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Abstract

Background: Transformation of feed energy ingested by ruminants into milk is accompanied by energy losses via
fecal and urine excretions, fermentation gases and heat. Heat production may differ among dairy cows despite
comparable milk yield and body weight. Therefore, heat production can be considered an indicator of metabolic
efficiency and directly measured in respiration chambers. The latter is an accurate but time-consuming technique.
In contrast, milk Fourier transform mid-infrared (FTIR) spectroscopy is an inexpensive high-throughput method and
used to estimate different physiological traits in cows. Thus, this study aimed to develop a heat production
prediction model using heat production measurements in respiration chambers, milk FTIR spectra and milk yield
measurements from dairy cows.

Methods: Heat production was computed based on the animal’s consumed oxygen, and produced carbon dioxide
and methane in respiration chambers. Heat production data included 168 24-h-observations from 64 German
Holstein and 20 dual-purpose Simmental cows. Animals were milked twice daily at 07:00 and 16:30 h in the
respiration chambers. Milk yield was determined to predict heat production using a linear regression. Milk samples
were collected from each milking and FTIR spectra were obtained with MilkoScan FT 6000. The average or milk
yield-weighted average of the absorption spectra from the morning and afternoon milking were calculated to
obtain a computed spectrum. A total of 288 wavenumbers per spectrum and the corresponding milk yield were
used to develop the heat production model using partial least squares (PLS) regression.

Results: Measured heat production of studied animals ranged between 712 and 1470 kJ/kg BW0.75. The coefficient
of determination for the linear regression between milk yield and heat production was 0.46, whereas it was 0.23 for
the FTIR spectra-based PLS model. The PLS prediction model using weighted average spectra and milk yield
resulted in a cross-validation variance of 57% and a root mean square error of prediction of 86.5 kJ/kg BW0.75. The
ratio of performance to deviation (RPD) was 1.56.

Conclusion: The PLS model using weighted average FTIR spectra and milk yield has higher potential to predict
heat production of dairy cows than models applying FTIR spectra or milk yield only.
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Background
The conversion of feed energy (gross energy) ingested by
ruminants into human-edible food energy such as milk
and meat is accompanied by energy losses in form of
fecal and urine excretions, fermentation gases (e.g. me-
thane) and heat. For dairy cows, the proportion of feed
converted to milk is defined as feed conversion ratio
(FCR) which is only one of numerous measures of effi-
ciency. High-feed efficient cows were described to have
a better organic matter digestibility thus providing more
digestible energy relative to less efficient counterparts
[1]. Some fraction of the digestible energy is converted
into methane energy, and high feed conversion efficient
cows were found to loose less methane energy per kg
dry matter intake (DMI) than less efficient counterparts
[2]. The remaining energy fraction, called metabolizable
energy (ME) is used by the animal for maintenance and
production purposes. Recent findings suggested that the
use of ME and thus the post-absorptive metabolism ex-
erts a greater impact on feed efficiency of dairy cows
than the digestive performance [3]. First experimental
evidence was provided in a study by Derno et al. [4],
demonstrating that high compared to low metabolic effi-
cient dairy cows have a lower ME intake, while milk
yield did not differ between efficiency groups. During
the utilization of ME, heat is produced, whose level for
an adult dairy cow is primarily determined by energy re-
quirements for maintenance of the animal and energy
secreted in milk. As maintenance energy is not different
between cows differing in feed efficiency, it seems that
high metabolic efficient cows loose less heat during milk
production [4]. Besides, high genetic merit cows parti-
tion more ME into milk throughout different lactation
stages in comparison with their low genetic merit coun-
terparts [5]. As a noticeable difference of heat produc-
tion (HP) between individual cows has been described
[6], it seems likely that, at a comparable level of milk
yield, the level of HP can serve as an indicator of meta-
bolic efficiency.
The measurement of HP from ruminants can be per-

formed by indirect calorimetry. To this end, the daily
amount of oxygen (O2) consumption, carbon dioxide
(CO2) production and methane (CH4) emission along
with urinary nitrogen (Nu) excretion is measured in res-
piration chambers (RC) [7]. In spite of the accuracy of
measurement, RC are costly and working with them is
time-consuming and laborious. Therefore, the develop-
ment of other time and cost-beneficial approaches to
estimate HP of dairy cows is desirable.
Infrared spectroscopy is a high-throughput method

and its broad application in livestock sector became
more popular in the last few years. For the analysis of
milk components e.g., fat, protein, lactose and urea, Fou-
rier transform mid-infrared (FTIR) spectrometry has

been developed and refined, and nowadays is frequently
used routinely to control milk quality and energy [8]. Be-
sides, FTIR spectra can be used to analyze milk fatty acid
concentration and composition, which in turn have been
exploited as a proxy for estimating different physio-
logical traits such as energy balance [9] and CH4

emission [10]. Furthermore, FTIR spectra reflecting all
IR-absorbing milk constitute were used as indicators of
cow’s health, energy status, feed intake, and CH4 emis-
sion [11–14]. To our knowledge, no study has been con-
ducted yet to predict HP of dairy cows from milk FTIR
spectroscopy. Hence, the objective of the present study
was to examine if FTIR spectra as a measure of milk en-
ergy concentration together with milk yield as a measure
of quantity can be used to estimate HP of dairy cows as
determined by RC experiments.

Methods
Data collection
The obtained data for this study originated from four
different experimental projects, which have been con-
ducted at the Leibniz Institute for Farm Animal Biology
(FBN) in Dummerstorf, Germany (Additional file 1;
Table S1) between 2014 and 2019 (unpublished data).
Animal handling during all projects was carried out

according to the instructions for the use of animals as
experimental subjects of the State Government in
Mecklenburg-Western Pomerania. Experimental protocols
were confirmed by the local animal ethics committee
(Landesamt für Landwirtschaft, Lebensmittelsicherheit
und Fischerei Mecklenburg-Vorpommern). Animals were
transferred into RC with a gas recovery rate of 99.9% ±
0.96% and a light cycle of 06:00 to 19:00 h at 15 °C [15].
After 14 h gas equilibration, the gas exchange measure-
ments started at 07:00 h and lasted for two consecutive
days from which the daily mean was calculated. Cows had
free access to water and were fed twice per day at 07:00
and 15:30 h for ad libitum intake. Feed was offered as total
mixed ration during the measurement period and was
sampled for assessing dry matter and nutrient compos-
ition (Table 1). Feed analysis was conducted by Land-
wirtschaftliche Untersuchungs- und Forschungsanstalt
(LUFA) in Rostock, Germany.
The airflow through the chamber was roughly 30 m3

per hour and measured by a differential-pressure type V
cone flow meter (McCrometer, Hemet, CA). Concentra-
tions of CO2 and CH4 in the chamber were analyzed by
infrared-absorption and the concentration of O2 was an-
alyzed paramagnetically (SIDOR SICK AG, Waldkirch,
Germany) every 6 min. The body weight (BW) of the
animals was determined directly before and after the stay
in the RC to calculate the mean metabolic body weight
(mBW):
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mBW ¼ BW 0:75

Heat production was computed using the Brouwer [7]
equation based on the measurements of O2 consump-
tion and CO2 and CH4 production and normalized to
mBW:

HP=mBW kJ=kg0:75
� � ¼ ½16:18 VO2 Lð Þ þ 5:02VCO2

Lð Þ−2:17VCH4 Lð Þ−5:99Nu gð Þ�
=mBW kg0:75

� �

The Nu excretion was estimated to be 150 g/d based
on comparable diet compositions and feed intake levels
[16], thereby accepting an error of 1% in HP. The HP
and mBW data were acquired from 168 measurements
including multiple observations from 64 German
Holstein and 20 Fleckvieh (dual purpose Simmental)
cows. As repeated measurements on the same cow were
performed at different stages of lactation (e.g. early, mid
and late), diets or lactation numbers, each observation
was considered independent [17]. Cows were milked two
times per day at 07:00 and 16:30 h in the RC. Milk yield
was recorded, and a representative subsample of each
milking (n = 336) was collected and analyzed by the Milk
Testing Services North Rhine-Westphalia by a Fourier
Transform InfraRed spectrophotometer MilkoScan FT
6000 (Foss, Hillerød, Denmark) following the Inter-
national Standard Organization 9622 [18]. Spectra were
transformed to absorbance by the following equation:
absorbance = log (1/transmittance). Spectral outliers
were detected using a robust Mahalanobis distance test
as introduced by Todorov and Filzmoser [19]. This is a

multivariate approach using all generated latent variables
(PLS components) at once. Hardly any spectral outlier
was detected based on the outcome of the test. Each
FTIR milk spectrum encompassed 1060 infrared fre-
quencies (wavenumbers), in a range from 925 to 5008
cm− 1. From these, selected wavenumbers (n = 288) in-
cluding three spectral regions, 968–1577, 1720–1808,
and 2564–2965 cm− 1. The spectra regions were shown
to contain crucial information on different milk consti-
tutes [20]. The irrelevant FTIR spectra points, i.e. high
water absorptions and O–H bending [21], were removed
prior further analysis.

Heat production prediction model development and
validation
To analyze the predictive ability of milk yield alone on
HP, we first applied a univariate linear model using the
“lm” function in R [22], referred to as L1 model:

Y i ¼ μþ βiMilk yield þ εi

,where Yi is the HP of animal as response variable, ßi
is the regression coefficient, and εi is the random re-
sidual. Secondly, the FTIR spectra obtained from the
morning and afternoon milking were averaged to esti-
mate HP without considering milk yield (M1). In a third
approach, the average of two absorption spectra from
the evening and morning milking was calculated and
subsequently multiplied by the corresponding daily milk
yield (M2). Finally, the milk yield-weighted average of
the spectra was applied to, in which absorption spectra
from morning and afternoon milking were multiplied

Table 1 Ingredients, nutrient composition and energy content of the diets fed to the animals during the respiration chamber
experiments

Item Minimum Maximum Mean Median SD

Ingredients, g/kg of DM

Grass silage 500 915 692 680 81

Corn silage 238.0 452.5 360.0 375.0 93.3

Barley straw 42 423 214 259 93

Concentrate 4.6 27.9 17.7 17.8 3.4

Nutrient composition

DM, g/kg 353 941 529 388 235

NDFa, g/kg of DM 275 497 377 377 51

ADFb, g/kg of DM 146 254 197 197 23

Crude protein, g/kg of DM 122 171 152 155 13

Crude fat, g/kg of DM 24 33 30 30 2

Ash, g/kg of DM 38 135 71 69 19

MEc, MJ/kg of DM 8.5 11.6 10.3 10.5 0.7
aNeutral detergent fiber
bAcid detergent fiber
cMetabolizable energy
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with the respective milk yield of the morning and after-
noon milking (M3). Partial least squares (PLS) regression
is widely accepted as the preferred method to analyze
the potential relationship between the predictor, i.e.
spectral data, and the related physiological outcome
[23]. Therefore, the “pls” package [24] implemented in R
[22] was employed for M1, M2 and M3 in order to pre-
dict HP of cows from the computed milk FTIR spectra
and corresponding milk yield. The SIMPLS algorithm in
PLS analysis was utilized in order to generate the Latent
variables. The models were generated with or without
pre-processing of the computed spectra, i.e. any math-
ematical pre-treatments such as first and second deriva-
tives, of the spectral data. We could not detect any
significant improvement in either of the models after
spectra processing, therefore the mean and weighted
average raw spectra were used in this study. The evalu-
ation of the models was carried out by computing the
mean squared error of prediction (MSEP) based on the
formula:

MSEP ¼
Xn

i¼1
Oi − Pið Þ2 = n;

where n represents the total number of observations,
and Oi and Pi depict the observed and predicted HP, re-
spectively. The square root of the MSEP (RMSEP) indi-
cates the overall error of the prediction. We carried out
a random cross validation in order to observe the per-
formance of the developed prediction models with 10
splits and 10 iterations and the outcome was shown as
root mean squared error of cross validation (RMSECV)
and the coefficient of determination of cross validation
(R2CV). This approach allows the observations to be
utilized for both calibration and validation, hence each
observation used for validation exactly once. Both
RMSECV and R2CV values were the average of a 10-fold
cross validation [17]. Besides, an external 4-way cross-
validation was conducted where the data set was split
randomly into quarters and the PLS was run 4 times,
each time one quarter of data restored for validating the
model calibrated on the remaining quarters of the data.
The root mean squared error (RMSEV) and R2 of exter-
nal cross-validation (R2V) values were computed based
on the average of 4 iterations of the external cross-
validation. The optimal number of Latent variables (i.e.,
PLS components) for the prediction model was chosen
based on visual observation of the cross-validation
RMSE plot against the PLS factors and determining the
lowest RMSE.
The concordance correlation coefficient (CCC) was

computed using the “epiR” package implemented in R
[22]. The CCC analysis is the combination of both

precision and accuracy to assess the extent of deviation
of data from the line of perfect concordance [25].

Results and discussion
The descriptive analysis of the animal performance, daily
gas measurement and HP (kJ/kg BW0.75) is shown in
Table 2. The mean (± SD) BW and mBW of the animals
during the RC experiments were 692 (± 80) and 134.8 (±
11.7) kg, respectively. The average milk yield of the ani-
mals was 25.7 (± 10.3) L/d. The mean and standard de-
viation of HP normalized to mBW as determined from
RC experiments amounted to 1067.2 and 135.9 kJ/kg
BW0.75, respectively.
The three spectral regions retained (968–1577, 1720–

1808, and 2564–2965 cm− 1) for the prediction model
are those, which are typically used for quantifying milk
fat, protein as well as lactose contents. This was con-
firmed by the outcome of the loading value plot
(Additional file 2; Fig. S1), indicating bands in the
approximate regions around 970–1600, 1700–1800 and
2600–3000 cm− 1 to be most important for estimating
HP. The wavenumbers around 1175 cm− 1 stretching the
triacylglycerol ester C–O linkage, C=O stretching
(approx. 1750 cm− 1), and acyl chain C–H symmetric
and asymmetric stretching (2800–3000 cm− 1) are gener-
ally important to determine milk fat content [26]. The
amide I, II and III bands (1200–1700 cm− 1) are utilized
to assess milk protein content [27]. The bond between
carbon atom and hydroxyl group, C–OH (around 1080
cm− 1) can be used to evaluate carbohydrates such as lac-
tose [28]. The spectral width indicates the energy density
of milk but contains no quantitative information on the
energy secretion of an animal. Hence, the retained milk
FTIR spectra in this study were multiplied by the corre-
sponding daily milk yield prior to the model develop-
ment. This procedure has been applied also by others,
computing the daily energy secreted in milk by multiply-
ing daily milk yield with the equivalent energy of major
milk constitutes [29]. A relation between multiple traits
originating from milk constitutes e.g. milk fatty acid
compositions and milk-to-protein ratio estimated from
FTIR spectral data, and energy balance in dairy cattle
were postulated [30, 31]. Based on this knowledge, we
expected to find an evident correlation between the
selected spectra regions, depicting aforementioned milk
components and the level of HP of dairy cows.
The linear model L1 resulted in the coefficient of de-

termination of 0.46. The M1 prediction model, without
consideration of milk yield, resulted in a RMSEP value
of 99.9 kJ/kg BW0.75 and a R2 value of 0.23 (Table 3).
The cross-validation of the M1 model yielded a
RMSECV and R2CV value of 86.7 kJ/kg BW0.75 and 0.25,
respectively. The RMSEV and R2CV values of the exter-
nal validation of M1 were 114.1 kJ/kg BW0.75 and 0.18,
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respectively. The PLS prediction model M2, involving
the average of the morning and afternoon spectra as well
as milk yield, resulted in a RMSEP and R2 of 93.2 kJ/kg
BW0.75 and 0.52, respectively (Table 3). For the cross-
validation of the latter model, the RMSECV and R2CV
values were 89.4 kJ/kg BW0.75 and 0.55, respectively, and
for the external validation 84.0 kJ/kg BW0.75 and 0.48,
respectively. The results for the prediction model M3,
considering the weighted average milk spectra and milk
yield, were even slightly better with a RMSEP and R2 of
91.2 kJ/kg BW0.75 and 0.54, respectively (Table 3). The
cross-validation of the M3 model resulted in RMSECV
and R2CV of 86.5 kJ/kg BW0.75 and 0.57, respectively.
However, the external validation approach of the M3
model showed RMSEV and R2 values of 95.5 kJ/kg
BW0.75 and 0.47, respectively. These results show that
the involvement of FTIR spectra improves the prediction
accuracy of HP as compared to the L1 model consider-
ing milk yield only.
The predicted against observed and residuals versus

predicted HP of the FTIR spectra- and milk yield-based
estimation models M2 and M3 are shown in Fig. 1a and

b and Fig. 2a and b, respectively. Based on the results
obtained it can be concluded that including milk yield
into the prediction model improves the accuracy for es-
timating HP relative to the prediction which is based on
FTIR spectra only (M1). McParland et al. stated that
adding milk yield to the FTIR spectra-based model in-
creased the prediction accuracy for body energy status
in dairy cows [12]. Moreover, Shetty et al. [32] showed
that including milk yield improved the overall perform-
ance of the CH4 estimation model than utilizing FTIR
wavenumbers only. These earlier findings agree with our
results showing that applying milk yield in the final
transformation of the spectra as a factor slightly im-
proved the performance of models than using milk yield
as a predictor variable. Furthermore, previous studies in-
dicated that the use of milk yield-weighted average com-
pared to the average of FTIR spectra is more biologically
relevant [14, 33]. However, the negligible differences of
R2 between calibration and validation (< 10%) between
M2 and M3 show the fair robustness of both prediction
models. The concordance correlation coefficient (CCC)
analysis pinpointed a substantial predictive ability of our

Table 2 Descriptive analysis of animal performance, gas exchange measurements and computed heat production (n = 168)

Item Minimum Maximum Mean Median SD

Animal performance

BW, kg 500 915 692 680 80

mBWa, kg0.75 105.7 166.4 134.8 133.3 11.7

Lactation number 1.0 10 2.9 3.0 1.6

Days in milk, d 42.0 423.0 213.5 259.0 92.8

DMI, kg/d 4.6 27.9 17.7 17.8 3.4

Milk yield, L/d 5.2 51.4 25.7 24.0 10.3

Gas exchange measurements

O2, L 4686 9238 6786 6740 720

CO2, L 4615 9313 7072 7099 908

CH4, L 299 792 570 579 81

Heat production, kJ/kg BW0.75 712 1469 1067 1068 136
aMetabolic bodyweight (mBW = BW075)

Table 3 The statistics of partial least square regression approach for the milk Fourier transform mid-infrared spectrometry-based
estimation model for heat production of dairy cows

Trait Prediction
model

Calibration LVc Cross Validation External Validation

R2 RMSEPb R2CV RMSECVd R2V RMSEVe

Heat production, kJ/kg BW0.75 M1a 0.23 99.9 14 0.25 86.7 0.18 114.1

M2a 0.52 93.2 4 0.55 89.4 0.48 84.0

M3a 0.54 91.2 5 0.57 86.5 0.47 95.5
aModel M1 was developed using the averaged morning and afternoon spectral data. The prediction model M2 was developed by averaging the morning and
afternoon spectral data and subsequent multiplication with daily milk yield. The prediction model M3 was computed by weighted averaging, where each morning
or afternoon absorption spectra was multiplied to the respective milk yield
bThe square root of the mean squared error of prediction
cLatent variables; i.e. the partial least square regression components for the prediction model
dRoot mean squared error of cross validation
eRoot mean squared error of external validation
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FTIR-based models (CCC of 0.67 and 0.71 for M2 and
M3 models, respectively) [34]. Although both M2 and
M3 models showed overall similar performances, M3 in-
dicated a marginally better outcome. Nevertheless, the
predicted mid infrared spectra-based model explained
only 57% of the variation of dairy cows HP. Previous
studies have exploited the PLS approach to develop milk
FTIR-based models for estimating other traits such as
CH4 emission or body energy status, yet clear disparities
between model performances can be observed [17, 32,
35–37]. A recent work demonstrated a milk FTIR
spectra-based CH4 production estimation model using

observations obtained from a non-invasive CH4 meas-
urement approach using the sniffer method [32]. Despite
the efforts from these authors to increase the robustness
of the model e.g., by conducting an external validation
using independent observations, the prediction accuracy
for CH4 production from milk FTIR wavenumbers re-
sulted in a R2 of validation of 0.13 only [32]. van Gaste-
len et al. [17] determined the possibility to use milk
FTIR as a proxy for CH4 emission in dairy cows by gen-
erating a prediction PLS model for CH4 measurements
acquired from RC experiments. Their prediction model
showed a R2CV of 0.30 for CH4 production [17], which

Fig. 1 Predicted against observed measurements (a) and residual against predicted measurements (b) applying the milk Fourier transform mid-
infrared spectrometry partial least square (PLS) regression model M2 predicting heat production (HP) of dairy cattle in respiration chamber.
Prediction model M2 was developed by averaging the morning and afternoon spectral data and multiply to the milk yield at the day of sampling

Fig. 2 Predicted against observed measurements (a) and residual against predicted measurements (b) applying the milk Fourier transform mid-
infrared spectrometry partial least square (PLS) regression model M3 predicting heat production (HP) of dairy cattle in respiration chamber.
Prediction model M3 was computed by weighted averaging the morning and afternoon milk spectral data, in which each morning or afternoon
absorption spectra was multiplied to the respective milk yield and subsequently the average spectrum was computed
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is lower than the R2CV of our present models, particu-
larly M2 and M3 models. On the other hand, Smith
et al. [37] collected over 11,500 records from 1101
Holstein Friesian cows to generate a mid-infrared
spectra-based regression model for energy balance of
dairy cows. The predictive ability of the model revealed
R2 of internal and external cross-validation of 0.77 and
0.60, respectively [37], which are higher than the R2

values of our models. Vanlierde et al. [36] collated the
total number of 584 reference data from CH4 measure-
ments executed in RC of different European cattle re-
search centers, including different breeds and feeding
managements. The predictive ability of the model for
CH4 emission indicated R2 of calibration and cross-
validation of 0.65 and 0.57, respectively [36], which are
similar to the R2 values of FTIR-based models of this
work. The modest R2 values obtained from the present
estimation models call for a need to enlarge the current
data set, but this can only be achieved in future studies.
Besides, CH4 production is only one component of HP,
and the variation of O2 consumption and CO2 produc-
tion as further variables of HP certainly contribute to
the lower R2 as well. Another explanation may be that
we considered multiple measurements on the same ani-
mal as independent due to changes in diet or physio-
logical state. On the other hand it has been shown that
the R2 value is improved when repeated CH4 emission
measurements i.e., recorded during a 7-day measure-
ment period, were incorporated in the prediction model
[14, 33]. There are general concerns on applying FTIR
spectroscopy as a prediction tool for physiological traits
of cows, which cannot be overseen. Van Gastelen and
Dijkstra [38] reported on the inability of FTIR spectros-
copy to detect various lower abundant milk fatty acids,
which indeed are important for the prediction of CH4

production from milk fatty acids analyzed by gas-
chromatography. The same limitation might be applic-
able for the HP estimation in the present study, as
spectra wavenumbers associated with milk fat content is
apparently among the important regions for predicting
HP level of dairy cows.
The coefficient of determination greatly relies on the

range and variability of the observations. Despite consid-
ering observations from experiments containing different
dietary compositions and quite a range of DMI, BW and
milk yield, the current FTIR-based models seem still not
to have covered the high-enough variability to reach a
higher rate of HP predicting accuracy. The higher pre-
dictive ability of models generated by Dehareng et al.
[14] and Vanlierde et al. [33] with R2CV of 0.68–0.79
and 0.77, respectively, is likely due to the wide range of
CH4 measurements, which were between 218–653 g/d
and 180–950 g/d, respectively. A recent study combined
the CH4 production data obtained from RC and the

sulphur hexafluoride (SF6) tracer technique, thereby en-
larging the dataset to 1089 observations from 299 cows,
and thus the variability of CH4 production (286–546 g/
d) [39]. The PLS model from this study indicated better
prediction accuracy in comparison with our model (R2

of validation of 0.64 vs. 0.57), again underscoring the
need of more data sets for improving the HP prediction
model in future.
We also determined the applicability of our models by

analyzing the ratio of performance to deviation (RPD).
The RPD value is based on the relation between the
standard error of prediction to the standard deviation of
the referenced observation, in which the higher RPD
values pinpoints the more suitability of the model for
future screening, quality control as well as any other ap-
plications [40]. The prediction models developed herein
yielded a relatively small RPD value of 1.51 and 1.56 for
M2 and M3, respectively, which were, however, higher
than the one established by van Gastelen et al. [17] for
estimating CH4 production (RPD = 1.19). Conversely, the
RPD of our models was lower than the FTIR-based
model by Dehareng et al., who reported a RPD of 2.19
[14]. Different classifications of model performance have
been proposed based on RPD values, in which models
with RPD higher than 2.5 or 3.0 are considered as feas-
ible for screening programs [40, 41]. Nonetheless,
Williams [40] acknowledged the difficulties to reach
RPD of 3.0 or higher due to different factors associated
with infrared spectroscopy technique e.g., sample pres-
entation to the instrument and low variance in the sam-
ple set. The RPD value obtained in the present study
reveals that the applicability of the FTIR-based models
for predicting HP is currently not good enough as it
does not provide accurate classification from a cohort
with small HP differences [17]. It is important to men-
tion that the RPD value also relies on the range of vari-
ability of the observations. Hence, the observations
incorporated within this work seem to lack sufficient
variation range in order to result in a model with higher
RPD value. Extending the range of variation e.g., by
implementing more different feeding regimens, cattle
genotypes, dietary treatments, etc., could potentially
increase the RPD value.

Conclusion
The current work was the first to show the potential use
of milk FTIR spectra to predict HP of dairy cows. The
outcome of this study, at least at preliminary stages, re-
vealed that milk FTIR spectra together with milk yield
can potentially be used to identify dairy cows with differ-
ent HP and thus feed efficiency levels. Selection for ani-
mals that utilize feed more efficiently would be ideal for
dairy managers in order to benefit the financial returns.
The FTIR-based models were robust with evident
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predictive ability; however, they can only describe a
moderate part of the observed HP variations. The applic-
ability of the prediction models remained relatively poor,
which implies the need to enlarge the current data set.
Future work exploiting higher number of observations
from a wider range of breeds and feeding regimens
seems warranted in order to further ameliorate the
quality of the model.
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