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Abstract

Background: The objective of this study was to evaluate the replacement effects of milk powder (MK) and fish
meal (FM) by enzymatic soybean (ESB) in diets on growth performance, immunological parameters, SCFAs
production and gut microbiome of weaned piglets.

Methods: A total of 128 piglets with initial body weight at 6.95 ± 0.46 kg, were randomly assigned into 4 dietary
treatments with 8 replicates per treatment and 4 piglets per replicate for a period of 14 d. Piglets were offered iso-
nitrogenous and iso-energetic diets as follows: CON diet with MK and FM as high quality protein sources, ESB plus
FM diet with ESB replacing MK, ESB plus MK diet with ESB replacing FM, and ESB diet with ESB replacing both MK
and FM.

Results: No significant differences were observed in growth performance among all treatments (P > 0.05). However,
piglets fed ESB plus FM or ESB diet had increased diarrhea index (P<0.01), and lower digestibility of dry matter
(DM), gross energy (GE) or crude protein (CP), relative to piglets fed CON diet (P < 0.01). Moreover, the inclusion of
ESB in diet markedly decreased the plasma concentration of HPT and fecal concentration of butyric acid (BA)
(P<0.01). The High-throughput sequencing of 16S rRNA gene V3−V4 region of gut microbiome revealed that the
inclusion of ESB in diet increased the alpha diversity, and the linear discriminant analysis effect size (LEfSe) showed
that piglets fed with ESB plus FM or ESB diet contained more gut pathogenic bacteria, such as g_Peptococcus,
g_Veillonella and g_Helicobacter.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: clianqiang@hotmail.com
†Yingjie Li and Yang Liu contributed equally to this work.
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of
Education, Institute of Animal Nutrition, Sichuan Agricultural University, No.
211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, People’s
Republic of China

Li et al. Journal of Animal Science and Biotechnology          (2021) 12:106 
https://doi.org/10.1186/s40104-021-00625-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s40104-021-00625-8&domain=pdf
http://orcid.org/0000-0002-0940-7275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:clianqiang@hotmail.com


Conclusion: The inclusion of ESB in diet did not markedly affect growth performance of piglets, but the
replacement of MK or both MK and FM by ESB increased diarrhea index, which could be associated with lower
nutrients digestibility and more gut pathogenic bacteria. However, piglets fed diet using ESB to replace FM did not
markedly affect gut health-related parameters, indicating the potential for replacing FM with ESB in weaning diet.

Keywords: Enzymatic soybean, Growth performance, Gut microbiome, Immunology, SCFAs, Weaned piglets

Background
Weaning is a critical period for the growth and develop-
ment of piglets, during which weaned piglets have to
cope with a series of problems such as dysfunction of in-
testinal barrier and systematic inflammation induced by
weaning stress, thereby aggravate diarrhea, morbidity
and mortality, and poor growth performance [1]. During
the suckling period, piglets ingest high digestible milk of
sows as the major food. However, the newly weaned pig-
lets are abruptly forced to adapt to the nutritional and
environmental changes, especially digest solid diets con-
taining high contents of plant proteins with the imma-
ture digestive and immune systems, which has been
demonstrated to aggravate the weaning stress [2, 3].
Thus, it is extremely urgent to incorporate the high
quality protein sources into diet to prevent weaning
stress in piglets [4].
Fish meal (FM) and milk powder (MK) are extensively

used in creep feed as high quality protein sources due to
the higher digestibility, greater palatability and appropri-
ate composition of amino acids [5, 6]. However, the ex-
orbitant cost of FM and MK have necessitated the
identification of alternative cheaper protein sources for
the weaning diets [7, 8]. Although soybean has become
the primary protein source in swine diet due to the ex-
cellent balance of essential amino acids and lower price
[9], soybean is not recommendable to be directly used in
weaning diets due to its anti-nutritional factors (ANFs),
which can cause hypersensitivity [10–12].
It is confirmed that bioprocessing of soybean is an ef-

fective way to eliminate ANFs and improve the bioavail-
ability of diet [13, 14]. The enzymatic soybean (ESB),
produced by fermentation and enzymatic hydrolysis of
soybean, is an excellent protein source with less trypsin
inhibitors and antigen proteins [15, 16]. In addition, It
has been reported that growth performance, antioxidant
capacity, immune function and nutrients digestibility of
weaned piglets could be improved as the ESB was incor-
porated into diet to replace some other dietary protein
sources such as soybean meal (SBM), soybean protein
concentrate (SPC), fermented soybean meal (FSBM) or
FM [17–19]. However, to the best of our knowledge,
there is short of researches regarding the comparison of
employing ESB to completely substitute for FM, MK or
both FM and MK in weaning diets. Hence, the objective
of the study was to assess the comparative effects of FM,

MK or both MK and FM replacing with ESB on growth
performance, nutrients digestibility, immunological pa-
rameters, gut microbiome and short-chain fatty acids
(SCFAs) in weaned piglets.

Materials and methods
The experiment followed the animal protection law
(Ethic Approval Code: SCAUAC201308–2) and was per-
formed in accordance with the Guide for the Animal
Care and Use approved by Sichuan Agricultural Univer-
sity Institutional Animal Care and Use Committee.

Preparation of ingredients
The MK was obtained from Fonterra, New Zealand. The
FM was produced by Pesquera diamante, Peru. The ESB,
which was obtained from Fatide, Jiangsu Fuhai Biology
Co., Ltd., contained 40.00% crude protein (CP), 18.00%
fat, 2.80% fiber, and lower ANFs (0.13% stachyose, 0.39%
raffinose, 126.32 TIU/g trypsin inhibitor, β-conglycinin
and glycinin are less than 1.4 mg/g and 2.8 mg/g respect-
ively) compared with unprocessed soybean.

Animals, diets, and experimental design
A total of 128 piglets ((Landrace × Yorkshire × Duroc) ×
Yorkshire; 21d ± 2d) with an initial body weight at
6.95 ± 0.46 kg were randomly assigned into 4 dietary
treatments in a randomized complete block design ac-
cording to body weight: (1) CON diet with MK and FM
as high quality protein sources; (2) ESB plus FM diet
with ESB replacing MK; (3) ESB plus MK diet with ESB
replacing FM; (4) ESB diet with ESB replacing both MK
and FM. Each treatment group had 32 piglets with 8
pens and 4 piglets (2 barrows and 2 gilts) per pen for
the 14-d experiment. As presented in Table 1, all the di-
ets were formulated to be iso-nitrogenous and iso-
energetic and meet or exceed the recommendation of
NRC (2012) [20]. Piglets were housed in pens (1.5 m ×
1.5 m) with infrared lamps hanged above and the
temperature was kept between 26 and 28 °C. Piglets had free
access to feed and water during the experimental period.

Growth performance
The feed supply and feed refusals were recorded every
day, and piglets were individually weighted every week
to calculate average daily gain (ADG), average daily feed
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Table 1 The ingredient composition and analyzed nutrient levels of diets (as fed basis)
CON ESB Plus FM ESB plus MK ESB

Ingredient, %

Corn 44.98 43.57 42.28 40.82

Soybean concentrate protein 4.00 4.00 4.00 4.00

Dehulled soybean meal 4.50 4.50 4.50 4.50

Fermented soybean meal 4.00 4.00 4.00 4.00

Extruded soybean 4.00 4.00 4.00 4.00

Whey powder 15.00 15.00 15.00 15.00

Enzymatic soybean – 8.50 6.70 15.20

Milk powder 10.00 – 10.00 –

Fish meal 4.00 4.00 – –

Sucrose 5.00 5.00 5.00 5.00

Soybean oil 1.30 3.40 0.50 2.60

L-Lysine·HCl 0.49 0.60 0.49 0.61

DL-Methionine 0.26 0.32 0.30 0.36

L-Threonine 0.23 0.23 0.23 0.24

L-Tryptophan 0.06 0.07 0.05 0.06

L-Valine 0.05 0.13 0.05 0.13

Choline chloride 0.16 0.16 0.16 0.16

Calcium formate 0.80 0.90 1.12 1.20

CaHPO4 0.10 0.45 0.55 0.90

NaCl – 0.10 – 0.15

Mineral premixa 0.20 0.20 0.20 0.20

Vitamin premixb 0.05 0.05 0.05 0.05

ZnO, 65% 0.20 0.20 0.20 0.20

Emulsifier 0.10 0.10 0.10 0.10

Benzoic acid 0.50 0.50 0.50 0.50

Essential oils 0.02 0.02 0.02 0.02

Total 100.00 100.00 100.00 100.00

Calculated nutrient levels

DE, MJ/kg 15.09 15.09 15.08 15.08

CP, % 19.28 19.44 19.12 19.29

Lys, % 1.50 1.50 1.49 1.50

Met, % 0.62 0.63 0.63 0.63

Thr, % 0.93 0.93 0.93 0.93

Analyzed nutrient levels

GE, MJ/kg 18.24 18.47 18.21 18.56

CP, % 19.22 20.43 19.23 20.27

DM, % 98.62 95.61 96.70 94.91

Total AA, % 18.41 18.02 18.40 18.17

Lys, % 1.53 1.53 1.56 1.53

Met, % 0.53 0.56 0.54 0.53

Thr, % 1.33 1.17 1.05 1.37

GE, gross energy
a Mineral premix provided per kilogram of diet: Fe, 100 mg; Cu, 6 mg; Zn, 100 mg; Mn, 4 mg; I, 0.14 mg; Se, 0.35 mg
b Vitamin premixes provided per kilogram of diet: vitamin A, 15,000 IU; vitamin D3, 5000 IU; vitamin E, 40mg; vitamin K3 5 mg; vitamin B1 5 mg; vitamin B2 12.5
mg; vitamin B6 6 mg; vitamin B12 0.06 mg; nicotinic acid, 50 mg; pantothenic acid, 25 mg; folic acid, 2.5 mg; biotin, 0.25 mg
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intake (ADFI) and the ratio of ADFI and ADG (F:G).
Diarrhea scores were visually assessed three times a day
as previous described [21]. Briefly, firm and well-formed
feces were scored as 0; soft and formed feces were
scored as 1; fluid and usually yellowish feces were scored
as 2; and watery and projectile feces were scored as 3.
Diarrhea index was calculated according to the following
equation: diarrhea index = the sum of diarrhea scores /
(numbers of piglets per pen × experimental days
× assessed times per day).

Sample collection
Blood samples (10 mL, n = 8) were collected from jugular
vein into sodium heparinized tubes at 08:00 of d 8 after
an overnight fast. Plasma was obtained by centrifuging
at 3000 × g for 15 min at 4 °C and stored immediately at
− 20 °C for later analysis. At the same day, fresh fecal
samples (n = 8) were collected by rectal stimulation, then
snap frozen at − 80 °C for the gut microbiome analysis.
To determine the nutrients digestibility of piglets, 0.5%

chromic oxide was additional added to the diets as an
exogenous indicator on d 8. After 4-d adaptation period,
fresh fecal samples were collected during d 12 to d 14.
The diet and fecal samples for nutrients digestibility
determination were stored at − 20 °C until analysis.

Chemical analysis
The diets and feces samples were dried at 65 °C for 72 h,
ground through a 0.42-mm screen and analyzed accord-
ing to methods of AOAC for dry matter (DM) [22]. CP
was determined by copper catalyst Kjeldahl method and
GE was determined by an automatic adiabatic oxygen
bomb calorimeter (Parr 6400, Parr Instrument Co.,
Moline, IL, USA). Amino acids, except tryptophan, were
measured by an automatic amino acid analyzer (L-8900,
Hitachi, Tokyo, Japan) after acidolysis for 24 h. Chro-
mium was determined by a flame atomic absorption
spectrophotometer (ContrAA 700, Analytikjena, Jena,
Germany). The Apparent total tract digestibility (ATTD)
was calculated according to the following equation:
ATTDnutrient = 1 − (Crdiet × Nutrientfeces) / (Crfeces ×
Nutrientdiet) [23].

Measurement of plasma parameters
Plasma samples were thawed on the ice before analysis.
The 300 μL of supernatant were obtained to determine
the concentrations of plasma immunoglobulin A (IgA)
and immunoglobulin G (IgG) via automatic biochemical
analyzer (Hitachi 3100, Hitachi High-Technologies Cor-
poration, Tokyo, Japan) with corresponding kits (Si-
chuan Maker Biotechnology Co. Ltd). The levels of
haptoglobin (HPT) and pig major acute-phase protein
(Pig-MAP) were measured by spectrophotometric
methods (Spectra Max M2; Molecular Devices,

California, USA), according to the kit instructions (Nan-
jing Jiancheng Bioengineering Institute, Nanjing, China).
There was less than 5% variation of intra-assay and
inter-assay coeffcients for each assay.

Quantification of SCFAs
The concentrations of SCFAs were determined by gas
chromatography (Varian CP-3800, manual injection,
flame ionization detector, FID, 10 μL micro-injector).
Approximately 0.7 g of fecal samples were thawed and
diluted with 1.5 mL of ultrapure water, and 1.0 mL
supernatant was obtained by centrifuging at 3000 × g for
15 min. Then the supernatant was mixed with 0.2 mL of
25% metaphosphoric acid solution and 23.3 μL of 210
mmol/L crotonic acid and the mixed solution was placed
at 4 °C for 30 min before centrifuging at 4000 × g for 10
min, afterwards the 0.3 mL of supernatant was mixed
with 0.9 mL of methanol, filtered by 0.22-μm filter
(Millipore Co., Bedford, MA) after centrifuging at
3500 × g for 5 min.

Sequencing of gut microbiome
The total genomic DNA was extracted from fecal sam-
ples (n = 8) using the QIAamp DNA stool Mini Kit (Qia-
gen, GmbH Hilden, Germany). The concentration and
purity of the extracted genomic DNA were measured
using a NanoDrop ND-1000 Spectrophotometer (Nano-
Drop Technologies Inc., Wilmington, DE, USA). The in-
tegrity of the extracted genomic DNA was determined
by electrophoresis on 1% (w/v) agarose gels. Extracted
fecal DNA samples were sent to Majorbio Bio-pharm
Technology Co., Ltd. (Shanghai, China) to perform
amplicon pyrosequencing on the Illumina MiSeq plat-
forms. The V3−V4 hypervariable region of the 16S
rRNA gene was amplified by PCR with primers 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGTWTCTAAT-3′). The Uparse
7.0.1090 was used to clustered Operational taxonomic
units (OTUs) at 97% sequence similarity. Representative
sequences were selected and assigned by the Ribosomal
Database Project (RDP) classifier Version 2.11. The rela-
tive abundance of each OTU was examined at different
taxonomic levels. Diversity within communities (Alpha
diversity) calculations and taxonomic community assess-
ments were performed by Mothur 1.30.2 and Qiime
1.9.1. Principal coordinates analysis (PCoA) plots were
produced using unweighted UniFrac metrics. The linear
discriminant analysis (LDA) effect size (LEfSe) method
was performed to elucidate the difference among
treatments.

Statistical analysis
Data were analyzed using PROC MIXED of SAS 9.4
(SAS Inst. Inc., Cary, NC, USA). The data were
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considered as outlier when the student residue was
greater than three. The UNIVARIATE procedures of
SAS were used to analyze the variance homogeneity and
normality, respectively. Least squares means were calcu-
lated using the LSMEANS procedure in SAS, and signifi-
cant differences among treatments were separated using
PDIFF option with the Tukey adjustment for the per-
formance data. For growth performance, diarrhea index,
ATTD and SCFAs, pens were regarded as the experi-
mental unit and piglet data were reported as a mean for
the pen. The different taxa microbes among lines were
identified using LEfSe analysis with LDA score > 3. Data
are presented as the least squares means and pooled
standard error. Results were considered significant
when P < 0.05 and tendency toward significance at 0.05
≤ P < 0.10.

Results
Growth performance
As presented in Table 2, piglets fed CON or ESB plus
MK diet had lower diarrhea index (P < 0.01) during d
1–7 and the whole experimental period, relative to pig-
lets fed ESB plus FM or ESB diet. Besides, piglets fed
CON or ESB plus MK diet had lower diarrhea index
(P < 0.01) during d 8–14, when compared with piglets
fed ESB diet. There was no significant difference among
dietary treatments in ADG, ADFI and F:G at all phase.

The ATTD of nutrients
As presented in Table 3, the digestibility of DM, CP and
GE were significantly lower in the piglets fed ESB plus
FM diet (P < 0.01), when compared with piglets fed
CON diet. The DM, CP and GE digestibility did not
markedly differ between piglets fed ESB plus MK diet
and CON diet (P > 0.05), but piglets fed ESB plus MK
diet had significantly higher digestibility of DM and GE
than that of ESB plus FM group (P < 0.01). Besides, pig-
lets fed ESB diet had markedly decreased digestibility of
DM and GE, relative to piglets fed CON diet (P < 0.01).

Immunological parameters
As presented in Fig. 1, the plasma concentrations of Pig-
MAP, IgG and IgM were not markedly affected by diet-
ary treatments (P > 0.05). Piglets fed ESB plus FM, ESB
plus MK and ESB had markedly decreased plasma con-
centration of HPT when compared with piglets fed
CON diet (P < 0.01).

Gut microbiome
A total of 41,562, 46,965, 53,874 and 50,331 effective se-
quences in fecal samples from CON, ESB plus FM, ESB
plus MK and ESB groups were identified, respectively.
From the Venn analysis of OTUs, 818, 901, 908 and 905
unique OTUs were identified in CON, ESB plus FM,
ESB plus MK and ESB groups, respectively (Fig. 2A). For

Table 2 Effects of dietary protein sources on growth performance and diarrhea index in weaned piglets

CON ESB plus FM ESB plus MK ESB SEM P-value

Body Weights, kg

d 1 6.95 6.94 6.96 6.95 0.02 0.85

d 7 8.00 7.84 8.00 7.93 0.44 0.34

d 14 10.35 9.84 10.01 9.92 0.69 0.14

d 1–7

ADG, g/d 149 128 148 138 23 0.48

ADFI, g/d 275 260 252 280 45 0.76

F:G 1.95 2.07 1.77 2.05 0.36 0.51

Diarrhea index 0.08b 0.13a 0.08b 0.13a 0.02 < 0.01

d 8–14

ADG, g/d 337 287 288 286 51 0.20

ADFI, g/d 503 482 480 483 65 0.91

F:G 1.50 1.73 1.71 1.77 0.20 0.13

Diarrhea index 0.11b 0.17ab 0.10b 0.24a 0.03 < 0.01

d 1–14

ADG, g/d 243 207 218 211 31 0.19

ADFI, g/d 389 371 366 387 48 0.82

F:G 1.62 1.80 1.71 1.87 0.17 0.14

Diarrhea index 0.14b 0.22a 0.14b 0.25a 0.02 < 0.01
a-b Mean values within a row with different letters differ at P < 0.05

Li et al. Journal of Animal Science and Biotechnology          (2021) 12:106 Page 5 of 11



beta diversity analysis, unweighted Unifrac PCoA was
performed to demonstrate the separation of bacterial
community composition among treatments by using the
first two principal component scores of PC1 and PC2
(30.38% and 8.1%) of the explained variance, respectively
(Fig. 2B).
As shown in Table 4, dietary treatments did not mark-

edly affect Shannon, Simpson and ACE indexes, but pig-
lets fed ESB or ESB plus FM diets had significantly

increased Chao 1 index when compared with piglets fed
CON diet (P < 0.05).
The relative abundances at phylum level among treat-

ments are presented in Fig. 3A, suggesting that the top 6
dominated phyla were Firmicutes, Bacteroidota, Actino-
bacteriota, Proteobacteria, Spirochaetota and Desulfo-
bacterota. Firmicutes occupied the maximal portion of
gut microbiome in all samples, with a relative abundance
of 50%. At the genus level, a total of 248 genera were
identified among all samples, and the top 26 genera (>
1.5% in at least one group) are shown in Fig. 3B.
LEfSe was used to analyze microbial community from

phylum to genus level. There were 4, 8, 3 and 17 kinds
of dominant bacteria in fecal samples of piglets fed
CON, ESB plus FM, ESB plus MK and ESB diets re-
spectively (Fig. 4). The most abundant phylotypes in
fecal samples of piglets fed ESB plus FM diet were o_
Clostridia_vadinBB60_group, f_Erysipelotrichaceae, g_

Table 3 Effects of dietary protein sources on ATTD of nutrients
in weaned piglets

Items, % CON ESB plus FM ESB plus MK ESB SEM P-value

DM 88.54a 84.45c 87.62ab 86.63b 0.92 < 0.01

CP 83.70a 78.02b 81.10ab 81.46a 1.71 < 0.01

GE 88.30a 83.53c 87.14ab 85.71b 1.11 < 0.01
a-c Mean values within a row with different letters differ at P < 0.05

Fig. 1 Effects of dietary protein sources on immunological parameters in weaned piglets
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Peptococcus, and g_Veillonella. And o_RF39, f_Oscillos-
piraceae, f_Nocardiaceae and g_Helicobacter were
enriched in fecal samples of piglets fed ESB diet.

Concentrations of SCFAs in feces
The results pertaining to the SCFAs in feces are pre-
sented in Table 5. Compared with piglets fed ESB plus
FM, ESB plus MK and ESB diets, piglets fed CON diet
had significantly increased level of butyric acid (BA) in
feces (P < 0.01) and tended to have higher level of acetic
acid (AA) (P = 0.09). The level of propionic acid (PA) in
feces was not significant different across the dietary
treatments (P > 0.05).

Discussion
Soybean is commonly used in the diets of pigs because
of its high content of proteins and greater digestibility
[24, 25]. However, ANFs in soybean may have negative

impact on the immature gastrointestinal tract of weaned
piglets, which may result in severe diarrhea [26]. Bio-
processed soybean products, such as SPC, FSBM and
ESB, have been demonstrated to remove ANFs effect-
ively and improve nutrients digestibility, which leads to
a better growth performance in weaned piglets [27, 28].
In addition to decrease ANFs, the fermentation and en-
zymatic hydrolysis process of ESB also produces more
small peptides, which has various physiological function
in piglets or other mammals [29–31].
In the present study, the growth performance of

weaned piglets did not markedly differ among treat-
ments, however, we did observe the growth performance
of piglets fed ESB plus FM or ESB diet had been numer-
ically decreased, as indicated by the average 14% de-
crease in whole period ADG.
Protein digestion has been proposed to be a major

dietary factor affecting growth and diarrhea incidence of
weaned piglets [32], as the undigested dietary protein
enters into the hindgut leading to altered gut micro-
biome [33]. In this study, we observed the diarrhea index
was markedly increased by feeding ESB plus FM diet or
ESB diet, which could be partially ascribed to the poor
nutrient digestibility.
For weaning piglets, weaning stress is a vital factor that

causing immunological and intestinal impairments [34].
The immunoglobulins and acute phase proteins, such as
IgG, IgM, Pig-MAP and HPT, could regulate immunity

Fig. 2 Effects of dietary protein sources on gut microbiome structure in weaned piglets. Venn diagram showing the unique and shared OTUs in
the different groups (A). Unweighted Unifrac PCoA analysis based on OTUs of gut microbiome (B)

Table 4 The alpha diversity in the fecal microbiome of weaned
piglets

CON ESB plus FM ESB plus MK ESB SEM P-value

Shannon 0.98 1.05 0.96 1.04 0.11 0.54

Simpson 0.44 0.43 0.43 0.43 0.09 0.99

ACE 10.51 13.07 12.27 15.80 0.21 0.11

Chao 1 9.56b 12.56a 11.81ab 14.06a 2.01 0.03
a-b Mean values within a row with different letters differ at P < 0.05
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by inhibiting the release of IL-1 and TNF-α [35, 36]. As
an inflammatory signaling factor, the plasma HPT con-
centration could be particularly elevated during the
occurrence of inflammation and injury [37]. Our study
showed that piglets fed ESB plus FM, ESB plus MK and
ESB diets had dramatically decreased plasma concentra-
tion of HPT, which is consistent with previous study
that piglets fed enzymolytic soybean meal had improved
immune function, as indicated by the higher levels of
CD4+ and CD8+ in peripheral blood [38]. The immuno-
regulatory effect of bio-processed soybean may be re-
lated to the functional bio-active peptides. Supportively,
the small peptides account for up to 33.58% of total pro-
tein in ESB we used in this study. Similarly, recent

studies have reported that the size of soybean peptide
could be reduced to 100 ~ 1000 Da by microbial fermen-
tation and proteolysis during the production of ESB,
containing abundant bio-active peptides, such as QRPR
and lunasin [39–41].
Gut microbiome has been shown to play an important

role in development and function of weaned piglets [42].
In our study, the 16S rRNA sequencing was used to in-
vestigate the gut microbiome responses to dietary pro-
tein sources in weaned piglets. Our results showed that
the piglets fed ESB plus MK diet contained the most
OTUs. Besides, piglets fed ESB plus FM diet or ESB diet
increased Chao 1 index (P = 0.03), and piglets fed ESB
diets increased ACE index by 44% ~ 67%, indicating that

Fig. 3 Effects of dietary protein sources on phyla and genus of gut microbiome in weaned piglets. Relative abundances of phyla (A) and genus
(B). The abundance is expressed in terms of a percentage of the total effective bacterial sequences in the fecal samples
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the inclusion of ESB in diet increased gut microbial rich-
ness and diversity in weaned piglets .
To elucidate the difference in microbiome among

treatments, LefSe method was conducted to analyze the
enriched bacteria in each group. In the present study,
piglets fed ESB plus FM or ESB diet had increased the
abundances of some pathogenic bacteria in feces, such
as o_Clostridia_vadinBB60_group, o_RF39, f_Erysipelo-
trichaceae, f_Oscillospiraceae, f_Nocardiaceae, g_Pepto-
coccus, g_Veillonella and g_Helicobacter. It has been
reported that o_Clostridia_vadinBB60_group and f_Ery-
sipelotrichaceae were enriched in the lumen of colorectal
cancer patients [43, 44]. In addition, g_Peptococcus is a
classic pathogenic bacteria colonized in animals with

gastrointestinal disease, and g_Veillonella was negatively
correlated with the nutritional index [45, 46]. The higher
abundances of o_Oscillospiraceae and g_Helicobacter
have been found to be related to intestinal inflammation
[47, 48]. The o_RF39, which belongs to phylum Teneri-
cutes, class Mollicutes, is associated with intestinal dis-
orders [49, 50]. Furthermore, f_Nocardiaceae belongs to
phylum Actinobacteria, is a strong predictor of diarrhea
in piglets [51]. Taken together, the significantly higher
diarrhea index in piglets fed ESB plus FM or ESB diet
may be attributed to the intestinal damage induced by
the enriched pathogenic bacteria.
SCFAs, the main metabolites produced by bacterial fer-

mentation of dietary fiber and protein in the large intestine,
can regulate the absorption of various nutrients and provide
nearly 30% of the energy requirements for maintenance in
pigs and then improve piglets performance [52–54]. In the
current study, we found that piglets fed CON diet had
higher abundance of g_Bifidobacterium in feces, which has
been demonstrated to suppress the colonization of patho-
genic bacteria and contribute to the production of SCFAs
[55–57]. Supportively, we did observe the increased AA
and BA levels in piglets fed CON diet.

Fig. 4 Effects of dietary protein sources on the phylotypes distribution in weaned piglets. LefSe cladogram representing differential abundant
taxa in pig gut microbiome (A). LefSe bar representing differential abundant taxa in pig gut microbiome (B)

Table 5 Effects of dietary protein sources on the SCFAs levels in
fecal samples in weaned piglets

Items, μmol/
mg

CON ESB plus
FM

ESB plus
MK

ESB SEM P-
value

AA 6.63 5.00 6.16 4.37 0.56 0.09

PA 1.84 1.29 1.53 1.35 0.38 0.20

BA 4.24a 2.05b 1.76b 1.13b 0.67 <0.01
a-b Mean values within a row with different letters differ at P < 0.05

Li et al. Journal of Animal Science and Biotechnology          (2021) 12:106 Page 9 of 11



Conclusion
In this study, the inclusion of ESB in weaning diet did
not markedly affect growth performance of piglets, but
the substitution of MK or both MK and FM with ESB in
diet leaded to higher diarrhea index, which could be as-
cribed to the lower nutrients digestibility and more gut
pathogenic bacteria, such as g_Veillonella, g_Helicobac-
ter and g_Peptococcus. However, piglets fed diet using
ESB to replace FM did not markedly affect gut health-
related parameters, indicating the potential for replacing
FM with ESB in weaning diet.
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