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Abstract

Mycotoxins can cause body poisoning and induce carcinogenesis, often with a high mortality rate. Therefore,
it is of great significance to seek new targets that indicate mycotoxin activity and to diagnose and intervene
in mycotoxin-induced diseases in their early stages. MicroRNAs (miRNAs) are physiological regulators whose
dysregulation is closely related to the development of diseases. They are thus important markers for the
occurrence and development of diseases. In this review, consideration is given to the toxicological
mechanisms associated with four major mycotoxins (ochratoxin A, aflatoxin B1, deoxynivalenol, and
zearalenone). The roles that miRNAs play in these mechanisms and the interactions between them and their
target genes are explained, and summarize the important role of histone modifications in their toxicity. As a
result, the ways that miRNAs are regulated in the pathogenicity signaling pathways are revealed which
highlights the roles played by miRNAs in preventing and controlling the harmful effects of the mycotoxins. It
is hoped that this review will provide a theoretical basis for the prevention and control of the damage
caused by these mycotoxins.
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Introduction
Mycotoxins are secondary metabolites produced by
fungi that are widely found in feed and food. The most
troublesome mycotoxins include: ochratoxin A (OTA),
aflatoxin B1 (AFB1), deoxynivalenol (DON), and zearale-
none (ZEA) [1]. Worldwide, about 60–80% of feed is
contaminated with mycotoxins each year [2]. In 3507
feed samples from different regions of China, it was
found that the contamination rates of AFB1, DON, and

ZEA reached 81.9, 96.4, and 96.9% respectively, and
more than 81.5% of feed ingredients and 95.7% of
complete feeds were found to be contaminated by these
mycotoxin combinations [3]. Filamentous fungi can
grow on a variety of grains, causing mycotoxin produc-
tion and growth when oxygen remains in silage, and
fungi that are tolerant to carbon dioxide and organic
acids can continue to grow [4]. Any feed that is contami-
nated with mycotoxins during the planting, harvesting,
transportation, and storage, etc. stages can cause the poi-
soning of livestock and poultry [5]. Studies have shown
that mycotoxins can exert toxic effects through a variety
of signaling pathways (e.g. MAPK, NRF2, Wnt, P53, and
PI3K), causing cytotoxicity, oxidative stress, and geno-
toxicity to the liver and kidneys. Mycotoxins also can
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significantly increase the risk of malformation, cancer,
diabetes, and nephritis in humans [6].
MicroRNAs (miRNAs) are a class of endogenous non-

coding small molecules with lengths of about 21–28 nt.
They are commonly found in animals, plants, and vi-
ruses. MiRNAs are even involved in gene regulation in
single-celled organisms, green algae, and Chlamydomo-
nas species [7]. In-depth studies have been carried out
on miRNAs in recent years. MiRNAs have been revealed
to be involved in the regulation of many physiological
diseases, influencing a wide range of processes, such as,
apoptosis, differentiation, necrosis, and inflammation [8].
It has thus been found that the direct or indirect stimu-
lation of some chemical substances or stimulants can
cause the abnormal expression of miRNAs in the body,
such as Selenium, Quercetin, Apigenin, Tanshinone IIA,
Cinnamaldehyde [9–13]. At the same time, the mecha-
nisms by which miRNAs act are of great significance to
the diagnosis, treatment, and prognosis of diseases, as
well as the study of genetic drugs and tumorigenesis.
Therefore, in addition to ensuring the processing and

storage of feed, the prevention of mycotoxins can effect-
ively intervene the occurrence of diseases by finding ef-
fective miRNAs and inhibiting the transcription and
translation of pathogenic genes. The reasonable and ef-
fective use of miRNAs as a tool to evaluate the exposure
of toxins in the body and regulate the expression of
pathogenic target genes and enzymes is of great signifi-
cance for the prevention and treatment of mycotoxin
poisoning. In this paper, we summarize the toxicological
mechanisms associated with the four major mycotoxins:
OTA, AFB1, DON, and ZEA. The signaling pathways in-
volved and the regulatory roles played by miRNAs are
outlined. The aim is to provide a reference for predicting
and therefore reducing the effects of mycotoxin expos-
ure at the molecular level.

Toxicological significance of miRNAs in mycotoxins
MiRNAs can be viewed as characteristic biomarkers
whose levels can be directly measured in serum, urine,
and saliva. Therefore, they are useful biological indica-
tors and have broad prospects in disease detection and
prevention. As they play key roles in regulating the tran-
scription and expression of genes in eukaryotes, miRNAs
have been reported to affect the expression of most
genes in mammals, and each miRNA also has more than
300 highly conserved targets [14, 15]. Therefore, finding
miRNAs to inhibit the transcription and translation of
the target genes of diseases is an effective way of inter-
vening in the progression of those diseases.
Clearly, identifying effective biological detoxification

agents for mycotoxins is of great importance for the pre-
vention and treatment of mycotoxin poisoning. How-
ever, the reasonable and effective use of miRNAs as a

way of assessing endotoxin exposure and regulating
pathogenic target genes and protein expression can be
expected to be a powerful tool that can be used to help
achieve the same aims. At present, it has been shown
that mycotoxins can induce changes in the expression
levels of miRNAs in body cells. Differences do arise,
however, depending on the test model, type of toxin,
and dose used, as illustrated in Table 1.
The early diagnosis of mycotoxin pathogenicity is gen-

erally limited to assays aimed at the protein molecular
level, while the detection of miRNAs is often neglected.
Because microRNAs exist in biological tissues and body
fluids, analyzing and identifying differentially expressed
miRNAs can give us valuable additional information that
can be used to help diagnose the occurrence of disease.
MiRNA has high specificity and sensitivity, so it can be
used for reflecting the existence of early-stage diseases,
the development of advanced-stage diseases and disease
prognosis prediction, and drug resistance [28]. More-
over, interfering with miRNA expression in an appropri-
ate manner can be expected to be a crucial step in
inhibiting the occurrence of mycotoxin toxicity.

Main mechanisms of miRNAs
Ochratoxin A
At present, in the mechanism of OTA-induced toxicity,
OTA mainly activates biotoxicity through oxidative
stress, cell apoptosis, and autophagy [29]. Oxidative
stress is often a potential factor that induces disease
through many adverse reactions, such as DNA damage,
protein damage, and lipid damage [30–32]. At the same
time, it was found in vivo that after OTA treatment,
lipid peroxide (LPO) was significantly increased in the
liver, and GSH, SOD, CAT, GR, and GSH-Px were sig-
nificantly decreased, indicating that the antioxidant cap-
acity of the liver was decreased and toxicity was
activated under the influence of OTA [33]. Studies have
shown that OTA-induced apoptosis is not only observed
in the kidney of mice and rats, but also in vitro cells
such as HepG2 cells, HEK293 cells, PK15 cells, and
MDCK-C7 cells [34–37]. OTA induces cell apoptosis,
mainly through ERK1/2, p38, MAPK, and JNK signaling
pathways [29]. Another study has shown that continuous
activation of c-Met/PI3K/Akt and MEK/ERK1/2 signal-
ing pathways can be observed in human renal cells after
OTA exposure [38]. All this evidence suggests that
apoptosis is one of the modes of OTA-induced cytotox-
icity. Autophagy is an adaptive response of the body to
fight disease, and the process of autophagy is often ac-
companied by the adaptive process of mitosis to protect
the body from the damage of toxic substances [39, 40].
It has been reported that mitochondrial dysfunction
tends to occur in the early stage of OTA toxicity, and
HEK293 cells lacking the mitotic receptor Nix are more
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susceptible to OTA toxicity [41]. Thus, Nix plays a key
role in autophagy and mitosis, protecting the body from
the effects of OTA.
It has been reported that the target organ of OTA is

the kidney, so the nephrotoxicity is particularly promin-
ent [42]. Proximal tubular interstitium damage can also
be observed in livestock fed with OTA-containing feed,
resulting in serious renal toxicity and even renal tumors
in severe cases [43, 44]. Chronic kidney disease (CKD)
has a global incidence of 11–13% and kills up to 1.2 mil-
lion people annually [45]. At this stage, we have also
summarized the mechanism of OTA toxicity, which is
shown in Fig. 1. For example, NRK-52E (rat renal tubu-
lar epithelial cells) and NRK-49F (rat renal fibroblasts)

co-culture models treated with OTA showed that miR-
21 and miR-200a significantly phosphorylated ERK1/2
and induced activation and expression of COX-2, show-
ing significant inflammatory and fibrotic responses. This
is also a key factor in inducing EMT (epithelial-mesen-
chymal transition) [17]. Some studies have also pointed
out that changes in the expression levels of miR-21 and
miR-382 can be detected in acute and chronic kidney
diseases, and these indicators play a key role in the de-
velopment of fibrosis [46]. Another hotspot of OTA tox-
icity studies is the nuclear factor erythroid 2-related
factor 2(NRF2)-related signaling pathway. Studies have
shown that OTA can inhibit the expression of Nrf2 and
HO-1 through miR-132 and miR-200c, and induce OTA

Table 1 Change in miRNA expression in various subjects caused by the four mycotoxins

Mycotoxins Dose Test object Up Down Reference

OTA 200 μg/kg Piglet miR-497
miR-133a-3p
miR-423-3p
miR-34a
miR-542-3p

miR-421-3p
miR-490
miR-9840-3p

[16]

1000 nmol/L NRK-52E
NRK-49F

miR-21
miR-200a

\ [17]

25 μmol/L LLC-PK-1 miR-200c
miR-29c
miR-29b
miR-132

miR-17
miR-192
miR-200b

[18]

210 μg/kg Rats miR-3596b
miR-653
miR-3065-3p

miR-129
miR-130b
miR-141

[19]

ZEA 50 μmol/L TM3 miR-19a-3p
miR-96-5p
miR-221-5p
miR-3057-5p

miR-146-3p
miR-3095-5p
miR-185-3p
miR-467e-3p

[20]

58 mg/kg Piglets miR-1
miR-424-5p
miR-452-3p

\ [21]

40 μg/kg Sus scrofa miR-15a
miR-21
miR-192

\ [22]

AFB1 200 μg/kg F344 Rats miR-122-5p
miR-34a-5p
miR-181c-3p

\ [23]

1.5 mg/kg F344 male Rats miR-146a
miR-24
miR-199a-3p
miR-23a

miR-122
miR-192
miR-101b
miR-30a

[24]

200 μg/kg Rats miR-182
miR-10b-5p
miR-224-5p
miR-122-5p

miR-802-5p [25]

200 μg/kg Rats miR-34a-5p
miR-200b-3p
miR-429

miR-130a-3p [26]

DON 1.6 μg/mL JPEC-J2 miR-181a
miR-30c
miR-365-5p
miR-769-3p

\ [27]
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toxicity by increasing the level of ROS in vitro [18].
Similar results were also found in the OTA-fed rat
model, which showed that miR-141 significantly en-
hanced the activity of KEAP1, thereby inhibiting the ex-
pression of Nrf2, and activating OTA toxicity in rats
[19]. In HEK293 cells, OTA exposure significantly re-
duced the effect of miR-29b and thus enhanced collagen
expression, both of which could significantly increase
the risk of fibrotic nephrotic disease [47]. It can also be
found in zebrafish embryos that OTA acts on miR-731
to inhibit the prolactin receptor (PrLRA) and induce
cerebral hemorrhage [48].
To protect itself from OTA toxicity, the body can acti-

vate a protective pathway that blocks the cell cycle as
the toxicity develops and initiates apoptotic mechanisms.
ShRNA-mediated Nrf2 inhibition increased OTA sensi-
tivity, and the P53 signaling pathway significantly acti-
vates the expression of miR-34 under the stimulation of
OTA, leading to increased expression of PUMA, p21,
and c-myc, thus inducing apoptosis [49]. It has also been
reported that OTA increases the expression of miR-122
in GC-2 cells, which triggers apoptosis after caspase-3
activation by inhibiting Bcl-w [50].
Studies have shown that histone acetylation is also in-

volved in the regulation of OTA toxicity and carcinogen-
esis. It is known that histone acetylation and
deacetylation are closely related to gene transcription
and expression and are influenced by acetylase (HATS)

and deacetylase regulation (HDACs) [51]. OTA has been
reported to be involved in mitotic stagnation by inhibit-
ing Hats activity in the nucleus and regulating acetyl-
ation of histone and non-histone lysine residues in a
dose-dependent manner [52]. Increased HDAC activity
and atypical PKC phosphorylation were also observed in
the kidneys of OTA-fed male F344 rats, which are asso-
ciated with MAPK extracellular regulation of selective
downstream activation of ERK1/2 and its substrate
ELK1/2 and p90RSK [53]. At present, PKC and MEK/
ERK1/2 and MAPK signaling pathways have been shown
to play a key role in cell proliferation, apoptosis, and
cancer development [53, 54]. Thus, the histone modifi-
cation layer plays a potential role in OTA-induced
biotoxicity.

Aflatoxin B1
There are many aflatoxins (AFs) but AFB1 is the most
toxic. It is a potent human carcinogen (group 1 classi-
fied). Due to its pervasiveness and strong toxicity, AFB1
is often regarded as the main object of interest in myco-
toxin research [55, 56]. The molecular structure of AFB1
is based on a derivative of dihydrofuran and coumarin,
which is an indirect carcinogen. Liver cancer ranks
fourth in the incidence of solid tumors worldwide with a
mortality rate ranking third among all cancer subtypes,
and Hepatocellular carcinoma (HCC) accounts for 75–
85% of primary liver cancers [57].

Fig. 1 Mechanisms of OTA toxicity regulated by miRNAs. After OTA exposure, by activating miR-21 and miR-200a in cells, it significantly
phosphorylates ERK1/2 and induces the activation and expression of COX-2, which in turn induces the occurrence of inflammation and EMT in
the body and leads to cytotoxicity. OTA can indirectly inhibit HO-1 expression of inhibition of Nrf2 signaling by miR-132 or activation of miR-200c,
thereby increasing ROS levels in vivo and increasing nephrotoxicity. OTA can activate collagen expression of miR-29b and cause renal fibrosis.
OTA can inhibit the prolactin receptor (PRLRA) by miR-731 and induce cerebral hemorrhage. OTA activates Bcl-W via miR-122, which in turn
stimulates caspase-3 and triggers apoptosis
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When the body is exposed to AFB1, the p53 gene in
the body is prone to genetic mutation. At this time,
guanine (G) is replaced by thymine (T), which results in
the arginine located at site 249 in p53 protein changing
into serine [58]. It has been reported that the p53 gene
is a tumor-suppressing gene in cells and plays a key role
in regulating the cell cycle, apoptosis, autophagy, and
DNA repair [59]. The mutated p53 gene can be detected
in most cancer patients: its ability to inhibit the occur-
rence of cancer is reduced, leading to the induction of
pathological changes [60].
When AFB1 is ingested by the body, 50% of it is

absorbed by the duodenum. It binds to the plasma albu-
min and enters the liver: the unabsorbed part is excreted
in stools. The toxicity to the body is not due to the
AFB1 itself but the toxic effects of the electrophilic and
highly active major carcinogens generated after cyto-
chrome P450 is transformed in the liver (including
AFB1–8,9-epoxy compounds). AFB1 may also be metab-
olized to aflatoxins that are slightly less mutagenic, e.g.
M1 (AFM1), Q1 (AFQ1), or P1 (AFP1) [61–63]. When
the P450 system in the liver promotes AFB1 metabolism,
it produces a large amount of ROS, which can enhance
the toxic effect of the AFs. These free radicals can dam-
age cell membranes and soluble cell material. This even-
tually damages cell function and leads to cell lysis,
directly causing cytotoxicity [64]. AFB1 also inhibits pro-
tein synthesis, thus interfering with the synthesis of the
enzymes required for metabolism, energy, and fat trans-
port processes [65].
HCC occupies third place in the total number of can-

cer cases worldwide, while HCC accounts for 75–85% of
HCC cases with a survival rate of less than 16% [57].
AFB1 is one of the most commonly-encountered myco-
toxins and it is believed that dietary exposure to it
causes hot mutation of p53 and significantly increases
the probability of HCC developing [66]. It has been re-
ported that the expression levels of Drosha and Dicer
genes decrease significantly after the addition of 10 μg/
mL AFB1 to HepG2 cells, thus demonstrating that miR-
NAs are involved in the biological processes by which
AFB1 induces HCC [67]. At the same time, miRNAs can
be used as serum identification criteria for HCC and
other tumors. For example, the expression levels of miR-
122-5p, miR-24, and miR-802-5p in rat serum can be
used as indicators for the diagnosis of HCC in its early
stages. Similarly, the overexpression of miR-24 and miR-
122 in HCC cells can be used as a prognostic factor for
HCC [68, 69].
It has been shown that miRNAs play roles in the

pathogenesis of various cancers by targeting cancer
genes and oncogenes. For example, AFB1 significantly
increases the expression of miR-34a in HepG2 cells,
leading to a significant decrease in β-catenin, c-myc, and

cyclin D1 in the Wnt signaling pathway, subsequent ar-
rest of the S phase of the cell cycle, and increase in the
risk of HCC [67]. Some studies have indicated that
AFB1 can also significantly increase the expression of
miR-33a-5p in HepG2 and inhibit the Wnt/β-catenin
signaling pathway [70]. Thus, AFB1-induced miRNAs
play a key role in the generation of HCC in the Wnt sig-
naling pathway. Similarly, AFB1 is known to increase the
incidence of lung cancer. However, targeted regulation
of miRNAs can effectively intervene in the occurrence of
AFB1-induced lung cancer. For example, it has been re-
ported that the overexpression of miR-138-1 in human
bronchial epithelial cells (P50 B-2A13 cells) can inhibit
3-phosphoinositide-dependent protein kinase-1 (PDK1)
expression. This inhibits the expression of downstream
PI3K/Akt-related proteins which reduces AFB1-induced
malignant transformation in the P50 B-2A13 cells, and
significantly reduces the incidence of lung cancer in the
body (Fig. 2) [71].
MiRNAs also play important roles in the apoptosis of

tumor cells. It has been reported that miR-429 is signifi-
cantly up-regulated in HCC tumor tissues, promoting
their proliferation and inhibiting their apoptosis [72].
Furthermore, the expression level of miR-429 was found
to be correlated with the size of the tumor. It has also
been noted that miRNA-429 has a significant oncogenic
effect, promoting the occurrence of pancreatic ductal
carcinoma and gastric and rectal cancer by targeting the
expression of EP-300, SOX2, and c-myc [73, 74]. Inhibit-
ing the expression of miR-429, on the other hand, can

Fig. 2 Mechanisms of AFB1 toxicity regulated by miRNAs. After
exposure to AFB1, miR-34a and miR-33a-5p inhibit the expression of
β-catenin in the Wnt signaling pathway, which in turn causes the
decrease of c-myc and cyclin D1, and results in the arrest of cell
cycle S phase and the risk of HCC. Overexpression of miR-138-1 can
significantly inhibit the activation of PDK1, thereby inhibiting the
expression of related proteins in the PI3K/Akt signaling pathway, and
ultimately alleviating the malignant transformation of cells caused
by AFB1
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significantly inhibit the proliferation of tumor cells and
promote their apoptosis [72].
AFB1 can also exert biotoxicity via epigenetic modifi-

cation [75]. It has been reported that the levels of tran-
scriptional activation markers H3K9me3 and H4K20me3
are raised in oocytes of mice fed AFB1, while the level of
transcriptional inhibition marker H3K27me3 is lowered
[76]. These results are associated with increased levels of
DNA methylation in the genome which significantly in-
hibits reproductive function in mice. Similar results have
been observed in porcine oocytes, where the levels of
transcriptional activation markers H3K27me3 and
H3K4me2 are reduced, while the level of transcriptional
inhibition marker H3K9me3 is increased [77].

Deoxynivalenol
One of the reasons that DON is toxic is that it directly
activates ribosome-associated kinases, e.g. the double-
stranded RNA associated protein kinase R (PKR), which
activates eukaryotic initiation factor 2α (eIF2α) and in-
hibits protein transcription and translation [78]. PKR
can be used as a ligand-activated protein kinase pathway,
such as the p38/JNK and ERK signaling pathways, to fur-
ther promote cell proliferation, differentiation, and apop-
tosis, and activate the ‘ribosomal stress response’ to
cause cytotoxicity [79].
Another pathway by which DON induces toxicity in

the body is through the mitochondrial stress response.
DON can disrupt the redox system, inducing an imbal-
ance in the redox homeostasis in the body and causing
damage to lipids, proteins, and DNA [80]. Cell apoptosis
can be induced by promoting the release of mitochon-
drial cytochrome C and activation of members of the
caspase family. DON reduces the transmembrane ability
of mitochondria, releasing overloaded peroxide ions to
make the ions on both sides of the mitochondrial mem-
brane unbalanced. Rupture of the mitochondrial outer
membrane leads to a change in the membrane perme-
ability transition pore (PTP), finally promoting cell apop-
tosis and causing cytotoxicity [81, 82].
As a regulator of intracellular steroid production,

DON can use granulocytes to regulate the secretion of
progesterone, testosterone, and estradiol in vivo, pro-
moting the development of oocytes and embryos and
participating in reproductive development [83]. At the
same time, DON may also be involved in steroid pro-
duction by regulating miRNAs. For example, miR-181a,
miR-23a, and miR-26b, which are seriously affected by
DON, regulate the expression of progesterone receptors
and endanger that normal reproductive function is
maintained in animals [84].
It is now known that DON is involved in the activation

of MAPKs (including p38, c-Jun N-terminal kinase, and
ERK1/2) by binding to 60S ribosomal subunits and

inhibiting protein transcription and translation [85, 86].
At the same time, miRNAs may also influence the activa-
tion of MAPK signals and so the expression of miRNAs
plays an important role in the mechanisms responsible for
DON’s toxicity. For example, in female pigs, DON can
cause significant upregulation of miR-21 and activate the
ERK-MAPK pathway, inducing biotoxicity. Compared
with normal liver cells, the expression level of miR-450b-
3p in HCC cells is significantly reduced, the mRNA ex-
pression level of its target gene PGK1 is inhibited, and the
phosphorylation of Akt also significantly inhibited. This
promotes the proliferation of HCC cells, inducing the for-
mation of HCC tumors (Fig. 3) [87]. When C57BL/6 mice
were treated with 25 μg/kg DON, it was found that
lncRNA GM20319 was able also bind with miR-7240-5p
to significantly down-regulate the expression of GNE
genes, inhibiting the activity of sialic acid, changing the ex-
pression of IL-1β and SOD1 in the mice’s livers, and trig-
gering liver injury (Fig. 3) [88].
It has been reported that miRNAs present in exosomes

also play a key role in DON-induced biotoxicity. Exo-
somes measuring 40–100 nm are widely present in the
emulsion. They can encapsulate proteins, mRNA, miR-
NAs, deoxyribonucleotides, and lipids, thus preventing
their degradation and allowing them to perform bio-
logical activities by transporting them to specific cells
[89]. As a result, exosomes can effectively prevent the
DON-induced destruction of tight junction proteins in
intestinal cells, promote the development of neonatal in-
testinal tract, and inhibit cell apoptosis. They can also

Fig. 3 Mechanisms of DON toxicity regulated by miRNAs. The low
expression of miR-450b-3p in HCC cells inhibits the expression of its
target gene PGK1, and then promotes the proliferation of cancer
cells by inhibiting the phosphorylation of Akt. After exposure to
DON, the combination of lncRNA GM20319 and miR-7240-5p
significantly inhibits the expression of GNE gene, which in turn
stimulates the decrease of sialic acid activity, the decrease of SOD1
expression, and the upregulation of IL-1β expression, and finally
triggers liver injury
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enter immune cells through endocytosis and play an
important role in immune function [90, 91]. The overex-
pression of miR-181a, miR-30c, miR-365-5p, and miR-
768-3p in porcine milk exosomes can significantly
down-regulate the expression of their target genes in the
P53 signaling pathway. P-Akt and β-catenin are up-
regulated to reduce the damage caused by DON [92].
Meanwhile, it has been found that miR-125b in milk
exosomes can target P53 inactivation [92]. Other re-
search has pointed out that several other miRNAs, in-
cluding miR-30d, miR-25, and miR-504, can also weaken
the transduction of the P53 signal and reduce the tox-
icity of DON [93].
DON can significantly reduce the expression of p-

MAPK in porcine oocytes, disrupting spindle
formation and inducing cell arrest and inhibiting oo-
cyte development. At the same time, DON causes in-
creased DNA methylation in porcine oocytes by
changing the expression level of DNMT3A mRNA. El-
evated protein expression of H3K27me3 and
H3K4me2 and mRNA expression of related methyl-
transferase genes SUV39H2, SETDB1, and EZH2 re-
sult in increased histone methylation [94]. In
conclusion, DON can affect the maturation of porcine
oocytes through epigenetic modification [94, 95].

Zearalenone
The toxicity of ZEA arises from its role as an endo-
crine disruptor, which leads to estrogen and pituitary
hormone disorder and damages gonadal function. Its
structure is similar to that of 17β-estradiol, allowing
it to competitively bind to estrogen receptors (ERs).
ZEA binds to ERs to form homologs or heterodimers
and binds to estrogen receptor elements in the nu-
cleus so that it participates in the transcription of
estrogen-responsive genes [96, 97]. The reproductive
toxicity of ZEA to livestock is particularly obvious:
decreased ovulation, increased rates of stillbirth and
dystocia, altered reproductive tracts, and decreased re-
productive function [98]. It has also been reported
that the Kisspeptin-GPR54-GnRH signaling pathway
in the hypothalamus is activated in adolescent rats
after ZEA ingestion. Uterus enlargement and vaginal
opening have also been observed in adolescent rats,
suggesting that ZEA can cause toxicity by affecting
pituitary function [99]. ZEA also severely affects the
activity of testes and ovaries in mice, pigs, and cattle
[100–102]. For example, ZEA has been found to sig-
nificantly enhance apoptosis of mouse testicular mes-
enchymal cells and oocytes, interfere with oocyte
maturation and development, and arrest cell cycle
[103]. Significant increases in the weights of ovaries
and uteri and number of follicles were also observed
[104]. These results indicate that the endocrine-

disrupting function of ZEA is closely related to dam-
age caused to the gonads.
It is well known that ZEA is an exogenous

endocrine-disrupting substance that mainly exerts bio-
toxicity by affecting the reproductive systems of live-
stock and poultry [105]. Pigs are one of the most
sensitive species to ZEA, exposure leading to de-
creased ovulation, reproductive disorder, reduced
birth rate, and fetal abnormalities [106]. It has also
been reported that the signal transduction of estrogen
plays a role through G protein-coupled receptors, and
the expression of miRNAs in vivo is changed after be-
ing affected by estrogen, thus affecting estrogen re-
ceptor α (ERα), which is closely related to the
damage mechanism of ZEA [107, 108]. In vivo experi-
ments in pigs have shown that ZEA activates the
PKC and p38 signaling pathways through GRP30 (a G
protein-coupled receptor) on the cell membrane. At
this time, the activated miR-7 targets the activation of
the FOS gene and identifies the synthesis and secre-
tion of FSH, seriously affecting the reproductive
health of female animals [109]. Estradiol, the most ac-
tive form of natural estrogen, can significantly en-
hance the proliferation and migration of human
ovarian cancer cells (PEO1) through ERα. Also, it has
been found that the expression levels of miR-200,
miR-203, and miR-203a in PEO1 cells are significantly
dependent on ERα, inhibiting the expression of E-
cadherin, promoting the expression of ZEB1 (Zinc
Finger E-box-Binding Homeobox 1), and inducing the
formation of EMT [110].
ZEA can also affect reproduction through an apop-

totic pathway regulated by miRNAs [109]. It has been
reported that 30 μmol/L of ZEA in vivo can enhance
the apoptosis gene Bad and activate caspase by acti-
vating miR-1343, miR-331-3p, and miR-744 which
down-regulates the expression levels of apoptosis-
related genes PAK4 and ElK1 (Fig. 4) [111]. PAK4
and ElK1 have a variety of cellular functions and play
a role in cell growth, movement, apoptosis, and other
processes [112]. In conclusion, miRNA plays a key
role in regulating reproductive injury caused by ZEA
and plays a key role in animal production and med-
ical treatment.
Epigenetic modification is an important regulatory fac-

tor in spermatogenesis. For example, DNA methylation
and histone modification play crucial roles in spermato-
genesis and development [113, 114]. It has been reported
that sperm are susceptible to epigenetic interference,
and even show a cross-generational epigenetic marker
which can lead to male infertility, embryo development
failure, and disease in offspring, etc. [115]. Studies have
found significantly increased activity of G9a and
H3K9Me2 in the testes of male mice after exposure to

Chen et al. Journal of Animal Science and Biotechnology           (2022) 13:37 Page 7 of 12



ZEA [116]. G9a is known to be an important histone
methyltransferase that is involved in the monomethyla-
tion and dimethylation of H3K9 (H3K9Me1 and
H3K9Me2) [117]. It has also been pointed out that G9a
and H3K9 are also involved in sperm meiosis [118]. In
conclusion, G9a and H3K9 are closely related to ZEA-
induced sperm impairment.

Conclusions and prospects
This review has mainly concentrated on the expression
status of miRNAs in the toxicological processes induced
by OTA, AFB1, DON, and ZEA, including their target
genes and their molecular mechanisms of action in their
signaling pathways. This study further confirms the im-
portance of miRNAs in the pathogenesis of mycotoxins
and their roles as biomarkers in the prevention and
regulation of toxins. Further understanding the function
of mycotoxin-related miRNA, the interaction between
miRNA and target, and the relationship between
miRNA-mediated gene expression are very important to
explain the toxicodynamics of mycotoxin. The changes
in miRNA levels provide new insights into the mechan-
ism of mycotoxin-induced toxicity and can be used as a
marker for disease diagnosis and prognosis.
This paper points out that many pathways related to

the action mechanism of mycotoxins, such as ERK1/2,
Nrf2, p38, MAPK, and Akt, are involved in the regula-
tion mechanism of miRNA. In addition, this paper also
summarizes the mechanism of histone modification

between mycotoxins. Although the expression levels of
miRNAs have been clearly elucidated in the relevant ar-
ticles, our knowledge of their specific functions and
mechanisms of action is still imperfect. Therefore, there
is an urgent need to conduct further research on miRNA
pathways and use the information gained to overcome
the toxic effects of these (and other) mycotoxins.
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Fig. 4 Mechanisms of ZEA toxicity regulated by miRNAs. After ZEA is
exposed to the cell membrane, it activates PKC through the
membrane surface protein GRP30, and induces cytotoxicity by
activating the P38 signaling pathway. Overexpressed miR-7 can
recognize the synthesis and secretion of FSH through targeted
regulation of FOS gene expression, which seriously affects the
normal estrogen secretion of female animals and induces ZEA
toxicity. ZEA triggers apoptosis and cytotoxicity by activating the
apoptotic executioner caspase3, which is specifically manifested as
the overexpression of intracellular miR-1343, miR-331-3p, and miR-
744, the expression level of PaK4 and ElK1 decreases, and the
expression of Bad rise
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