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The superiority of multi-trait models with
genotype-by-environment interactions in a
limited number of environments for
genomic prediction in pigs
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Abstract

Background: Different production systems and climates could lead to genotype-by-environment (G × E) interactions
between populations, and the inclusion of G × E interactions is becoming essential in breeding decisions. The objective
of this study was to investigate the performance of multi-trait models in genomic prediction in a limited number of
environments with G × E interactions.

Results: In total, 2,688 and 1,384 individuals with growth and reproduction phenotypes, respectively, from two
Yorkshire pig populations with similar genetic backgrounds were genotyped with the PorcineSNP80 panel.
Single- and multi-trait models with genomic best linear unbiased prediction (GBLUP) and BayesC π were
implemented to investigate their genomic prediction abilities with 20 replicates of five-fold cross-validation.
Our results regarding between-environment genetic correlations of growth and reproductive traits (ranging
from 0.618 to 0.723) indicated the existence of G × E interactions between these two Yorkshire pig populations. For
single-trait models, genomic prediction with GBLUP was only 1.1% more accurate on average in the combined
population than in single populations, and no significant improvements were obtained by BayesC π for most traits. In
addition, single-trait models with either GBLUP or BayesC π produced greater bias for the combined population than
for single populations. However, multi-trait models with GBLUP and BayesC π better accommodated G × E interactions,
yielding 2.2% – 3.8% and 1.0% – 2.5% higher prediction accuracies for growth and reproductive traits, respectively,
compared to those for single-trait models of single populations and the combined population. The multi-trait models
also yielded lower bias and larger gains in the case of a small reference population. The smaller improvement in
prediction accuracy and larger bias obtained by the single-trait models in the combined population was mainly due to
the low consistency of linkage disequilibrium between the two populations, which also caused the BayesC π method
to always produce the largest standard error in marker effect estimation for the combined population.
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Conclusions: In conclusion, our findings confirmed that directly combining populations to enlarge the reference
population is not efficient in improving the accuracy of genomic prediction in the presence of G × E interactions, while
multi-trait models perform better in a limited number of environments with G × E interactions.

Keywords: Combined population, Genotype-by-environment interaction, Linkage disequilibrium, Multi-trait model, Pig

Background
Genomic selection [1], which relies on linkage disequilib-
rium (LD) between single nucleotide polymorphisms
(SNPs) and causative variants, has become a useful tool in
animal breeding [2] and plant breeding [3]. Generally, the
accuracy of genomic selection increases as the number of
animals in the reference population increases [4]. For
small reference populations, combining populations of the
same breed or related breeds reportedly increases the ac-
curacy of genomic selection in cattle and pig [2, 5–8].
However, genomic prediction using combined populations
has not shown a clear advantage over genomic prediction
using single populations, possibly because the LD between
SNPs and causative variants is not sufficiently consistent
between populations [5–7]. The failure to consider
genotype-by-environment (G × E) interactions between
populations is another important reason. Thus, exploiting
G × E interactions in combined populations could be an
attractive and meaningful approach for increasing the ac-
curacy of genomic prediction.
A G × E interaction is defined as different genotypes

reacting unequally to environmental changes [9], and ig-
noring possible G × E interactions could lead to a reduc-
tion in genetic gains. Two models are widely used to
detect G × E interactions. One is a multi-trait model,
which assumes that the phenotypic expressions of a trait
in various environments are different traits [10]. In this
case, the genetic correlation between traits in different
environments is used as the indicator of a G × E inter-
action [9, 11]. The other model is the reaction norm
model [12], which models the trajectory of animal per-
formance as a function of an environmental gradient.
However, in a small number of environments, e.g., two
or three environments, the reaction norm model cap-
tures only part of the G × E interaction due to the lim-
ited amount of environmental variation. Furthermore, it
is difficult to define a suitable environmental covariate
in the reaction norm model [12, 13].
With the development of genomic selection in pig

breeding, more farms could be included to enlarge the
reference population size in China, and joint genomic
evaluation across countries or breeding organizations is
expected. In dairy cattle, G × E interactions are usually
ignored in combined-population genomic prediction; for
example, Zhou et al. [14] reported that the consistency
of LD was very high (0.97) between Chinese and Nordic

Holsteins, indicating a high level of genetic similarity be-
tween the two populations. Therefore, it is necessary to
consider the influence of G × E interactions, as the
consistency of LD between pig populations is relatively
low compared to that in dairy cattle. The objectives of
this study were to evaluate G × E interactions between
two Yorkshire pig populations with similar genetic back-
grounds and to investigate the performance of multi-
trait models in genomic prediction in a limited number
of environments with G × E interactions.

Methods
Ethics statement
The whole procedure for collecting pig blood samples
was carried out in strict accordance with the protocol
approved by the Animal Welfare Committee of China
Agricultural University (Permit Number: DK996).

Population and phenotypes
Yorkshire pig populations were sampled from two
breeding farms in the north (Beijing) and south (Fujian
Province) of China, designated Beijing and Fujian, re-
spectively, for convenience. The pigs in the Beijing and
Fujian populations are American Yorkshire progeny with
the same genetic background but no pedigree links.
Phenotypic records of reproductive traits, namely, the
number of piglets born alive (NBA) and the total num-
ber of piglets born (TNB), and growth traits, namely,
days to 100 kg (AGE) and backfat thickness at 100 kg
(BFT), were examined. The measurements of AGE and
BFT were reported in Song et al. [7]. The phenotypic in-
formation is presented in Table 1. For the growth traits,
phenotypic information from 28,827 and 13,860 pigs
born in 2008–2017 and 2007–2018, respectively, in the
Beijing and Fujian populations was available. For the re-
productive traits, the farrow records of 5,968 and 3,115
pigs born in 2007–2017 and 2007–2018, respectively, in
Beijing and Fujian were obtained.

Construction of corrected phenotypes
In pig genomic prediction analyses, corrected pheno-
types derived from pedigree-based estimated breeding
values (EBVs) are usually used as response variables.
Conventional EBVs and genetic parameters were esti-
mated based on a repeatability model of reproductive
traits implemented separately in each population. In the
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model, the fixed effects included herd, year and season,
and the random effects included the additive genetic,
random residual and permanent environmental effects.
For the growth traits, a bivariate animal model was im-
plemented, and the fixed effects included herd, year, sea-
son and sex. In addition to the additive genetic effect of
each individual and the random residual effect, litter ef-
fect was also taken into account as a random effect. A
total of 31,529 and 32,175 animals were traced back to
construct a pedigree relationship matrix for the Beijing
and Fujian populations, respectively. Afterwards, cor-
rected phenotypic values (yc) for reproductive traits were
calculated as the EBV plus the average of estimated re-
siduals over parities for a sow, and yc values for growth
traits were computed as the EBV plus the estimated re-
sidual for each individual in each population. EBVs and
genetic parameters were computed using the DMUAI
procedure in DMU software [15].

Genotype data and quality control
Genomic DNA was extracted from blood samples using
a TIANamp Blood DNA Kit DP348 (Tiangen, Beijing,
China). Genotyping was performed using the Porci-
neSNP80 BeadChip (Illumina, San Diego, CA, USA),
which includes 68,528 SNPs distributed across the entire
pig genome. The number of genotyped animals for each
trait is presented in Table 1.
Missing genotypes for SNPs with known chromosomal

positions were imputed by BEAGLE with default param-
eter settings [16], and those for SNPs with unknown po-
sitions were discarded. Based on the imputed dataset,
SNPs were excluded from the analysis if the minor allele
frequency was less than 0.05, the call frequency score
was less than 0.90, or the genotype frequencies deviated
from Hardy-Weinberg equilibrium with a P-value lower
than 10− 7. The animals with a call rate less than 0.90 or
with an EBV reliability less than 0.3 were removed. After
quality control, 2,688 and 1,384 genotyped individuals

remained for the growth and reproductive traits, respect-
ively, and 56,445 SNPs were ultimately used.

Principal component analysis
Principal component analysis (PCA) was performed on
the G matrix using GCTA software [17]. This resulted in
a matrix of eigenvectors in descending order that repre-
sented principal components (PCs), where PC1 had the
largest eigenvalue. The overall structuring of genetic
variation was visualized in a scatterplot of the top few
PCs.

Measure of linkage disequilibrium
LD between a pair of SNPs was measured as r2LD and rLD
[18], and r2LD was calculated as follows:

r2LD ¼ f ABð Þ − f Að Þ f Bð Þð Þ2
f Að Þ f að Þ f Bð Þ f bð Þ ;

where f(AB), f(A), f(a), f(B) and f(b) are the observed fre-
quencies of haplotype AB and alleles A, a, B and b, re-
spectively. The consistency of LD in the two populations
was measured by the correlation of rLD values of adja-
cent marker pairs on each autosome between the two
populations.

Model
Four methods, namely, single-trait genomic BLUP
(GBLUP), multi-trait GBLUP, single-trait BayesC π and
multi-trait BayesC π, were implemented to predict the
genomic EBV (GEBV) for each genotyped individual.

Single-trait GBLUP (ST-GBLUP) model
The ST-GBLUP [19] model was used to predict the
GEBVs of all genotyped individuals.

y¼1uþZaþe;

where y is the vector of corrected phenotypic values; u

Table 1 Summary statistics for the two Yorkshire pig populations, including the numbers of genotyped animals and estimates of
heritability (h2)

Populationa Traitb N-obsc Max Min SD Genotyped animals h2 (SE)

Beijing AGE 28,827 210.98 124 13.86 1732 0.33(0.01)

BFT 28,827 30.74 5.03 2.43 1732 0.34 (0.01)

NBA 5,968/20,005 21 0 3.13 923 0.07 (0.01)

TNB 5,968/20,005 25 0 3.09 923 0.08 (0.01)

Fujian AGE 13,860 206.31 119.9 10.27 956 0.42 (0.02)

BFT 13,860 28.62 4.09 3.64 956 0.44 (0.02)

NBA 3,115/11,731 22 0 2.88 461 0.09 (0.02)

TNB 3,115/11,731 22 1 2.98 461 0.11 (0.02)
a Yorkshire pig populations from Beijing and Fujian with similar genetic backgrounds but located in the north and south of China
b AGE: days to 100 kg; BFT: backfat thickness at 100 kg; NBA: number of piglets born alive; TNB: total number of piglets born
c N-obs: number of individuals/observations

Song et al. Journal of Animal Science and Biotechnology           (2020) 11:88 Page 3 of 13



is the overall mean; 1 is a vector of 1; and a is the vector
of genomic breeding values, following a normal distribu-
tion N(0, G σa

2), in which σa
2 is the variance of the ad-

dictive genetic effect and G is the marker-based genomic
relationship matrix [19]. e is the vector of random er-
rors, following a normal distribution N(0, I σe

2), in which
σe

2 is the residual variance.

Multi-trait GBLUP (MT-GBLUP) model
The MT-GBLUP model was defined as.

y1
y2

� �
¼ I1 0

0 I2

� �
u1
u2

� �
þ Z1 0

0 Z2

� �
g1
g2

� �
þ e1

e2

� �
;

where
y1
y2

� �
is the vector of observed values for traits I

and II (corrected phenotypic values of the same trait in
different populations); I1 and I2 are the identity matrices;
u1
u2

� �
is the vector of intercepts for traits I and II;

g1
g2

� �

is the vector of additive genetic effects for the two traits,
following a normal distribution N(0,G⊗M), where M=

σ2
g1 σ2g12

σ2g12 σ2
g2

" #
is the variance and covariance matrix of

the genomic breeding values of the two traits; Z1 and Z2

are the incidence matrices associating g1 and g2 with y1

and y2; and
e1
e2

� �
is the vector of random errors with a

distribution of N(0, I⊗ R), where I is the identity matrix

and R =
σ2
e1 σ2e12

σ2e12 σ2e2

� �
is the residual variance and co-

variance matrix of the two traits. The genetic correlation

between two traits was calculated as
σ2g12ffiffiffiffiffiffiffiffiffi
σ2g1σ

2
g2

p .

Single-trait BayesC π (ST-BayesC π) model
In ST-BayesC π [20], marker effects on phenotypic traits
were sampled from a mixture of null and normal
distributions,

yi ¼ μþ
Xp
j

mijα j þ ei

α jjπ; σ2
a

� � � N 0; σ2a
� �

probability 1 − πð Þ
0 probability π

�

where yi is a vector of phenotypes, μ is a vector of over-
all means, mij is the genotype covariate at locus j for in-
dividual i (coded as 0, 1 and 2), p is the number of
genotyped loci, αj is a vector of allele substitution effects,
and ei is a vector of random residuals for individual i
with a distribution N(0, σ2

e ). The markers in the model
shared a common variance σ2a . The prior for the allele

substitution effects of each molecular marker αj depends
on the variance σ2a and the probability π that markers do
not have a genetic effect.

Multi-trait BayesC π (MT-BayesC π) model
In MT-BayesC π, where each locus can have an effect
on any combination of traits [21], the prior for αjk, the
allele substitution or marker effect on trait k for locus j,
is a mixture with a point mass at zero and univariate
normal distribution conditional on σ2

k :

yi ¼ μþ
Xp
j

mijα j þ ei

αjk jπk ; σ2k
� � � N 0; σ2k

� �
probability 1 − πkð Þ

0 probability πk

�

where mij, j and p are the same as in ST-BayesC π. yi is
a vector of phenotypes of k traits for individual i (cor-
rected phenotypic values of the same trait in different
populations), μ is a vector of overall means for k traits,
and αj is a vector of marker allele substitution effects on
k traits for locus j. The residuals, ei, are a priori assumed
to be independently and identically distributed multi-
variate normal vectors with a null mean and covariance
matrix R (R is the same as described for the multi-trait
GBLUP model), which, in turn, is assumed to have an
inverse Wishart prior distribution, W − 1

t ðSe; veÞ. The co-
variance between effects for trait k and k′ at the same
locus, i.e., αjk and αjk′ is

cov αjk ; α jk
0 jσkk 0

� 	 σkk 0 if both αjk≠0 and σkk 0≠0Þ
0 otherwise

�

Imputation of missing phenotypic data was imple-
mented in each Markov chain Monte Carlo (MCMC) it-
eration in MT-BayesC π.
For the ST-BayesC π and MT-BayesC π methods, the

MCMC chain was run for 20,000 cycles, and the first
10,000 cycles were discarded as burn-in. Every 10th

sample of the remaining 10,000 iterations was saved to
estimate SNP effects and the variance components. The
Julia package JWAS was used for BayesC π analyses
[22], and the DMUAI procedure, implemented in DMU
software, was used for GBLUP analyses.

Cross-validation and prediction accuracy
In this study, the accuracy and unbiasedness of pre-
diction were obtained through 5-fold cross-validation
(CV) for the Beijing and Fujian populations, where
the Beijing (Fujian) population was randomly split
into 5 folds, predicting one fold based on the other 4
folds, the combined population was divided into 4
folds and another population, or a multi-trait model
was used in which the values of the same trait in 4
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folds and another population were considered differ-
ent traits. In each round of CV, phenotypes from one
fold (validation population) were removed from the
dataset, and the remaining folds (reference popula-
tion) were used to predict the future performance of
animals in the validation population. This 5-fold CV
was replicated 20 times, and the results are presented
as the mean and standard deviation for the 20 repli-
cates. Here, the single-trait models (ST-GBLUP and
ST-BayesC π) based on single populations and the
combined population were termed ST-GBLUP(BayesC
π)_single and ST-GBLUP(BayesC π)_combined, re-
spectively. For ST-GBLUP(BayesC π)_single, GBLUP(-
BayesC π)_combined and MT-GBLUP(BayesC π), the
validation population was the same for the four ap-
proaches in each replicate of 5-fold CV. The accuracy
of genomic prediction was evaluated as r(yc, GEBV),
the correlation between GEBVs and corrected pheno-
typic values yc in the validation population. In
addition, b(yc, GEBV), the regression of yc on GEBVs,
was also calculated to assess the possible inflation or
unbiasedness of predictions. A two-tailed paired t-test
was used to compare prediction accuracy between a
pair of scenarios.

Results
Population structure and genetic parameters
To assess the population structure of the two York-
shire pig populations, PCA was performed. Figure 1
illustrates that the genetic backgrounds of the Beijing
and Fujian populations were similar, and both

populations were composed of American Yorkshire
progeny. In addition, the Yorkshire population (874
pigs) with a British origin was selected for PCA,
which also showed that Beijing and Fujian had similar
genetic backgrounds (Additional file: Fig. S1). How-
ever, no pedigree connection between these popula-
tions was detected according to their pedigree records
due to a lack of genetic exchange.
LD between a pair of SNPs was measured as r2LD and

rLD in the Beijing and Fujian populations. The LD be-
tween adjacent markers in the Beijing and Fujian popu-
lations was also investigated, as shown in Table 2. The
mean r2LD of adjacent SNP pairs within a chromosome
ranged from 0.52 to 0.63 in the Beijing population and
from 0.51 to 0.63 in the Fujian population. The mean
r2LD across all chromosomes was 0.56 in both the Beijing
and Fujian populations, also indicating the similar gen-
etic backgrounds of the populations. However, the
consistency of LD between the two populations was not
high. The correlation of rLD for adjacent SNPs between
the two populations ranged from 0.47 to 0.60 across all
chromosomes, with a mean of 0.55 at an average marker
distance of 41 Kb, indicating the insufficient consistency
in LD between these two pig populations.
Estimates of heritability for the growth and reproductive

traits in the two Yorkshire pig populations are shown in
Table 1. In the Beijing population, the heritabilities of
AGE and BFT were 0.33 and 0.34, respectively, with a
standard error of 0.01. The heritabilities of AGE and BFT
were 0.42 and 0.44, respectively, with a standard error of
0.02 in the Fujian population. For NBA and TNB, the

Fig. 1 Principal component analysis (PCA) of two Yorkshire pig populations. Beijing and Fujian represent two Yorkshire pig populations from two
Chinese pig breeding farms; PC1 (3.5%) = first principal component (variance explained by PC1 = 3.5%); PC2 (2.3%) = second principal component
(variance explained by PC2 = 2.3%); PC3 (1.3%) = third principal component (variance explained by PC3 = 1.3%)
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estimated heritabilities were 0.07 and 0.08 with a standard
error of 0.01 in the Beijing population and 0.09 and 0.11
with a standard error of 0.02 in the Fujian population.

G × E interactions
Figure 2 shows the estimated genetic correlations be-
tween the Beijing and Fujian populations based on the
MT-GBLUP model using all genotyped animals. For
AGE and BFT, the estimates of genetic correlations were
0.618 and 0.623, respectively, with standard errors of
0.145 and 0.134. The genetic correlations of NBA and
TNB were 0.714 and 0.723, respectively, with standard
errors of 0.153 and 0.159. These genetic correlations in-
dicated that G × E interactions most likely exist between
the Beijing and Fujian populations, as Robertson [23]
suggested that 0.80 was the threshold of biological im-
portance for G × E interactions.
Tables 3 and 4 and Fig. 3 demonstrate the accuracies

of genomic prediction for growth and reproductive traits
achieved by applying single-trait and multi-trait models
with GBLUP and BayesC π. Generally, in the same

scenario, the prediction accuracies of each method were
the largest for BFT, as it had the highest estimated herit-
ability among the four traits. Lower prediction accur-
acies were obtained for two reproductive traits, NBA
and TNB, due to their low heritabilities. For the two pig
populations, higher accuracies for growth traits were ac-
quired for the Beijing population, as it had a much larger
reference population than the Fujian population (Table
1), while their small reference populations for reproduct-
ive traits resulted in comparably low accuracies of gen-
omic prediction. Tables 3 and 4 and Fig. 3 further show
the superiority of the multi-trait model for genomic pre-
diction when dealing with G × E interactions, as dis-
cussed below.

Comparison of the combined population with the single
populations
Table 3 presents the accuracy of genomic prediction for
growth and reproductive traits achieved by applying the
GBLUP method, as measured by 20 replicates of five-
fold CV. For the Beijing population, the prediction ac-
curacies obtained with ST-GBLUP_single were 0.315
and 0.331 for AGE and BFT and 0.142 and 0.172 for
NBA and TNB, respectively. When ST-GBLUP_com-
bined was used, the genomic prediction accuracies were
improved by 1.1% and 1.7% for NBA and TNB, respect-
ively, compared with those obtained with ST-GBLUP_
single, while there were no significant improvements for
the growth traits AGE and BFT. In contrast, for the Fu-
jian population, the genomic prediction accuracies for
both growth and reproductive traits increased when the
single populations were combined to enlarge the refer-
ence population. On average, ST_GBLUP_combined
yielded 1.1% and 2.0% higher accuracies than ST-
GBLUP_single for the growth and reproductive traits,
respectively. Obviously, the gains in accuracy obtained
for the Fujian population were larger.
However, the single-trait model with the BayesC π

method did not yield higher prediction accuracies for
the combined population compared with the single
populations for most traits, even though the reference
population was larger. As shown in Table 4, when
predicting the traits of pigs from the Beijing popula-
tion, the prediction accuracies obtained with ST-
BayesC π _single were 0.306, 0.328, 0.156 and 0.179
for AGE, BFT, NBA and TNB, respectively. ST-
BayesC π _combined produced almost the same ac-
curacies as ST-BayesC π _single in all scenarios, and
the accuracy obtained by ST-BayesC π _combined
was even slightly lower in some cases; e.g., the predic-
tion accuracies of ST-BayesC π _single and ST-
BayesC π _combined for NBA were 0.156 and 0.154,
respectively. A trend of similar accuracies for ST-
BayesC π between the combined and single

Table 2 Distance and LD (r2LD) of adjacent SNPs for each
autosome (CHR)

CHR Length,
Mb

Number
of SNPs

Mean
distance,
kb

Mean r2LD Cora

Beijingc Fujianc

1 300.49 5,525 55.70 0.63 0.63 0.55

2 155.0 3,750 42.34 0.56 0.54 0.51

3 138.07 3,267 43.29 0.54 0.53 0.54

4 136.82 3,453 40.59 0.57 0.57 0.51

5 106.34 2,671 40.78 0.54 0.54 0.60

6 150.43 3,967 38.84 0.61 0.60 0.47

7 128.52 3,563 36.95 0.54 0.53 0.58

8 141.61 3191 45.46 0.57 0.56 0.56

9 146.54 3,533 42.48 0.55 0.57 0.58

10 75.40 2,522 30.63 0.55 0.53 0.51

11 83.61 2,105 40.69 0.52 0.51 0.50

12 60.64 2,247 27.65 0.57 0.56 0.60

13 208.48 4,026 53.04 0.59 0.60 0.58

14 146.71 3,756 40.01 0.59 0.59 0.57

15 150.35 3,208 48.01 0.58 0.59 0.52

16 82.85 2,154 39.41 0.53 0.52 0.51

17 66.13 1,938 34.96 0.58 0.58 0.53

18 58.37 1,569 38.12 0.54 0.52 0.55

Mean 2,336.36b 56,445b 41.05 0.56 0.56 0.55
a Cor: the correlation of rLD values of adjacent SNP pairs between
two populations;
b Sum over 18 autosomes
c Yorkshire pig populations from Beijing and Fujian with similar
genetic backgrounds
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Fig. 2 Genetic correlations between the two Yorkshire pig populations obtained using the multi-trait GBLUP method with all genotyped animals. AGE:
days to 100 kg; BFT: backfat thickness at 100 kg; NBA: number of piglets born alive; TNB: total number of piglets born. The red line represents the
threshold of 0.8. The error bar represents the standard error

Table 3 Accuracy and unbiasedness of genomic prediction of growth and reproductive traits performed with the GBLUP method as
assessed with 20 replicates of five-fold CV

Population1 Method2 Measurement3 AGE4 BFT4 NBA4 TNB4

Beijing ST-GBLUP_single Accuracy 0.315 ± 0.035a 0.331 ± 0.026a 0.142 ± 0.045a 0.172 ± 0.043a

Unbiasedness 1.001 ± 0.203 1.126 ± 0.254 1.220 ± 0.413 1.146 ± 0.411

ST-GBLUP_combined Accuracy 0.315 ± 0.037a 0.334 ± 0.029a 0.153 ± 0.052b 0.189 ± 0.052b

Unbiasedness 1.119 ± 0.222 0.827 ± 0.249 0.698 ± 0.360 0.799 ± 0.284

MT-GBLUP Accuracy 0.326 ± 0.032b 0.346 ± 0.025b 0.167 ± 0.043c 0.191 ± 0.044b

Unbiasedness 0.994 ± 0.196 1.083 ± 0.225 1.164 ± 0.362 1.112 ± 0.278

Fujian ST-GBLUP_single Accuracy 0.245 ± 0.017a 0.261 ± 0.035a 0.159 ± 0.053a 0.146 ± 0.052a

Unbiasedness 1.047 ± 0.267 1.046 ± 0.263 1.047 ± 0.442 1.050 ± 0.421

ST-GBLUP_combined Accuracy 0.255 ± 0.023b 0.272 ± 0.043b 0.171 ± 0.062b 0.173 ± 0.055b

Unbiasedness 1.352 ± 0.303 1.274 ± 0.271 1.352 ± 0.454 1.191 ± 0.465

MT-GBLUP Accuracy 0.273 ± 0.019c 0.297 ± 0.031c 0.181 ± 0.054c 0.184 ± 0.057c

Unbiasedness 1.024 ± 0.243 1.013 ± 0.232 1.032 ± 0.433 1.046 ± 0.397
1 Yorkshire pig populations from Beijing and Fujian with similar genetic backgrounds
2 ST-GBLUP_single: single-trait GBLUP model with a single population as the reference population; ST-GBLUP_combined: single-trait GBLUP model two
populations combined as the reference population; MT-GBLUP: multi-trait GBLUP model in which values of the same trait in different populations were considered
different traits
3 Accuracy: the correlation between GEBV and corrected phenotypic values in the validation population; Unbiasedness: the regression of corrected phenotypic
values on GEBVs
4 AGE: days to 100 kg; BFT: backfat thickness at 100 kg; NBA: number of piglets born alive; TNB: total number of piglets born
a, b, c Values with different superscript letters significantly differ (P < 0.05)
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populations was also found in the Fujian population,
as demonstrated in Table 4. The average prediction
accuracies obtained with ST-BayesC π _single and
ST-BayesC π _combined were almost the same for
the growth traits and reproductive traits.

The unbiasedness of genomic prediction of growth
and reproductive traits as assessed with 20 replicates of
five-fold CV is shown in Tables 3 and 4. When predict-
ing the traits of pigs from the Beijing population based
on the GBLUP method, larger bias (0.199) was produced

Table 4 Accuracy and unbiasedness of genomic prediction of growth and reproductive traits performed with the BayesC π method
as assessed with 20 replicates of five-fold CV

Population1 Method2 Measurement3 AGE4 BFT4 NBA4 TNB4

Beijing ST-BayesC π _single Accuracy 0.306 ± 0.028a 0.328 ± 0.023a 0.156 ± 0.032a 0.179 ± 0.035a

Unbiasedness 1.218 ± 0.278 1.013 ± 0.212 1.182 ± 0.343 1.112 ± 0.302

ST-BayesC π _combined Accuracy 0.304 ± 0.032a 0.328 ± 0.038a 0.154 ± 0.035a 0.180 ± 0.034a

Unbiasedness 1.287 ± 0.265 0.853 ± 0.274 1.152 ± 0.362 1.124 ± 0.293

MT-BayesC π Accuracy 0.312 ± 0.035b 0.347 ± 0.026b 0.183 ± 0.029b 0.201 ± 0.031b

Unbiasedness 1.160 ± 0.217 1.056 ± 0.224 1.065 ± 0.236 0.992 ± 0.272

Fujian ST-BayesC π _single Accuracy 0.243 ± 0.023a 0.262 ± 0.024a 0.164 ± 0.043a 0.152 ± 0.044a

Unbiasedness 1.052 ± 0.263 1.032 ± 0.232 1.115 ± 0.321 1.076 ± 0.362

ST-BayesC π _combined Accuracy 0.244 ± 0.025a 0.264 ± 0.028a 0.165 ± 0.047a 0.154 ± 0.047a

Unbiasedness 0.874 ± 0.134 1.330 ± 0.254 1.245 ± 0.308 1.222 ± 0.353

MT-BayesC π Accuracy 0.275 ± 0.024b 0.284 ± 0.021b 0.181 ± 0.051b 0.183 ± 0.049b

Unbiasedness 1.034 ± 0.197 1.088 ± 0.256 1.143 ± 0.363 1.059 ± 0.345
1 Yorkshire pig populations from Beijing and Fujian with similar genetic backgrounds
2 ST-GBLUP_single: single-trait GBLUP model with a single population as the reference population; ST-GBLUP_combined: single-trait GBLUP model two
populations combined as the reference population; MT-GBLUP: multi-trait GBLUP model in which values of the same trait in different populations were considered
different traits
3 Accuracy: the correlation between GEBVs and corrected phenotypic values in the validation population; Unbiasedness: the regression of corrected phenotypic
values on GEBVs
4 AGE: days to 100 kg; BFT: backfat thickness at 100 kg; NBA: number of piglets born alive; TNB: total number of piglets born
a, b Values with different superscript letters significantly differ (P < 0.05)

Fig. 3 Comparison of genomic prediction accuracies of GBLUP and BayesC π methods when implementing a single-trait model in single
populations and a multi-trait model. a Predicting pigs from the Beijing population using a single-trait model; b predicting pigs from the Fujian
population using a single-trait model; c predicting pigs from the Beijing population using a multi-trait model; d predicting pigs from the Fujian
population using a multi-trait model. AGE: days to 100 kg; BFT: backfat thickness at 100 kg; NBA: number of piglets born alive; TNB: total number
of piglets born; BayesCpi: BayesC π
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by ST-GBLUP_combined than by ST-GBLUP_single.
Likewise, unbiasedness was close to 1 with the ST-
GBLUP_single method for growth and reproductive
traits when predicting the traits of pigs from the Fujian
population, while ST-GBLUP_combined yielded a 0.292
larger bias than ST-GBLUP_single (Table 3). Similarly,
ST-BayesC π also produced more bias for the combined
population than for the single populations in most situa-
tions (Table 4).
In addition, prediction accuracies obtained with train-

ing on the Beijing population and validation in the Fu-
jian population and training on the Fujian population
and validation in the Beijing population using ST-
GBLUP and ST-BayesC π were determined. Low predic-
tion accuracies and large bias were observed in all sce-
narios (Additional file: Table S1), indicating that using
one population to predict another is infeasible, even
though the genetic backgrounds of the Beijing and Fu-
jian populations were similar in this study.

Comparison of the multi-trait model with the single-trait
model
Both single-trait and multi-trait models with GBLUP
and BayesC π were implemented to address the com-
bined population in this study. Tables 3 and 4 show the
accuracies and unbiasedness of genomic prediction ob-
tained with the multi-trait and single-trait models in the
same scenarios. In general, the multi-trait model showed
significant superiority over the single-trait model. For
the GBLUP method, as shown in Table 3, when predict-
ing the traits of pigs from the Beijing population, the
multi-trait GBLUP model (MT-GBLUP) yielded approxi-
mately 1.3% (1.2%) and 2.2% (0.8%) higher accuracies
than ST-GBLUP_single (ST-GBLUP_combined) for the
growth and reproductive traits, respectively. Further-
more, a small amount of bias was obtained with MT-
GBLUP in most scenarios. A similar trend was found in
the Fujian population. As shown in Table 3, MT-GBLUP
yielded 3.2% (2.2%) and 3.0% (1.1%) higher accuracies on
average for the growth and reproductive traits, respect-
ively, than ST-GBLUP_single (ST-GBLUP_combined).
The unbiasedness was close to 1 when using the MT-
GBLUP methods for growth and reproductive traits in
most situations. Again, the gains obtained by MT-
GBLUP in the Fujian population were larger than those
in the Beijing population.
For the multi-trait model with BayesC π, as shown in

Table 4, when predicting the traits of pigs from the
Beijing population, MT-BayesC π yielded approximately
1.3% (1.4%) and 2.5% (2.5%) higher accuracies than ST-
BayesC π _single (ST-BayesC π _combined) for the
growth and reproductive traits, respectively. The largest
gain over ST-BayesC π _single and ST-BayesC π _com-
bined was 2.7% and 2.9% for NBA, respectively. When

predicting the traits of pigs from the Fujian population,
MT-BayesC π obtained higher accuracies for all traits
(Table 4), yielding 2.7% (2.6%) and 2.4% (2.3%) gains on
average over ST-BayesC π _single (ST-BayesC π _com-
bined) for the growth and reproductive traits, respect-
ively. MT-BayesC π also produced bias as low as that of
ST-BayesC π _single in most scenarios.

Comparison of the GBLUP and BayesC π methods
Figure 3 presents the accuracy of genomic prediction of
growth and reproductive traits achieved by applying
single-population ST-GBLUP (BayesC π) and MT-
GBLUP (BayesC π) methods. When predicting the traits
of pigs from the Beijing population, GBLUP yielded
approximately 1.0% higher accuracy than BayesC π re-
gardless of whether the single- or multi-trait model was
used for AGE and a bias close to 0 with the GBLUP
method in this scenario, while there was no difference in
accuracy between GBLUP and BayesC π for BFT. For re-
productive traits in the Beijing population, the accuracy
of genomic prediction was increased by 1.3% on average
for MT-BayesC π compared to MT-GBLUP, and no dif-
ference in accuracy was found between ST-GBLUP and
ST-BayesC π. When predicting the traits of pigs from
the Fujian population, GBLUP and BayesC π produced
similar prediction accuracies for AGE; e.g., the predic-
tion accuracies with ST-GBLUP_single and ST-BayesC π
_single were 0.245 and 0.243, respectively, while less bias
was obtained by GBLUP in this scenario. There was no
difference in prediction accuracy or unbiasedness be-
tween ST-GBLUP_single and ST-BayesC π _single for
BFT, while MT-GBLUP achieved a 1.3% higher accuracy
than MT-BayesC π. For reproductive traits in the Fujian
population, there was no difference in prediction accur-
acy between GBLUP and BayesC π, except that MT-
GBLUP_combined achieved a 1.9% higher accuracy than
MT-BayesC π _combined for TNB. Generally, GBLUP
performed comparably to BayesC π in the single-trait
and multi-trait models.

Discussion
In this study, we investigated the accuracy of genomic
prediction in two Yorkshire pig populations with similar
genetic backgrounds when G × E interactions were taken
into account. Our results revealed G × E interactions be-
tween the two populations for the reference growth and
reproductive traits. We further explored whether directly
combining populations to enlarge the reference popula-
tion is efficient in improving the accuracy of genomic
prediction in the presence of G × E interactions. Our re-
sults demonstrated the superiority of the multi-trait
model for genomic prediction in dealing with G × E in-
teractions, which could better accommodate the G × E
interactions. Higher prediction accuracies and lower bias
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were obtained with the multi-trait model than with the
single-trait model when implementing either GBLUP or
BayesC π in a given situation.
G × E interactions play an important role in pig popu-

lations, and they should be considered in breeding pro-
grams to select the best animals in different
environments [11, 24]. The detection of G × E interac-
tions relies on a genetic correlation of 0.8 for one trait in
different environments, the threshold suggested by
Robertson [23]. Accordingly, G × E interactions between
two pig populations for growth and reproductive traits
(ranging from 0.618 to 0.723) were observed. Similarly,
Li et al. [25] reported on the across-country genetic cor-
relations (ranging from 0.604 to 0.726) of dairy cattle, in-
dicating that an important G × E interaction exists
between Brazilian and Nordic (or Nordic and French)
populations. Hay and Roberts [26] also reported the ex-
istence of genotype-by-nutritional environment interac-
tions for growth and carcass traits in beef cattle with
genetic correlations below the threshold value of 0.8. In
this study, SNP markers were used to construct the rela-
tionships (G matrix) between the two populations in
order to estimate the genetic correlations, as no linked
pedigree was available. Compared with a pedigree used
to estimate genetic correlations, the realized relation-
ships among individuals are captured by marker infor-
mation and achieve more accurate estimates of genetic
correlations. However, the number of genotyped animals
was not large enough to produce a lower standard error
for genetic correlations compared to that obtained by es-
timating heritability. We therefore used SNP markers to
assess the population structure of the two pig popula-
tions, and the similar patterns of LD on each chromo-
some between these two populations further showed
that they had similar genetic backgrounds. However, the
correlation of rLD values of adjacent SNPs with a mean
of 0.55 indicated the insufficient consistency in LD be-
tween these two pig populations, which could be due to
G × E interactions. Genetic correlations are caused by
the pleiotropic action of genes and linkage between
genes affecting different traits [9]. If the performance
values of the same trait in different populations (envi-
ronments) are regarded as different traits and are af-
fected by different genes (that are of course pleiotropic),
the phase of linkage of these genes and the consistency
of their linkage (not LD) in the two populations will
affect the strength of the genetic correlation and G × E
interaction.
The size of the reference population is one key factor

in genomic prediction [4]. Combining populations is an
easy but practical way to improve the accuracy of gen-
omic prediction, and its advantages in practice have
been reported by EuroGenomics [8] and North Ameri-
can [2] consortiums. Similar results were shown in this

study, in which higher prediction accuracies were ob-
tained by the single-trait model for the combined popu-
lation than for the single populations in most situations
(Table 3), and such gains were greater for the population
with a small reference size; e.g., the prediction accuracy
in the combined population was 1.1% higher than that
in the single population for the growth trait BFT in the
Fujian population but only 0.3% higher in the Beijing
population, and the number of genotyped animals in the
Beijing population was much larger than that in the Fu-
jian population (Table 2), in accordance with the fea-
tures of other studies [5, 14]. However, in some
situations, accuracy was not increased or slightly de-
creased in the combined population; e.g., the prediction
accuracies for AGE in the Beijing population obtained
with ST-BayesC π _combined and ST-BayesC π _single
were 0.306 and 0.304, respectively (Table 4). Generally,
in this study, the single-trait model exhibited only a
slight gain in genomic prediction accuracy for most
traits when using the combined population. In addition,
the single-trait model produced more bias for the com-
bined population than for the single populations (Tables
3 and 4). The lower improvement or slight decrease in
the combined population compared with the expectation
could be due to the weak consistency in LD between
populations, as pointed out by Lund et al. [8].
Many studies have shown that inconsistent LD be-

tween SNPs and causative variants across populations
causes disadvantages compared with using a combined
population in genomic prediction [5, 6, 27, 28]. In this
study, the correlation of rLD values of adjacent SNPs
with a mean of 0.55 indicated the insufficient
consistency in LD between the Beijing and Fujian popu-
lations. Weak consistency in LD will lead to bias in SNP
effect estimates when populations are simply combined
with a single-trait model, further resulting in fewer im-
provements in accuracy and larger bias. Therefore, the
effect of increasing the consistency in LD or reducing its
noise on GEBVs is worth investigating. On the one
hand, the consistency in LD between populations could
be affected by the density of chip SNPs. De Roos et al.
[29] found that markers in LD with causative variants
across diverged breeds would require ~ 300,000 SNPs.
Hoze et al. [30] reported that 2% higher prediction ac-
curacies were acquired for combined small populations
of dairy cattle breeds when using the 777 K panel com-
pared to the 54 K panel, and our previous study showed
that imputed whole-genome sequencing data hold the
potential to increase the accuracy of genomic prediction
for combined populations in pigs [7].
On the other hand, reasonable models should be ex-

plored to take advantage of the correlation of LD be-
tween populations. The single-trait model ignores the
inconsistency in LD between populations, while the
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multi-trait model treats populations as different environ-
ments and uses covariance to consider the correlation be-
tween them, which is caused by the consistency (no
matter how high or low) in LD between populations. In
this study, the multi-trait model performed best in all sce-
narios (Tables 3 and 4). Similar results were obtained in a
Brazilian Holstein population by adding data from Nordic
and French Holstein populations and using a multi-trait
model [25]. In addition, our results also showed that less
bias was obtained with the multi-trait model compared to
the single-trait model, indicating that the multi-trait
model can not only use the combined information of pop-
ulations to increase prediction accuracy but also reduce
the impact of LD inconsistencies.
The multi-trait model and reaction norm model are two

prevalent methods for handling G × E interactions in gen-
etic evaluations. Only a few studies have explicated the ad-
vantages and disadvantages of these two kinds of
methods. Falconer et al. [9] reported that G × E interac-
tions could be detected using a multi-trait model, in which
the trait values in each environment are treated as genetic-
ally distinct traits. In a limited number of environments
(e.g., in this study, with two breeding farms), a multi-trait
model could capture the G × E interaction between these
environments. However, the computational demand of
multi-trait models will increase rapidly with an increase in
the number of environmental levels, as more (co)variance
components will have to be estimated and convergence
will become increasingly difficult. In contrast to the multi-
trait model, the reaction norm model can handle a large
number of or continuous environmental levels (e.g., farm,
year and seasonal effects), and genetic parameters could
be estimated at each environmental level [12]. However,
the reaction norm model captures only part of the G × E
interaction due to the limited number of environmental
levels. In this study, the genomic prediction accuracies
were not improved by using the reaction norm model with
farm, year and seasonal effects as environmental covariates
due to the limited number of environments (results not
shown). Therefore, the reaction norm model could not
perform well in a limited number of environments. In
addition, convergence of the reaction norm model could

be hindered because of the complexity of the model when
the data are less informative [11]. Therefore, a multi-trait
model is optimal for analyzing G × E interactions in a lim-
ited number of environments. Furthermore, the multi-
trait model is more convenient in practical breeding, and
it can accommodate phenotypes that are not measured in
exactly the same way, e.g., different scales of deregressed
proofs and the existence of G × E interactions in Chinese
and Nordic Holsteins [25, 31]. Such phenotypes cannot be
analyzed by a single-trait model for joint genomic predic-
tion, while the use of a multi-trait model is plausible in
such cases.
In this study, GBLUP and BayesC π, assuming a com-

mon (co)variance for all (GBLUP) or a proportion (BayesC
π) of the SNP effects, were used in this study. As many
studies have reported for real data [32, 33], the average
prediction accuracies were not significantly different be-
tween GBLUP and BayesC π in the single populations and
multi-trait model in this study (Fig. 3). However, BayesC π
performed worse than GBLUP for the combined popula-
tion, and no improvements in accuracy were obtained by
BayesC π for most traits compared to that obtained with a
single population. In addition, BayesC π produced a larger
bias (Table 4). Table 5 provides the standard error of the
marker effect estimated by BayesC π in single and com-
bined populations. The BayesC π method for the com-
bined population produced the largest standard error of
the marker effect in all situations, implying larger bias
when estimating genomic breeding values. A larger stand-
ard error for the marker effect might have been caused by
the inconsistency in LD between the Beijing and Fujian
populations. In contrast, the minimum standard error of
the marker effects estimated by the multi-trait BayesC π
model also indicated the superiority of multi-trait BayesC
π in genomic prediction. Multi-trait BayesC π was first
proposed by Jia and Jannink [34], with the restrictive as-
sumption that a locus simultaneously affects all the traits
or none of them. In this study, multi-trait BayesC π
allowed a locus to affect any combination of traits, which
is biologically realistic, especially in multi-trait analyses in-
volving many traits [21]. However, it might not be possible
to apply multi-trait single-step GBLUP (BayesC π) [35–

Table 5 Mean value of the standard error of marker effects estimated by the BayesC π method using all genotyped animals

Traitb Single-trait model Multi-
trait
model

Beijinga population Fujiana population Combined population

AGE 0.0062 0.0079 0.0093 0.0053

BFT 0.0050 0.0069 0.0096 0.0048

NBA 0.0039 0.0047 0.0050 0.0039

TNB 0.0042 0.0051 0.0054 0.0038
a Yorkshire pig populations from Beijing and Fujian with similar genetic backgrounds
b AGE: days to 100 kg; BFT: backfat thickness at 100 kg; NBA: number of piglets born alive; TNB: total number of piglets born
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37] in this study, as no pedigree link between the two pig
populations was available and the BayesC π method was
too computationally demanding.

Conclusions
G× E interactions constitute a potential source of ineffi-
ciency in animal breeding. Ignoring possible G × E inter-
actions could lead to a reduction in genetic gains. Our
results demonstrated that directly combining popula-
tions to enlarge the reference population is not efficient
in improving the accuracy of genomic prediction in the
presence of G × E interactions in two Yorkshire pig pop-
ulations, while the multi-trait model performed better in
a limited number of environments with weak G × E in-
teractions. This study will be helpful when leveraging
G × E interactions in practical genomic selection.
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