLUP
as in CV. GBLUP performed comparably with BayesHE,
while ssGBLUP yielded higher accuracies and lower
MSE than GBLUP and BayesHE for both traits. On the
other hand, different from the results in CV, the super-
iority of ML methods with optimal hyperparameters was

not significant in predicting younger animals, although
they still improved the accuracies and reduced the MSE
compared with the outcomes when using the default
hyperparameters. Table 5 indicates that Adaboost.R2_
KRR and RF still outperformed GBLUP and BayesHE as
was demonstrated in the CV, ssGBLUP performed com-
parably with RF, and ssGBLUP yielded slightly higher ac-
curacy and lower MSE than Adaboost.R2_KRR in the
prediction of TNB; in contrast, for NBA, Adaboost.R2_
KRR performed significantly better than ssGBLUP.
Meanwhile, after tuning the parameters, RF and KRR
obtained higher accuracies and lower MSE than GBLUP
and BayesHE, respectively. The performance of RF was
significantly improved, and it performed better than that
of KRR and SVR. In the prediction of younger animals,
SVR with either default hyperparameters or optimal
hyperparameters performed the worst, which was differ-
ent from its performance in the CV.

Computing time
The average computation time to complete each fold in
CV for each genomic prediction method is demonstrated
in Table 6. Running time of the methods was measured
in minutes on an HP server (CentOS Linux 7.9.2009,
2.5 GHz Intel Xeon processor and 515G total memory).
Among all methods, KRR was the fastest algorithm; it
took an average of 1.16 min in each fold of CV to
complete the analysis, requiring considerably less time
than GBLUP (2.07 min) and ssGBLUP (3.23 min). The
computing efficiency of SVR (5.28 min) and Ada-
boost.R2_KRR (5.16 min) was comparable to that of
KRR, GBLUP and ssGBLUP. However, RF (53.45 min)
and Adaboost.R2_SVR (85.34 min) ran slowly among the

Table 5 Accuracy and mean squared error (MSE) of genomic prediction of TNB and NBA in younger individuals from seven
methods
Hyperparameters Method TNB1 NBA2

Accuracy3 MSE Optimal hyperparameters4 Accuracy3 MSE Optimal hyperparameters4

GBLUP 0.355ab 11.598 – 0.264ab 10.203 –

ssGBLUP 0.408b 11.221 – 0.288ab 9.974 –

BayesHE 0.357ab 11.566 – 0.262ab 10.143 –

Tuning SVR 0.307a 11.488 kernel = ‘rbf’; gamma = 0.00005; C = 14 0.229a 10.235 kernel = ‘rbf’; gamma = 0.00005; C = 13

KRR 0.362ab 11.367 kernel = ‘rbf’; gamma = 0.000001; λ = 0.07 0.266ab 10.121 kernel = ‘rbf’; gamma = 0.000001; λ = 0.12

RF 0.385ab 11.337 n_estimators = 430; max_depth = None 0.285ab 10.116 n_estimators = 400; max_depth = None

Adaboost.R2_KRR 0.395b 11.254 n_estimators = 70; kernel = ‘rbf’,
gamma = 0.00001, λ = 1

0.328b 9.794 n_estimators = 60; kernel = ‘rbf’,
gamma = 0.00001, λ = 0.9

Default SVR 0.271 11.858 – 0.17 10.37 –

KRR 0.346 11.538 – 0.259 10.158 –

RF 0.26 11.867 – 0.179 10.335 –

Adaboost.R2_KRR 0.36 11.392 – 0.322 9.797 –

1 TNB: total number of piglets born
2 NBA: number of piglets born alive
3 Accuracy: the correlation between corrected phenotypes and predicted values of the validation population;
4Optimal hyperparameters: The optimal hyper-parameters of each machine learning method obtained by using grid search
The different superscript of accuracy indicates the significant difference by the Hotelling-Williams test
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ML methods. Adaboost.R2 based on KRR (Adaboost.R2_
KRR) was much more time-saving than Adaboost.R2_
SVR. Since the MCMC algorithm required more iter-
ation time to reach convergence, BayesHE was the slow-
est as expected, and it took 226.12 min for each fold
of CV.

Discussion
Our results elucidated that ssGBLUP performed better
than GBLUP in terms of accuracy in all scenarios inves-
tigated, which was consistent with previous studies [27,
38–40]. This could be explained by the fact that GBLUP
utilized phenotypic information only from genotyped in-
dividuals, while ssGBLUP simultaneously used informa-
tion from both genotyped and nongenotyped individuals
to construct a genotype-pedigree relationship matrix (H
matrix). Since nongenotyped individuals were related to
individuals in the validation population on the pedigree,
ssGBLUP took advantage of the phenotypic information
of the whole population to obtain better prediction.
However, in our research utilizing 5-fold CV and pre-
dicting younger animals, ssGBLUP produced only
slightly higher accuracies for the two reproduction traits.
The lower improvement of ssGBLUP may be due to the
following reasons. (I) Weak relationship between the
nongenotyped reference population and genotyped can-
didates in the pedigree. In our study, only 143 of the 789
nongenotyped reference population used by ssGBLUP
had pedigree information, and only 46 and 40 individual
sires and dams were included in the 2566 genotyped in-
dividuals, indicating that the relationship between non-
genotyped reference animals and genotyped candidates
was weak, making a small contribution to the genomic
prediction. Li et al. [39] showed that the improvement of
ssGBLUP over GBLUP on accuracy was almost entirely
contributed by nongenotyped close relatives of candi-
dates. It can also be observed in Additional file 1: Fig. S1
that the greater the weight of the A matrix, the lower
the accuracy, indicating that the information obtained
from pedigree is limited, resulting in ssGBLUP not

exerting its advantages greatly. (II) The low heritability
of TNB and NBA. In this study, the heritability for the
two traits were both 0.12, which was generally consistent
with other reports [27, 41, 42]; therefore, sufficient ac-
curacy could not be achieved with the pedigree informa-
tion. This also confirmed by other studies, that a certain
improvement can be achieved by adding a smaller refer-
ence population for traits with medium or high heritabil-
ity [2, 43].
In this study, we investigated the performance of ML

methods in genomic prediction, and demonstrated their
superiority compared to classical methods GBLUP,
ssGBLUP and Bayesian methods. Generally, the follow-
ing characteristics of ML methods make it potentially at-
tractive to genomic prediction. (I) Although ML
methods generally require moderate fine-tuning of
hyperparameters, the default hyperparameters usually do
not perform poorly [34]. According to our results, ML
methods after tuning parameters gained advantages over
using the default hyperparameters; in addition, without
tuning hyperparameters, almost all ML methods in CV
and Adaboost.R2_KRR in predicting younger animals
performed better than GBLUP and BayesHE (Tables 3,
4, 5). (II) ML methods can handle situations where the
number of parameters is larger than the sample size, and
they are very efficient in the case of high-density genetic
markers for GS [44]. (III) ML methods do not make dis-
tribution assumptions about the genetic determinism
underlying the trait, enabling us to capture the possible
nonlinear relationships between genotype and phenotype
in a flexible way [44], and it is different from GBLUP
and Bayesian methods, which assume that all marker ef-
fects follow the same normal distribution or have differ-
ent classes of shrinkage for different SNP effects. In
addition, ML methods can take the correlation and
interaction of markers into account as well, while linear
models based on pedigree and genomic relationships
may not provide a sufficient approximation of the gen-
etic signals generated by complex genetic systems [16].
Consequently, for traits with fully additive architecture,
conventional linear models outperformed ML models
[45], but when traits are affected by nonadditive effects,
especially epistasis, ML methods can achieve more ac-
curate predictions [25]. These make ML methods gain a
large advantage over GBLUP and BayesHE even though
they only use genotyped animals.
In our experiments with 5-fold CV, our results showed

that ML methods improved the prediction accuracy of
the reproduction traits in the Chinese Yorkshire pig
population. SVR, KRR, RF and Adaboost.R2 reflected the
superiority of the ML methods, with average improve-
ments over GBLUP of 20.5%, 21.0%, 14.1% and 20.5%,
respectively. In predicting younger animals, our results
also indicated that RF and Adaboost.R2_KRR gained

Table 6 Average computing time to complete each fold of 5-
fold CV according to different genomic prediction methods

Method TNB NBA

GBLUP 2min 6 s 2 min 2 s

ssGBLUP 3min 12 s 3 min 16 s

BayesHE 3 h 57 min 1 s 3 h 35min 13 s

SVR 5 min 27 s 5 min 7 s

KRR 1min 4 s 1 min 16 s

RF 50min 38 s 56 min 16 s

Adaboost.R2_SVR 1 h 35 min 13 s 1 h 15min 28 s

Adaboost.R2_KRR 5min 3 s 5 min 16 s
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8.45% and 11.3% on TNB and 7.95% and 24.2% on NBA,
respectively, over GBLUP. However, SVR and KRR did
not perform as well as in CV, and ssGBLUP performed
comparably with RF. Among ML methods, Adaboost.R2
performed consistently well in all situations; it generally
outperformed ssGBLUP. Our findings related to ML
methods were also confirmed in other studies. Liang
et al. [46] also pointed out that compared with SVR,
KRR, and RF, Adaboost possessed the most potent pre-
diction ability in the genomic prediction of economic
traits in Chinese Simmental beef cattle. Abdollahi-
Arpanahi et al. [47] reported that the gradient boosting
method yielded the best prediction performance in com-
parison with GBLUP, BayesB, RF, convolutional neural
networks (CNN) and multilayer perceptron (MLP) in
the genomic prediction of the sire conception rate (SCR)
of Holstein bulls. Azodi et al. [48] compared the per-
formance of six linear and five nonlinear ML models
using data on 18 traits from six plant species and found
that no one algorithm performed best across all traits,
while ensemble learning performed consistently well.
In 5-fold CV, Adaboost.R2 and RF did not show the ad-

vantages of ensemble learning compared with single learning
methods (SVR and KRR). For Adaboost.R2, mainly because
the current SVR and KRR are sufficient to exert prediction
abilities, which may limit the benefit of using boosting. In
addition, the slow tuning process of Adaboost.R2, we did not
precisely tune the hyperparameters, resulting in lower pre-
diction accuracy than SVR and KRR. For RF, its prediction
accuracy is mainly affected by the number and maximum
depth of decision trees [46], but to weigh the practical appli-
cation feasibility of RF, it is impractical to precisely tune the
number of trees due to the slow tuning process. We ob-
tained only approximate hyperparameters, leading to the
most ideal RF model not being trained, further compromis-
ing its performance. In predicting younger animals, particu-
larly for RF, they were precisely tuned based on the
hyperparameter ranges of CV, resulting in the dramatic im-
provement of Adaboost and RF compared to SVR and KRR.
Our results implied that ensemble learning is helpful to im-
prove genomic prediction. Recently, another type of ensem-
ble learning based on a hierarchical model also demonstrates
advantages in genomic selection. Liang et al. [49] developed
a stacking ensemble learning framework (SELF) that inte-
grated SVR, KRR, and ENET to perform genomic prediction
and showed excellent performance.
Our results indicated that tuning hyperparameters is

necessary for ML methods, confirming that ML algo-
rithms are sensitive to user-defined parameters during
the training phase [37]. After tuning the hyperpara-
meters in CV and in genomic prediction of younger in-
dividuals, the average improvement was 14.3% and
21.8% over those using default hyperparameters, respect-
ively. The ML methods with optimal hyperparameters

generally outperformed GBLUP and Bayesian methods,
while they performed comparably with GBLUP and
BayesHE in the case of default hyperparameters. On the
other hand, our results also showed that the optimal
hyperparameters depend on the characteristics of traits,
datasets etc.. When optimal hyperparameters obtained
in CV were used in predicting younger animals, the pre-
diction accuracies of all ML methods were decreased
compared to their performance with default parameters
(Additional file 1: Table S1). In CV, many replicates
were used for tuning hyperparameters, and the optimal
hyperparameters were easily obtained for SVR and KRR
due to their fast computing, while in predicting younger
individuals, the hyperparameters were tuned based on
only one genomic prediction, and they may not be suffi-
cient to exert the generalization performance of SVR
and KRR, leading to their relatively poorer prediction
ability.
Moreover, our results indicated that the optimal

hyperparameters may reduce the risk of overfitting
(Tables 3, 4 and 5), which is a key element for the qual-
ity of the final predictions [50]. In this study, different
ML models control overfitting with different parameters.
For example, SVR mainly increases the fault tolerance of
the model by increasing the regularization parameter C
to achieve a regularization effect to reduce the degree of
overfitting. KRR mainly tunes the hyperparameter λ that
controls the amount of shrinkage to reduce noise,
thereby controlling overfitting. For RF, the tendency of
overfitting can be reduced by adding decision trees due
to bagging and random feature selection, and the bias
can be reduced by increasing the depth of the decision
tree. Adaboost is an iterative algorithm, and each iter-
ation weights the samples according to the results of the
previous iteration; thus, with the continuation of iter-
ation, the bias of the model will be continuously de-
creased. Accordingly, the tuning process highlights the
flexibility of ML and increases the advantages of ML
methods over conventional genomic selection methods.
Therefore, it is crucial to fine-tune the hyperpara-

meters during the training phase when the dataset
changes [16, 37, 48]. Meanwhile, it should be noted that
the effect of the default hyperparameters usually did not
perform poorly as discussed above, and failure to find
suitable hyperparameters may greatly reduce the predic-
tion effect of ML methods [46]. If hyperparameter auto-
mation can be realized during ML operation, it will
greatly improve the efficiency of hyperparameter
optimization and greatly broaden the application of ML
methods in genomic prediction.

Conclusions
In this study, we compared four ML methods, GBLUP,
ssGBLUP and BayesHE to explore their efficiency in
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genomic prediction of reproduction traits in pigs. We
compared the prediction accuracy, unbiasedness, MSE,
MAE and computation time of different methods
through 20 replicates of 5-fold CV and genomic predic-
tion of younger animals. Our results showed that ML
methods possess a significant potential to improve gen-
omic prediction over that obtained with GBLUP and
BayesHE. In 5-fold CV, ML methods outperformed con-
ventional methods in all scenarios; they yielded higher
accuracy and smaller MSE and MAE, while in genomic
prediction of younger animals, RF and Adaboost.R2 per-
formed better than GBLUP and BayesHE. ssGBLUP was
comparable with RF and Adaboost.R2_KRR was overall
better than ssGBLUP. Among ML methods, Ada-
boost.R2_KRR consistently performed well in our study.
Our findings also demonstrated that tuning hyperpara-
meters is necessary for ML methods, and the optimal
hyperparameters depend on the characteristics of traits,
datasets etc.
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