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Abstract

Over the last 100 years, significant advances have been made in the characterisation of milk composition for dairy
cattle improvement programs. Technological progress has enabled a shift from labour intensive, on-farm collection
and processing of samples that assess yield and fat levels in milk, to large-scale processing of samples through
centralised laboratories, with the scope extended to include quantification of other traits. Fourier-transform mid-
infrared (FT-MIR) spectroscopy has had a significant role in the transformation of milk composition phenotyping,
with spectral-based predictions of major milk components already being widely used in milk payment and animal
evaluation systems globally. Increasingly, there is interest in analysing the individual FT-MIR wavenumbers, and in
utilising the FT-MIR data to predict other novel traits of importance to breeding programs. This includes traits
related to the nutritional value of milk, the processability of milk into products such as cheese, and traits relevant to
animal health and the environment. The ability to successfully incorporate these traits into breeding programs is
dependent on the heritability of the FT-MIR predicted traits, and the genetic correlations between the FT-MIR
predicted and actual trait values. Linking FT-MIR predicted traits to the underlying mutations responsible for their
variation can be difficult because the phenotypic expression of these traits are a function of a diverse range of
molecular and biological mechanisms that can obscure their genetic basis. The individual FT-MIR wavenumbers
give insights into the chemical composition of milk and provide an additional layer of granularity that may assist
with establishing causal links between the genome and observed phenotypes. Additionally, there are other
molecular phenotypes such as those related to the metabolome, chromatin accessibility, and RNA editing that
could improve our understanding of the underlying biological systems controlling traits of interest. Here we review
topics of importance to phenotyping and genetic applications of FT-MIR spectra datasets, and discuss opportunities
for consolidating FT-MIR datasets with other genomic and molecular data sources to improve future dairy cattle
breeding programs.
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Introduction
Characterisation of milk composition in dairy cattle has
a long history of scientific and commercial interest, with
many countries establishing formal milk testing pro-
grams by the early 1900’s [1, 2]. Initial selection targets
in these programs were yields of milk or fat, which were
measured on a small scale from samples taken manually
on farm. Over the course of the twentieth century, ad-
vances in refrigeration and transportation technologies,
and the availability of automated on-farm milk meters,
resulted in a shift to large-scale collection of samples,
processed through centralised laboratories, with the
scope extended to include quantification of traits such
as protein yield and somatic cell counts. More recently,
advances in analytical techniques have led to the wide-
spread use of Fourier-transform mid-infrared (FT-MIR)
spectroscopy for phenotyping major milk composition
traits for dairy improvement programs.
Fourier-transform mid-infrared spectroscopy uses light
from the mid-infrared region to scan milk samples and
determine the presence of specific chemical bonds. Results
are presented as an absorption profile, consisting of the
absorbance values for individual infrared light wavenum-
bers across the mid-infrared region. Traits are predicted
as a function of the individual FT-MIR wavenumber ab-
sorbances, enabling rapid, high-throughput phenotyping
of milk traits such as fat and protein yields, at a fraction of
the cost of estimating the components using other
methods. Increasingly, there is interest in analysing the in-
dividual FT-MIR wavenumbers, and in utilising FT-MIR
data to predict other novel traits of interest to the indus-
try, because the spectra are already available as a by-
product of routine milk testing. Many of these traits are
relevant to consumer expectations and concerns about the
nutritional quality of milk, and the impact of dairy pro-
duction systems on animal health and the environment;
and are also relevant to farmers as they seek to improve
farming systems and select cows based on their productiv-
ity, reproductive performance and disease resistance.
Successful phenotyping using FT-MIR data is dependent
on the magnitude of the phenotypic correlation between
the predicted trait and the trait as measured by a bench-
marked standard reference method. The successful in-
corporation of a FT-MIR predicted trait into a breeding
program is further dependent on the heritability of the
spectral-based predictions and on the genetic correlation
between the spectral-based predictions and the trait as
measured by the benchmarked standard [3, 4]. Improving
our understanding of the genetics underlying the expres-
sion of FT-MIR predicted traits of interest is thus highly
valuable. Conducting a genome wide association study
(GWAS) is a widely used practice for identifying genomic
regions that are influencing expression of complex traits,
such as those predicted from FT-MIR data. However,
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linking complex traits, such as those predicted from FT-
MIR spectra to specific genetic mechanisms is complex, as
the phenotypic expression of traits are a function of a di-
verse range of molecular and biological mechanisms [5]
that can obscure the underlying causal links between ge-
notypes and phenotypes. These mechanisms may be char-
acterised as a set of intermediate omics measures,
including sugars, lipids and amino acids in the metabo-
lome, proteins in the proteome, RNA molecules in the
transcriptome and DNA in the genome, all of which inter-
act with environmental factors to ultimately determine
what is observed at the phenotypic level (Fig. 1).
Establishing causal links between the genome and
observed phenotypes may be assisted by employing the
individual FT-MIR wavenumbers, and other molecular
phenotypes such as those related to the metabolome,
chromatin accessibility, transcript levels, and RNA edit-
ing. Here we review the shifting role of FT-MIR datasets
in dairy cattle improvement as we seek to predict new
traits of importance to milk payment and animal evalu-
ation systems. We discuss the broader topics of improv-
ing FT-MIR data quality and prediction model accuracy
in phenotyping applications; and review existing studies
of the genetics of FT-MIR predicted traits and individual
FT-MIR wavenumbers. We also discuss opportunities
for consolidating FT-MIR spectra datasets with other
genomic and molecular data sources, to improve our
knowledge of the genetic mechanisms of milk compos-
ition and enhance future dairy improvement programs.

Phenotyping applications of FT-MIR spectra

Fourier-transform mid-infrared spectroscopy uses infra-
red light to scan a milk sample and determine the pres-
ence of specific chemical bonds. As the light passes
through the sample, it interacts with the molecules
present, causing vibrations and rotational changes in the
molecular bonds, resulting in absorption of some of the
light. The light absorption is typically represented as an
absorption spectrum, consisting of the absorbance values
for individual infrared light wavenumbers across the
mid-infrared range. Traits of interest are subsequently
predicted as a function of the individual FT-MIR wave-
number absorbances. Utilising FT-MIR data for the pre-
diction of milk composition and other novel traits has
been widely studied and recently reviewed [3, 4, 6, 7].
Other notable FT-MIR research includes studies of indi-
vidual fatty acids and milk proteins [8, 9], and studies of
milk properties related to manufacturing, especially co-
agulation and other cheese-making properties [10-12].
Further studies have focussed on traits not directly
measurable in milk, including those related to pregnancy
[13, 14], energy status [15, 16], nitrogen outputs [17]
and methane emissions [18—20]. Such applications dem-
onstrate that FT-MIR spectra can be used to predict a
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Fig. 1 Characterisation of the relationships between molecular and biological mechanisms underlying phenotypic trait expression

wide range of traits, including highly topical traits that
are important to animal welfare and the environment.
Whilst prediction accuracy is variable across these appli-
cations, a number of key principles and findings have
been reported for improving spectra data quality and
model prediction accuracy.

FT-MIR data quality and prediction model accuracy

Trait prediction using FT-MIR spectra requires develop-
ment of a calibration model, typically using a modest set
of samples that have corresponding trait values, mea-
sured by a benchmarked technique. The most widely
used method for developing calibration models from
FT-MIR spectra has been partial least squares (PLS) re-
gression. Fewer studies have employed Bayesian methods
to develop calibration models [13, 21, 22], but no con-
sensus has been attained as to which methodology is
best at providing prediction accuracy [21-23]. This is
likely due to the unique set of characteristics of each
dataset, and indicates that it is advisable to assess a
number of different modelling approaches for any given
study. Once a calibration model is developed, the trait of
interest can be estimated for any existing spectral

absorbance data, or any future milk sample where the
FT-MIR spectra data is available. The performance of a
FT-MIR calibration model is assessed by how well the
model predicts the benchmarked trait measurements in
an independent dataset, or within the development data-
set using a cross-validation framework. The utility and
accuracy of trait predictions from FT-MIR spectra can
often be improved by increasing the number of observa-
tions used to develop the calibration equation, and by
ensuring that a similar extent of the variation in the pre-
diction population is represented in the calibration data-
set [24—27]. Prediction accuracy may also be improved
by modifying the scale of the trait. For example, higher
prediction accuracies have been reported when evaluat-
ing fatty acids as a percentage of total milk volume,
compared to as a percentage of total fat content [24, 28,
29]. Similar considerations are important for studies of
the concentrations of individual casein and whey pro-
teins [28, 30-33]; and in studies related to cheese-
making efficiency [28, 34—36]. Other considerations that
influence prediction accuracy include: pre-processing
treatments to address scaling and baseline effects in
spectra data; appropriate management of outliers; low
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repeatability of sample measurement for specific regions
of the infrared spectrum affected by the water content in
milk; and managing systematic instrument variation due
to factors such as temperature fluctuations and wave-
length or detector intensity instability [37].

Pre-processing

Pre-processing treatments are commonly applied to FT-
MIR spectra before generating a calibration model. The
objective of pre-processing is to retain important dis-
criminatory features of the spectra, but address baseline
and scaling effects caused by light scattering, that can
erode prediction accuracy. Baseline effects are additive
and represent a baseline offset in the spectral response,
whereas scaling effects are multiplicative and scale the
spectral results by a given factor. One common group of
methods for pre-processing are the multiplicative scatter
methods [38, 39]. Multiplicative scatter correction is a
normalization method that corrects spectra for scaling
and baseline effects by comparing each spectrum to an
expected spectral profile. Another family of techniques
are the derivation methods, such as the Savitzky-Golay
derivative [40]. Derivation methods are based on
changes in the spectrum across specified window sizes,
and are intended to smooth the spectrum whilst retain-
ing key features of its shape.

Overall, there is no consensus about the best pre-
processing treatment to apply to FT-MIR spectra. For
example, some studies report that pre-processing spectra
provides no significant gains to model prediction accur-
acy [35, 36], whilst others observe better predictions
after pre-processing [27, 41], and several studies report
mixed results [30, 33]. This is likely because of the
unique characteristics of each dataset, indicating that in
the development of a new calibration, it is advisable to
compare a number of approaches to determine their ef-
fectiveness. Notably, even when different pre-processing
strategies are examined in a study, authors often only re-
port the best model, making it difficult to compare the
effectiveness of other pre-processing strategies [3].

Outlier removal and removal of low signal-to-noise regions
of the MIR spectrum

Outliers in FT-MIR datasets are often identified using a
Mahalanobis distance (MD) metric, where the MD is a
multivariate indicator of the distance between a spectral
record and the average spectral response. Many studies
are based on spectra from a single instrument, and are
therefore not required to account for the different
variance-covariance structures of measurements from
different instruments. In a study of spectra from 66 in-
struments, Grelet et al. [42] showed considerable vari-
ability in the spectral responses of the instruments,
while we have also observed that the distribution of MD
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values can be heterogeneous across instruments [43].
These results highlight the need to apply MD thresholds
within instrument for the purpose of outlier removal.

Bands of the infrared spectrum with low repeatability of
sample measurement due to the water content in milk are
typically reported in the O—H bending (~ 1600 to 1700
cm™Y) and O-H stretching bands (>~ 3000 cm™ D). These
regions have low signal-to-noise ratios, with varying
boundaries reported across publications: 1600 to 1700
cm™ " and 3040 to 3470 cm™ ' [30]; 1586 to 1698 cm™ " and
3052 to 3669 cm™ ' [44]; 1600 to 1689 cm™ ' and 3008 to
5010 cm™ ! [42]. Although it is common practice to re-
move spectra from low signal-to-noise ratio regions, some
studies indicate that there may be wavenumbers within
these regions that carry valuable information. For ex-
ample, Wang et al. [45, 46] identified wavenumbers in
these regions that are affected by a polymorphism in the
DGATI gene, and Toledo-Alvarado et al. [13] identified a
significant association between the 3683 cm™ ' wavenum-
ber and pregnancy status. More generally, Bittante and
Cecchinato [44] showed that the transmittance of individ-
ual spectra wavenumbers had moderate to high heritabil-
ity across most of the mid-infrared region and highlighted
that absorbance peaks for non-water milk components
were present in low signal-to-noise ratio regions and
should be considered for investigation. The findings of
these studies indicate that a prudent approach to removal
of wavenumbers in low signal-to-noise ratio regions
should be taken, retaining spectra from all regions in
applications where the wavenumbers are considered
independently, but removing them in applications
where wavenumbers are considered in a multivariate
manner [43].

Managing systematic instrument variation

The instrument calibration approach outlined by Lynch
et al. [47] has been widely used to standardize instrument
predictions for major milk composition traits and reduce
the impact of systematic variation between and within in-
struments across time. With this approach, a small set of
reference samples are analysed through the instrument,
where the reference samples have also been measured for
traits of interest using benchmarked standards, such as the
Rose-Gottlieb method for fat determination and the Kjel-
dahl method for protein determination. For these samples,
unadjusted trait predictions are made from the spectra data,
and instrument-specific correction coefficients are evalu-
ated by comparing the unadjusted predictions to the mea-
sured trait values according to the benchmarked standard.
A limitation of this approach is that it can only be used to
adjust predictions for traits with pre-evaluated correction
coefficients. More recent standardisation strategies have in-
stead proposed calibrating the individual wavenumbers [42,
43, 48, 49], allowing the correction of any trait predicted as
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a function of the spectral wavenumbers. Studies have
shown that standardising individual wavenumbers can ef-
fectively reduce prediction errors when transferring calibra-
tion models between instruments for fat composition traits
[42, 48], as well as for calibration models for traits that are
more difficult to predict reliably such as methane emissions
and cheese yield [49].

Tiplady et al. [43] showed that the most consistent
standardisation approach for reducing prediction errors
relies on analysing identical reference samples across all
instruments, as outlined by Grelet et al. [42]. Ideally, glo-
bal reference sample sharing would be established, facili-
tating standardisation across instruments in different
countries. That would enable the consolidation of spec-
tral data collected on different instruments, and improve
accuracy when applying calibration models developed on
one instrument to spectral data collected on other in-
struments. Global reference sample sharing, however, is
reliant on resolving issues related to sample preserva-
tion, and on adherence to the bio-security legislation of
different countries. Instrument manufacturers such as
Foss (Hillerad, Denmark) and Bentley (Chaska, MN)
have started to offer alternative standardisation proce-
dures. The Foss procedure uses a liquid equaliser with a
known spectral response to adjust spectral results [50],
whereas the Bentley procedure uses a polystyrene film to
adjust for interferometer laser frequency shifts across
time [51], and infrared flow cell information to adjust
for shifts in absorbance measurement [52]. While these
within-instrument standardisation procedures offer
promise for automatic spectral standardisation, there
have been no independent studies to validate their ef-
fectiveness for standardisation of milk samples collected
across or within networks.

The genetics of FT-MIR predicted traits

Predictions of major milk composition traits from FT-
MIR spectra are already widely incorporated into dairy
improvement programs. Other FT-MIR predicted traits
that could be of interest to industry improvement pro-
grams include milk fatty acids and protein fractions, and
traits that form proxy indicators for milk processability
properties, and animal health and environmental
outcomes. The accuracy of FT-MIR predictions is an im-
portant indicator of their utility, but for breeding pur-
poses, the critical parameters are the extent of genetic
variation in the benchmarked trait, the heritability of the
FT-MIR predictions, and the genetic correlations be-
tween the FT-MIR predictions and the benchmarked
trait.

Milk fatty acid and protein composition traits
Heritability estimates for FT-MIR predicted individual
and grouped fatty acids, and their genetic correlations
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with gas chromatography (GC) based measurements are
shown in Table 1. Where available, standard errors are
shown in brackets. For individual milk fatty acids, herit-
ability estimates ranged from 0.05 to 0.54 [9, 53, 54].
Heritability estimates for grouped fatty acids ranged
from 0.11 to 0.51 [9, 55-57], with the lowest heritability
estimates reported by Hein et al. [55]. In the studies by
Fleming et al. [56] and Narayana et al. [57], heritability
estimates were consistently higher for saturated fat and
short- and medium-chain fatty acid groups, compared to
unsaturated fat and long-chain fatty acid groups. Rutten
et al. [54] was the only study to report genetic correla-
tions between the FT-MIR predicted and GC-based fatty
acids. These genetic correlations were high, ranging
from 0.82 to 0.99.

Fewer studies exist of the genetic parameter estimates
of FT-MIR predicted individual milk proteins. Sanchez
et al. [58] reported moderate to high heritability esti-
mates (0.25 to 0.72) for a number of FT-MIR predicted
milk protein contents/fractions (not shown), with espe-
cially high estimates for B-lactoglobulin (0.61 to 0.86).
Moderate heritability estimates for FT-MIR predicted
lactoferrin, ranging from 0.16 to 0.22 have also been re-
ported [59-61]. These studies quantify the useful extent
of genetic variation in FT-MIR predicted fatty acids and
individual milk proteins, and suggest that these pre-
dicted traits could be incorporated into cattle improve-
ment programs to change the fatty acid profile and the
protein composition of bovine milk.

Milk processability traits

Heritability estimates and genetic correlations between
measured and FT-MIR predicted milk processability
traits are shown in Table 2. Where available, standard
errors are shown in brackets. For coagulation traits, her-
itability estimates ranged from 0.16 to 0.43 [62—64]. Cec-
chinato et al. [63] was the only study reporting genetic
correlations between FT-MIR predicted and measured
coagulation traits (not shown). Those ranged from 0.91
to 0.96 for rennet coagulation time (RCT), and from
0.71 to 0.87 for curd firmness after 30 min (as,). Herit-
ability estimates for FT-MIR predicted minerals ranged
from 0.32 to 0.56, with phosphorus having the highest
estimated heritability, and sodium having the lowest esti-
mated heritability in both studies presented [64, 65].
Heritability estimates for nutrient recovery traits were
typically higher than for cheese yield traits [66, 67]. Bit-
tante et al. [66] was the only study reporting genetic cor-
relations between FT-MIR predicted and measured
cheese yield and nutrient recovery traits. These ranged
from 0.76 to 0.98 for cheese yield traits, and from 0.79
to 0.98 for nutrient recovery traits. Overall, these studies
show that many FT-MIR predicted processability traits
are heritable, and that sufficient variation exists to use
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Table 1 Heritability estimates for FT-MIR predicted fatty acids (h?), and their genetic correlations (r,) with GC-based? fatty acids

Individual fatty acids® Lopez-Villalobos et al. [9]

Soyeurt et al. [53]

Rutten et al. [54]

h? (SE) h? (SE) h? (SE) r, (SE)
C40 038 (0.03) - 042 (0.09) 0.94 (0.03)
C6:0 0.32 (0.03) - 0.35 (0.09) 0.97 (0.02)
80 0.29 (0.03) - 0.38 (0.09) 0.99 (0.01)
C10:0 0.17 (0.02) - 046 (0.10) 0.98 (0.01)
C10:1 0.30 (0.02) - - -
€120 0.16 (0.02) 0.29 (0.02) 054 (0.11) 0.97 (0.02)
c12:1 41 (0.03) - - -
C14:0 0.19 (0.02) 0.31 (0.03) 0.50 (0.10) 0.99 (0.01)
C14:1 0.27 (0.01) - - -
C15:0 0.22 (0.02) - - -
c16:0 0.29 (0.02) 0.38 (0.02) 0.30 (0.09) 0.86 (0.07)
161 030 (0.02) - - -
C17.0 41 (0.03) - - -
c17: 0.14 (0.02) - - -
C180 0.26 (0.02) 030 (0.02) 052 (0.10) 0.82 (0.08)
c181 043 (0.03) 0.05 (0.01) - -
C18:1 cis-9 0.22 (0.02) - 0.25 (0.08) 0.93 (0.05)
C18:1 trans-11 0.27 (0.03) - - -
C18:2 cis-9, cis-12 045 (0.03) 020 (0.02) - -
C18:2 cis-9, trans-11 1 (0.03) - - -
€200 038 (0.03) - - -
C20:1 cis-11 0.37 (0.03) - - -
C22:0 0.35 (0.03) - - -

c

Grouped fatty acids Lopez-Villalobos et al. [9]

h? (SE) h?
SCFA 039 (0.03) 0.16
MCFA 030 (0.03) 0.12
LCFA 050 (0.03) 0.11
SFA 046 (0.03) 0.15
UFA 048 (0.03) -
PUFA 042 (0.03) -

Hein et al. [55]

Fleming et al. [56] Narayana et al. [57]

h? h

042 024
050 032
026 023
051 033
026 021

2GC-based Gas chromatography based.
PAIl fatty acids expressed as a % of the total fatty acids.

°SCFA Short-chain fatty acids, MCFA Medium-chain fatty acids, LCFA Long-chain fatty acids, SFA Saturated fatty acids, UFA Unsaturated fatty acids, PUFA

Polyunsaturated fatty acids.

FT-MIR predicted traits to change milk processing and
cheese-making characteristics in cattle improvement
programs.

Animal health traits

Health and fertility traits are valuable targets for breed-
ing programs and selection for these traits would be
considerably enhanced if they could be reliably predicted
from FT-MIR. A recent review by Bastin et al. [68]
across a wide range of FT-MIR predicted traits related

to fertility, mastitis, ketosis and other disease traits
highlighted that more research is required to understand
the relationships between health and fertility indicators
and FT-MIR predicted traits, and to estimate the genetic
parameters of these traits. Since then, Belay et al. [69]
have reported moderate heritability estimates for FT-
MIR predicted blood B-hydroxybutyrate (BHB), ranging
from 0.25 to 0.37 across different stages of lactation, and
moderate genetic correlations between clinical ketosis
and the FT-MIR predicted BHB (0.47). More research is
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Table 2 Heritability estimates of FT-MIR predicted milk processability traits (h%), and their genetic correlations (r,) with measured

traits
Trait® Visentin et al. [62] Cecchinato et al. [63] Costa et al. [64] Sanchez et al. [65]
h? (SE) h? range® (SE h? (SE) h? (SE)
Coagulation traits
RCT, min 0.28 (0.01) 0.30-0.34 (0.08) 0.35 (0.05) -
koo, Min 043 (0.02) - 043 (0.03) -
asg, MM 036 (0.02) 0.22-0.27 (0.07) 039 (0.03) -
3o, MM 0.27 (0.01) - - -
HCT, min 0.16 (0.01) - - -
CMS, nm 031 (0.02) - - -
Acidity
pH, units 0.27 (0.01) - - 0.37 (0.01)
Minerals, mg/kg milk
Calcium - - 045 (0.02) 0.50 (0.01)
Phosphorus - - 0.53 (0.03) 0.56 (0.01)
Magnesium - - 047 (0.03) 0.52 (0.01)
Potassium - - 045 (0.03) 0.53 (0.01)
Sodium - - 0.38 (0.03) 0.32 (0.01)
Sanchez et al. [65] Bittante et al. [66] Cecchinato et al. [67]
h? (SE) h? (SE) Iy h? range®
Cheese vyield, %
CYcurp 0.38 (0.01) 0.21 (0.09) 097 0.18-0.33
CYsoLps 039 (0.01) 022 (0.08) 0.98 0.18-0.28
CYwaTer - 0.18 (0.05) 0.76 0.14-0.29
Nutrient recovery, %
RECproTeIN - 044 (0.09) 0.88 0.32-041
RECeat - 0.28 (0.07) 0.79 0.15-0.33
RECeneray - 0.21 (0.07) 0.96 0.19-0.30
RECsoLips - 0.24 (0.08) 0.98 0.17-0.29

?RCT Rennet coagulation time; ko = curd-firming time; aso = curd firmness after 30 min; ago = curd firmness after 60 min; HCT = heat coagulation time; CMS = casein
micelle size; CY: weight of fresh curd, curd solids, and curd as a percentage of weight of milk processed; REC: protein, fat, energy and solids of the curd as a

percentage of the protein, fat, energy and solids of the milk processed.

PRange of estimates from 4 subsets of data used to validate calibration equations.

“Range of estimates from 3 different breeds.

required in this area to realise the value that FT-MIR
spectra might add to animal health breeding goals.

Environment traits

Despite increasing interest in FT-MIR predictions of en-
vironmental traits related to methane (CH,) and nitro-
gen outputs from dairy systems, there have been few
reports of the genetic parameter estimates of these FT-
MIR predicted traits, or of the genetic correlations be-
tween measured and FT-MIR predicted trait values.
Kandel et al. [70] report moderate heritability estimates,
ranging from 0.22 to 0.25 for predicted daily CH, emis-
sion and 0.17 to 0.18 for log-transformed predicted
CH, intensity. There is, therefore, some potential for

the future incorporation of FT-MIR predicted me-
thane traits into breeding programs. However, there
are still issues to be resolved to address uncertainties
and discrepancies in methane datasets and measure-
ment methods, and to improve the accuracy and ro-
bustness of prediction equations to make them
applicable across a broader range of production
systems and environments [19, 20, 71, 72].

Milk urea nitrogen (MUN) concentrations are rou-
tinely predicted using FT-MIR spectroscopy [4], how-
ever, there are few studies of the genetic parameters of
FT-MIR predicted MUN and its relationship with other
production traits. Amongst those studies, moderate to
high heritability estimates, ranging from 0.38 to 0.59
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were reported by Wood et al. [73] and Miglior et al.
[74], with lower estimates of 0.22 and 0.14 reported in
studies by Mitchell et al. [75] and Stoop et al. [76], re-
spectively. Mitchell et al. [75] was the only study report-
ing genetic correlations between wet-chemistry direct
measurements of MUN and FT-MIR predicted MUN,
which were 0.38 and 0.23 in lactations 1 and 2, respect-
ively. These genetic correlations are significantly lower
than those reported for fatty acids (0.82 to 0.99) [54]
and milk processability traits (0.76 to 0.98) [66], and in-
dicate that wet-chemistry measurements of MUN and
FT-MIR predicted MUN are genetically different traits.
Large differences in heritability estimates across studies
of FT-MIR predicted MUN indicate that there may be
underlying instability in prediction equations. This high-
lights the importance of developing prediction models
that are robust across different breeds and production
systems. Research is ongoing to determine the role that
FT-MIR predicted MUN could have in reducing nitro-
gen outputs from dairy systems.

The genetics of individual FT-MIR wavenumbers

In contrast to the prevalence of studies reporting genetic
parameter estimates of FT-MIR predicted traits, there are
relatively few studies reporting genetic parameter esti-
mates for the individual spectral wavenumbers. Neverthe-
less, the transmittance of FT-MIR spectra wavenumbers is
moderately to highly heritable across a large proportion of
the mid-infrared region [44, 45, 77-79]. Although herit-
ability estimates were consistently low in water absorption
regions across all studies, estimates > 0.2 were reported
across most of the mid-infrared region in studies by
Soyeurt et al. [77] and Wang et al. [45]. This indicates that
genetic gain may be obtained by directly selecting on a lin-
ear function of estimated breeding values (EBV) for indi-
vidual FT-MIR wavenumbers; rather than indirect
selection as currently practised on EBV of composite indi-
cator traits, like fat yield, which are linear functions indi-
vidual FT-MIR wavenumber absorbances. Recent studies
have confirmed this, showing that the accuracies of breed-
ing value predictions estimated directly from FT-MIR
spectra can be higher than for breeding value predictions
estimated indirectly from the FT-MIR predicted compos-
ite traits [80—82]. Estimating breeding values directly from
FT-MIR spectra requires that spectral data is routinely
stored, rather than just the spectral based predictions of
milk components, and that has not historically been the
case in most dairy nations.

GWAS of individual FT-MIR wavenumbers

Many GWAS have been published in the last decade for
FT-MIR predicted major milk production traits [83—87],
and for fatty acid and protein fractions [88-92]. How-

ever, only two studies report GWAS results for
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individual FT-MIR wavenumbers. In a study of 1748
Dutch Holsteins across 50,688 SNP, Wang & Bovenhuis
[46] conducted a GWAS on a subset of 50 wavenum-
bers, selected using a clustering approach to capture
more than 95% of the phenotypic variation. In that
study, significant associations between individual wave-
numbers and over 20 genomic regions were identified.
While most of these genomic regions had already been
reported for having significant associations with other
milk production traits, three new regions were identified.
In a larger study of 5202 Holstein, Jersey and crossbred
cows across 626,777 SNP, Benedet et al. [93] used a PLS
approach to associate genotypes to spectral data, and
showed that FT-MIR spectra could be used to increase
the power of a GWAS, and assist with distinguishing
milk composition QTL. The studies by Wang & Boven-
huis [46] and Benedet et al. [93] both demonstrate that
there are genetic signals in the individual FT-MIR wave-
numbers that we do not observe in the currently-used
portfolio of composite FT-MIR predicted traits. This
confirms that the individual FT-MIR wavenumbers can
provide an additional layer of granularity to assist with
establishing causal links between the genome and ob-
served phenotypes. Notably, both studies use relatively
low numbers of animals compared to recent GWAS
published for other traits, and applying these method-
ologies to larger datasets, with higher genotype densities,
promises to increase the power of these approaches.
This should enable the discovery of QTL with smaller
effect sizes in addition to novel QTL characterised by
lower minor allele frequencies than those QTL discov-
ered with datasets numbering only thousands of animals.

Computational challenges

Over the last two decades, the scope of genomic re-
sources available for GWAS has increased, both in terms
of the number of genotyped individuals, and in terms of
variant density. Developing strategies for managing
GWAS on large numbers of densely genotyped individ-
uals is an active area of research, as we look to generate
new, more efficient algorithms that will enable the pro-
cessing of these datasets within acceptable timeframes
and computational limits of RAM and CPU. The im-
portance of efficient algorithms is further highlighted
when we conduct GWAS across large numbers of FT-
MIR predicted traits and the individual FT-MIR wave-
numbers. Existing mixed-linear model-based methods
for conducting GWAS, such as GCTA-MLMA [94] pri-
marily run in O (mn?) or O (m*n) time per trait, where
m is the number of variants and # is the number of ani-
mals. These models become prohibitively slow as the
numbers of genotyped individuals and variants increase
[95]. The ever-increasing cohort sizes of densely-
genotyped individuals frequently requires subsampling



Tiplady et al. Journal of Animal Science and Biotechnology

to use these methods within acceptable computation
constraints. This has spurred the development of faster,
more memory-efficient algorithms and software. One
software package, Bolt-LMM [95, 96] runs in approxi-
mately O (mn'®) time; however, it makes assumptions
that are valid only for larger sample sizes. Recent ver-
sions are capable of running the entire UK biobank data
set (n=459k) in a few days on a single computational
node [96]. Another algorithm, fastGWA [97], available
as a recent enhancement of the GCTA software package,
provides further reductions in algorithmic complexity,
running in approximately O (mn) time. These improve-
ments mean that it is capable of running n =400k UK
biobank samples in around 20 min, compared to 22 h for
BOLT-LMM on the same hardware. Developments such
as this make GWAS across sizeable populations with
large numbers of FT-MIR phenotypes feasible.

Consolidating FT-MIR spectra with other omics data
sources for QTL mapping

After conducting a GWAS, it is useful to identify the
candidate genes and mutations underlying genomic loci
with signal for a trait of interest. This can aid marker-
assisted selection and improve our understanding of the
biological pathways regulating the trait. Moreover, it has
been shown that genomic prediction can be improved
by including variants close to the causative mutations
[98]. Software such as Ensembl’s Variant Effect Predictor
[99] is commonly used to identify candidate causal vari-
ants that have protein-coding or loss-of-function effects,
with the expectation that these variants are more likely
to impact the trait than other variants. However, recent
studies in both humans [100, 101] and dairy cattle [86,
102] have highlighted the prevalence of QTL under-
pinned by expression-based mechanisms, and demon-
strate that the majority of variance for at least some
traits can be explained by non-coding variants located in
regulatory elements. These variants are typically identi-
fied by considering the expression levels of genes as phe-
notypes, and using these data for genetic mapping
studies in an approach known as expression QTL
(eQTL) analysis.

Expression-based phenotypes

Assuming a causality chain hypothesis, as illustrated in
Fig. 1, observation of an eQTL, co-located with a QTL
for an FT-MIR predicted trait can inform on the mech-
anism of the trait of interest. This methodology can also
be used to identify mechanisms underlying QTL ob-
served for individual FT-MIR wavenumbers. A strong
correlation between the variant effects for the two QTL
(expression and FT-MIR related) suggest a shared
underlying genetic architecture regulating both, while a
weak correlation suggests that the two QTL, though co-
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located, do not co-segregate, and therefore represent dis-
tinct genetic signals with different causal variants.

Similar to eQTL analysis, a range of additional omics
data sources can be used for QTL mapping, and the
resulting QTL could be applied to identify causative
genes for FT-MIR predicted traits and individual FT-
MIR wavenumbers. The factors yielding these omics
data sources can occur before or after mRNA transcrip-
tion. Factors acting before transcription, such as DNA
methylation and chromatin accessibility, can help un-
ravel causative regulatory variants by highlighting
actively-transcribed regions of the genome, and the vari-
ants that sit within them. One of these factors is chro-
matin accessibility. Transcriptionally active genes, as
well as active regulatory elements (such as enhancers),
are found in regions of open chromatin (euchromatin);
whereas inactive regions of the genome are typically
much more densely compacted into a structure known
as heterochromatin. Genome features found in eu-
chromatin are therefore more accessible to transcription
factors and other factors involved in gene expression,
and so are more likely to influence traits of interest com-
pared to factors located in inactive regions. Methods to
assay chromatin accessibility include ChIP-seq [103],
DNase-seq [104], and ATAC-seq [105].

Other factors acting during or after transcription
provide intermediate phenotypes that can aid in un-
derstanding the underlying biological control of these
traits [106]. One such factor is RNA-editing, i.e. dir-
ect enzymatic conversion of bases within the mRNA
transcripts, with the most common form of editing in
vertebrates being the conversion of adenosine nucleo-
tides into inosine [107]. Biologically, RNA editing is
involved in protection against dsRNA viruses [108]
and in adaptation to different environmental condi-
tions [109], and therefore has potential relevance to
variation in animal health and in providing for animal
adaptability to changing environments. RNA-editing
QTL (edQTL) were initially identified in Drosophila
[110], followed soon after by mice [111] and humans
[112]. Recently, edQTL were reported for the first
time within the bovine mammary gland [113], and
subsequently used to characterise candidate causative
genes underlying a milk yield QTL at the CSF2RB/
NCF4 locus [114]. That study highlighted the manner
in which intermediate molecular phenotypes can be
used to investigate mechanisms underlying FT-MIR
predicted trait QTL, and exemplifies how other simi-
larly novel molecular phenotypes can be applied.

Metabolomics

Absorbance levels at individual FT-MIR wavenumbers
provide insights into the presence of particular chemical
bonds in the sample and accordingly provide information



Tiplady et al. Journal of Animal Science and Biotechnology

as to the chemical composition of a milk sample. Analysing
the chemical composition of a sample in more detail, using
methodologies such as nuclear magnetic resonance (NMR)
spectroscopy or mass spectroscopy (MS), yields the metab-
olome, ie, a more complete set of all small molecules
present in a tissue sample. Metabolomics can provide de-
tailed information about enzymatic activity in the pathways
that exist between gene expression and FT-MIR predicted
traits, providing a near-terminal link in the chain of causal-
ity. For example, rumen volatile fatty acid (VFA) levels can
provide information on measuring and controlling methane
production [115]. Levels of VFAs in the rumen could there-
fore provide a proxy measurement for methane production.
Identifying QTL that underlie variation in the concentra-
tions of these metabolites could complement genetic signals
identified using FT-MIR wavenumbers and FT-MIR based
methane trait predictions, and facilitate selection of low-
methane emitting animals.

Conclusions

Over the last 100 years, milk composition phenotyping for
dairy cattle has evolved from manual on-farm methods for
determining yield and fat levels in milk, to high-tech ana-
lysis at centralised laboratories, with many novel FT-MIR
predicted traits now being considered for incorporation
into improvement programs. Multiple studies have demon-
strated that the accuracy of FT-MIR predictions are
strongly influenced by how well the variation in the predic-
tion population is represented in the calibration population.
Trait prediction accuracy is also strongly affected by how
well instrument-specific measurement differences are
accounted for, particularly when transferring calibration
equations developed on one instrument to spectra collected
on other instruments. Utilising FT-MIR data to generate
proxies for novel traits has grown in popularity, however,
compared to FT-MIR predictions of major milk compo-
nents, there are relatively few studies of the genetics of
other FT-MIR predicted traits, and even fewer of the genet-
ics of the individual wavenumbers. This is despite the indi-
vidual wavenumbers exhibiting additional genetic signal
that is often not observed in FT-MIR predictions of major
milk composition traits. Integrating results from GWAS ap-
plied to FT-MIR predicted traits and GWAS applied to in-
dividual wavenumbers with other molecular datasets could
improve our understanding of the underlying biological sys-
tems controlling traits of interest. However, integration of
these data sources also brings computational challenges
due to the size and complexity of the datasets involved. Re-
solving the challenges of effectively integrating FT-MIR
datasets with other omics data sources will require a mix of
both bioinformatics and molecular biology approaches.
Successfully consolidating these approaches promises to
improve our knowledge of milk composition and enable
the future enhancement of animal breeding programmes.

(2020) 11:39

Page 10 of 13

Abbreviations

ase: Curd firmness after 30 min; ag: Curd firmness after 60 min; BHB: Beta-
hydroxybutyrate; CH,: Methane; CMS: Casein micelle size; CY: Curd vyield;
EBV: Estimated breeding value; edQTL: RNA-editing QTL; eQTL: Expression
quantitative trait loci; FT-MIR: Fourier-transform mid-infrared; GC: Gas
chromatography; GWAS: Genome wide association study; HCT: Heat
coagulation time; kyo: Curd-firming time; LCFA: Long-chain fatty acids;
MCFA: Medium-chain fatty acids; MD: Mahalanobis distance; MS: Mass
spectroscopy; MUN: Milk urea nitrogen; NMR: Nuclear magnetic resonance;
PLS: Partial least squares; PUFA: Polyunsaturated fatty acids; RCT: Rennet
coagulation time; REC: Nutrient recovery; SCFA: Short-chain fatty acids;
SFA: Saturated fatty acids; UFA: Unsaturated fatty acids; VFA: Volatile fatty
acid

Acknowledgements

We acknowledge staff in the Research & Development group of Livestock
Improvement Corporation (LIC; Hamilton, NZ) and fellow students based at
the Massey University, AL Rae campus (Hamilton, NZ) for their support
throughout the time of writing this manuscript. The authors would also like
to thank the reviewers for their constructive feedback, which helped to
significantly improve the manuscript.

Authors’ contributions

KT. and T.L. wrote the main manuscript text. M.L. and D.G. provided design
input and critical evaluation, and contributed to the main manuscript text.
All authors have read and approved the final manuscript.

Funding

This research was funded by Livestock Improvement Corporation (LIC) and
the New Zealand Ministry for Primary Industries, through the Sustainable
Food & Fibre Futures programme.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests

KT, T. L and M. L are employees of Livestock Improvement Corporation
(Hamilton, NZ), a commercial milk testing and animal breeding company.
KT.is a PhD candidate in the School of Agriculture and Environment at
Massey University (AL Rae Centre, Hamilton, NZ). M.L. is an Adjunct Professor
at Massey University. D.G. is the Chief Scientist and Director at the AL Rae
Centre (Hamilton, NZ) and a Professor of Animal Breeding and Genetics
(Massey University). The authors declare that they have no competing
interests in the publication of this manuscript.

Received: 3 December 2019 Accepted: 9 March 2020
Published online: 17 April 2020

References

1. Bayly C. 100 years of herd testing. Newstead, Hamilton, NZ: Livestock
Improvement Corporation Ltd; 2009.

2. Miglior F, Fleming A, Malchiodi F, Brito LF, Martin P, Baes CF. A 100-year
review: identification and genetic selection of economically important traits
in dairy cattle. J Dairy Sci. 2017;100(12):10251-71.

3. De Marchi M, Toffanin V, Cassandro M, Penasa M. Invited review: mid-
infrared spectroscopy as phenotyping tool for milk traits. J Dairy Sci. 2014;
97(3):1171-86.

4. Gengler N, Soyeurt H, Dehareng F, Bastin C, Colinet F, Hammami H, et al.
Capitalizing on fine milk composition for breeding and management of
dairy cows. J Dairy Sci. 2016;99(5):4071-9.

5. Te Pas MFW, Madsen O, Calus MPL, Smits MA. The importance of
Endophenotypes to evaluate the relationship between genotype and
external phenotype. Int J Mol Sci. 2017;18(2):472.



Tiplady et al. Journal of Animal Science and Biotechnology

20.

22.

23.

24.

25.

De Marchi M, Penasa M, Zidi A, Manuelian CL. Invited review: use of infrared
technologies for the assessment of dairy products—applications and
perspectives. J Dairy Sci. 2018;101(12):10589-604.

Egger-Danner C, Cole JB, Pryce JE, Gengler N, Heringstad B, Bradley A, et al.
Invited review: overview of new traits and phenotyping strategies in dairy
cattle with a focus on functional traits. Animal. 2015;9(2):191-207.

Bonfatti V, Vicario D, Lugo A, Carnier P. Genetic parameters of measures and
population-wide infrared predictions of 92 traits describing the fine
composition and technological properties of milk in Italian Simmental
cattle. J Dairy Sci. 2017;100(7):5526-40.

Lopez-Villalobos N, Spelman RJ, Melis J, Davis SR, Berry SD, Lehnert K, et al.
Estimation of genetic and crossbreeding parameters of fatty acid
concentrations in milk fat predicted by mid-infrared spectroscopy in New
Zealand dairy cattle. J Dairy Res. 2014;81(3):340-9.

Toffanin V, De Marchi M, Lopez-Villalobos N, Cassandro M. Effectiveness of
mid-infrared spectroscopy for prediction of the contents of calcium and
phosphorus, and titratable acidity of milk and their relationship with milk
quality and coagulation properties. Int Dairy J. 2015;41:68-73.

Visentin G, McDermott A, McParland S, Berry DP, Kenny OA, Brodkorb
A, et al. Prediction of bovine milk technological traits from mid-infrared
spectroscopy analysis in dairy cows. J Dairy Sci. 2015;98(9):6620-9.
Visentin G, Penasa M, Niero G, Cassandro M, Marchi MD. Phenotypic
characterisation of major mineral composition predicted by mid-infrared
spectroscopy in cow milk. Ital J Anim Sci. 2018;17(3):549-56.
Toledo-Alvarado H, Vazquez Al, de los CG, Tempelman RJ, Bittante G.
Cecchinato a. diagnosing pregnancy status using infrared spectra and milk
composition in dairy cows. J Dairy Sci. 2018;101(3):2496-505.

Lainé A, Bastin C, Grelet C, Hammami H, Colinet FG, Dale LM, et al.
Assessing the effect of pregnancy stage on milk composition of dairy cows
using mid-infrared spectra. J Dairy Sci. 2017;100(4):2863-76.

McParland S, Kennedy E, Lewis E, Moore SG, McCarthy B, O'Donovan M,

et al. Genetic parameters of dairy cow energy intake and body energy
status predicted using mid-infrared spectrometry of milk. J Dairy Sci. 2015;
98(2):1310-20.

Luke TDW, Rochfort S, Wales WJ, Bonfatti V, Marett L, Pryce JE. Metabolic
profiling of early-lactation dairy cows using milk mid-infrared spectra. J
Dairy Sci. 2019;102(2):1747-60.

Oliveira MCPP, Silva NMA, Bastos LPF, Fonseca LM, Cerqueira MMOP, Leite MO,
et al. Fourier transform infrared spectroscopy (FTIR) for MUN analysis in normal
and adulterated Milk. Arg Bras Med Veterindria E Zootec. 2012,64(5):1360-6.
Bittante G, Cipolat-Gotet C. Direct and indirect predictions of enteric
methane daily production, yield, and intensity per unit of milk and cheese,
from fatty acids and milk Fourier-transform infrared spectra. J Dairy Sci.
2018;101(8):7219-35.

van Gastelen S, Mollenhorst H, Antunes-Fernandes EC, Hettinga KA, van
Burgsteden GG, Dijkstra J, et al. Predicting enteric methane emission of dairy
cows with milk Fourier-transform infrared spectra and gas chromatography-
based milk fatty acid profiles. J Dairy Sci. 2018;101(6):5582-98.

Vanlierde A, Soyeurt H, Gengler N, Colinet FG, Froidmont E, Kreuzer M, et al.
Short communication: development of an equation for estimating methane
emissions of dairy cows from milk Fourier transform mid-infrared spectra by
using reference data obtained exclusively from respiration chambers. J Dairy
Sci. 2018;101(8):7618-24.

Ferragina A, de los Campos G, Vazquez Al, Cecchinato A, Bittante G.
Bayesian regression models outperform partial least squares methods for
predicting milk components and technological properties using infrared
spectral data. J Dairy Sci. 2015;98(11):8133-51.

El Jabri M, Sanchez M-P, Trossat P, Laithier C, Wolf V, Grosperrin P, et al.
Comparison of Bayesian and partial least squares regression methods for
mid-infrared prediction of cheese-making properties in Montbéliarde cows.
J Dairy Sci. 2019;102(8):6943-58.

Bonfatti V, Tiezzi F, Miglior F, Carnier P. Comparison of Bayesian regression
models and partial least squares regression for the development of infrared
prediction equations. J Dairy Sci. 2017;100(9):7306-19.

Rutten MJM, Bovenhuis H, Hettinga KA, van Valenberg HJF, van Arendonk
JAM. Predicting bovine milk fat composition using infrared spectroscopy
based on milk samples collected in winter and summer. J Dairy Sci. 2009;
92(12):6202-9.

McParland S, Banos G, Wall E, Coffey MP, Soyeurt H, Veerkamp RF, et al. The
use of mid-infrared spectrometry to predict body energy status of Holstein
cows. J Dairy Sci. 2011,94(7):3651-61.

(2020) 11:39

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

45.
46.
47.

48.

49.

50.

Page 11 of 13

McParland S, Banos G, McCarthy B, Lewis E, Coffey MP, O'Neill B, et al.
Validation of mid-infrared spectrometry in milk for predicting body energy
status in Holstein-Friesian cows. J Dairy Sci. 2012;95(12):7225-35.

Soyeurt H, Dehareng F, Gengler N, McParland S, Wall E, Berry DP, et al. Mid-
infrared prediction of bovine milk fatty acids across multiple breeds,
production systems, and countries. J Dairy Sci. 2011;94(4):1657-67.

Bonfatti V, Degano L, Menegoz A, Carnier P. Short communication: mid-
infrared spectroscopy prediction of fine milk composition and technological
properties in Italian Simmental. J Dairy Sci. 2016;,99(10):8216-21.

Soyeurt H, Dardenne P, Dehareng F, Lognay G, Veselko D, Marlier M, et al.
Estimating fatty acid content in cow milk using mid-infrared spectrometry. J
Dairy Sci. 2006;89(9):3690-5.

Bonfatti V, Di Martino G, Carnier P. Effectiveness of mid-infrared
spectroscopy for the prediction of detailed protein composition and
contents of protein genetic variants of individual milk of Simmental cows. J
Dairy Sci. 2011;94(12):5776-85.

De Marchi M, Bonfatti V, Cecchinato A, Di Martino G, Carnier P. Prediction of
protein composition of individual cow milk using mid-infrared
spectroscopy. Ital J Anim Sci. 2009,8(sup2):399-401.

McDermott A, Visentin G, De Marchi M, Berry DP, Fenelon MA, O'Connor
PM, et al. Prediction of individual milk proteins including free amino acids
in bovine milk using mid-infrared spectroscopy and their correlations with
milk processing characteristics. J Dairy Sci. 2016,99(4):3171-82.

Rutten MJM, Bovenhuis H, Heck JML, van Arendonk JAM. Predicting bovine
milk protein composition based on Fourier transform infrared spectra. J
Dairy Sci. 2011,94(11):5683-90.

Dal Zotto R, De Marchi M, Cecchinato A, Penasa M, Cassandro M, Carnier P,
et al. Reproducibility and repeatability of measures of Milk coagulation
properties and predictive ability of mid-infrared reflectance spectroscopy. J
Dairy Sci. 2008,91(10):4103-12.

De Marchi M, Fagan CC, O'Donnell CP, Cecchinato A, Zotto RD, Cassandro
M, et al. Prediction of coagulation properties, titratable acidity, and pH of
bovine milk using mid-infrared spectroscopy. J Dairy Sci. 2009;92(1):423-32.
De Marchi M, Toffanin V, Cassandro M, Penasa M. Prediction of coagulating
and noncoagulating milk samples using mid-infrared spectroscopy. J Dairy
Sci. 2013,96(7):4707-15.

Wang Y, Veltkamp DJ, Kowalski BR. Multivariate instrument standardization.
Anal Chem. 1991;63(23):2750-6.

Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for
near-infrared reflectance spectra of meat. Appl Spectrosc. 1985;39(3):491-500.
Martens H, Nielsen JP, Engelsen SB. Light scattering and light absorbance
separated by extended multiplicative signal correction. Application to near-
infrared transmission analysis of powder mixtures. Anal Chem. 2003;75(3):394-404.
Abraham S, Golay MJE. Smoothing and differentiation of data by simplified
least squares procedures. Anal Chem. 1964;36(8):1627-39.

De Marchi M, Penasa M, Cecchinato A, Mele M, Secchiari P, Bittante G.
Effectiveness of mid-infrared spectroscopy to predict fatty acid composition
of Brown Swiss bovine milk. Animal. 2011;5(10):1653-8.

Grelet C, Pierna JAF, Dardenne P, Baeten V, Dehareng F. Standardization of
milk mid-infrared spectra from a European dairy network. J Dairy Sci. 2015;
98(4):2150-60.

Tiplady KM, Sherlock RG, Littlejohn MD, Pryce JE, Davis SR, Garrick DJ, et al.
Strategies for noise reduction and standardization of milk mid-infrared
spectra from dairy cattle. J Dairy Sci. 2019;102(7):6357-72.

Bittante G, Cecchinato A. Genetic analysis of the Fourier-transform infrared
spectra of bovine milk with emphasis on individual wavelengths related to
specific chemical bonds. J Dairy Sci. 2013;96(9):5991-6006.

Wang Q, Hulzebosch A, Bovenhuis H. Genetic and environmental variation
in bovine milk infrared spectra. J Dairy Sci. 2016,99(8):6793-803.

Wang Q, Bovenhuis H. Genome-wide association study for milk infrared
wavenumbers. J Dairy Sci. 2018;101(3):2260-72.

Lynch JM, Barbano DM, Schweisthal M, Fleming JR. Precalibration evaluation
procedures for mid-infrared Milk analyzers. J Dairy Sci. 2006;89(7):2761-74.
Bonfatti V, Fleming A, Koeck A, Miglior F. Standardization of milk infrared
spectra for the retroactive application of calibration models. J Dairy Sci.
2017;100(3):2032-41.

Grelet C, Pierna JAF, Dardenne P, Soyeurt H, Vanlierde A, Colinet F, et al.
Standardization of milk mid-infrared spectrometers for the transfer and use
of multiple models. J Dairy Sci. 2017;100(10):7910-21.

Winning H, Mulawa KM, Selberg T. Standardization of FT-IR instruments.
White Paper from Foss A/S. 2014;1(1).7.



Tiplady et al. Journal of Animal Science and Biotechnology

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Gupta D, Wang L, Hanssen LM, Hsia JJ, Datla RU. Standard reference
materials: Polystyrene films for calibrating the wavelength scale of
infraredspectrophotometers - SRM 1921. Boulder (CO): US. Department of
Commerce; 1995. Report No.: NIST spec publ. 260-122.

Parsons C, Lyder H inventors; Bentley Instruments Inc, assignee.
Determining a size of cell of a transmission spectroscopy device. United
States patent US 9,829,378. 2017.

Soyeurt H, Gillon A, Vanderick S, Mayeres P, Bertozzi C, Gengler N.
Estimation of heritability and genetic correlations for the major fatty acids in
bovine milk. J Dairy Sci. 2007,90(9):4435-42.

Rutten MJM, Bovenhuis H, van Arendonk JAM. The effect of the number of
observations used for Fourier transform infrared model calibration for
bovine milk fat composition on the estimated genetic parameters of the
predicted data. J Dairy Sci. 2010,93(10):4872-82.

Hein L, Serensen LP, Kargo M, Buitenhuis AJ. Genetic analysis of predicted
fatty acid profiles of milk from Danish Holstein and Danish Jersey cattle
populations. J Dairy Sci. 2018;101(3):2148-57.

Fleming A, Schenkel FS, Malchiodi F, Ali RA, Mallard B, Sargolzaei M, et al.
Genetic correlations of mid-infrared-predicted milk fatty acid groups with
milk production traits. J Dairy Sci. 2018;101(5):4295-306.

Narayana SG, Schenkel FS, Fleming A, Koeck A, Malchiodi F, Jamrozik J, et al.
Genetic analysis of groups of mid-infrared predicted fatty acids in milk. J
Dairy Sci. 2017;100(6):4731-44.

Sanchez MP, Ferrand M, Gelé M, Pourchet D, Miranda G, Martin P,

et al. Short communication: genetic parameters for milk protein
composition predicted using mid-infrared spectroscopy in the French
Montbéliarde, Normande, and Holstein dairy cattle breeds. J Dairy Sci.
2017;100(8):6371-5.

Soyeurt H, Colinet FG, Arnould VM-R, Dardenne P, Bertozzi C, Renaville R,
et al. Genetic variability of lactoferrin content estimated by mid-infrared
spectrometry in bovine milk. J Dairy Sci. 2007,90(9):4443-50.

Arnould VM-R, Soyeurt H, Gengler N, Colinet FG, Georges MV, Bertozzi C,

et al. Genetic analysis of lactoferrin content in bovine milk. J Dairy Sci. 2009;
92(5):2151-8.

Lopez-Villalobos N, Davis SR, Beattie EM, Melis J, Berry S, Holroyd SE, et al.
Breed effects for lactoferrin concentration determined by Fourier transform
infrared spectroscopy. Proc N Z Soc Anim Prod. 2009;69:60-4.

Visentin G, McParland S, De Marchi M, McDermott A, Fenelon MA, Penasa
M, et al. Processing characteristics of dairy cow milk are moderately
heritable. J Dairy Sci. 2017;100(8):6343-55.

Cecchinato A, Marchi MD, Gallo L, Bittante G, Carnier P. Mid-infrared
spectroscopy predictions as indicator traits in breeding programs for
enhanced coagulation properties of milk. J Dairy Sci. 2009;,92(10):
5304-13.

Costa A, Visentin G, Marchi MD, Cassandro M, Penasa M. Genetic
relationships of lactose and freezing point with minerals and coagulation
traits predicted from milk mid-infrared spectra in Holstein cows. J Dairy Sci.
2019;102(8):7217-25.

Sanchez MP, El Jabri M, Minéry S, Wolf V, Beuvier E, Laithier C, et al. Genetic
parameters for cheese-making properties and milk composition predicted
from mid-infrared spectra in a large data set of Montbéliarde cows. J Dairy
Sci. 2018;101(11):10048-61.

Bittante G, Ferragina A, Cipolat-Gotet C, Cecchinato A. Comparison between
genetic parameters of cheese yield and nutrient recovery or whey loss traits
measured from individual model cheese-making methods or predicted
from unprocessed bovine milk samples using Fourier-transform infrared
spectroscopy. J Dairy Sci. 2014,97(10):6560-72.

Cecchinato A, Albera A, Cipolat-Gotet C, Ferragina A, Bittante G. Genetic
parameters of cheese yield and curd nutrient recovery or whey loss traits
predicted using Fourier-transform infrared spectroscopy of samples
collected during milk recording on Holstein, Brown Swiss, and Simmental
dairy cows. J Dairy Sci. 2015;98(7):4914-27.

Bastin C, Théron L, Lainé A, Gengler N. On the role of mid-infrared
predicted phenotypes in fertility and health dairy breeding programs. J
Dairy Sci. 2016;,99(5):4080-94.

Belay TK, Svendsen M, Kowalski ZM, Adnay T. Genetic parameters of blood
B-hydroxybutyrate predicted from milk infrared spectra and clinical ketosis,
and their associations with milk production traits in Norwegian red cows. J
Dairy Sci. 2017;100(8):6298-311.

Kandel PB, Vanrobays M-L, Vanlierde A, Dehareng F, Froidmont E, Gengler N,
et al. Genetic parameters of mid-infrared methane predictions and their

(2020) 11:39

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Page 12 of 13

relationships with milk production traits in Holstein cattle. J Dairy Sci. 2017;
100(7):5578-91.

Negussie E, de Haas Y, Dehareng F, Dewhurst RJ, Dijkstra J, Gengler N, et al.
Invited review: large-scale indirect measurements for enteric methane
emissions in dairy cattle: a review of proxies and their potential for use in
management and breeding decisions. J Dairy Sci. 2017;100(4):2433-53.
Hristov AN, Kebreab E, Niu M, Oh J, Bannink A, Bayat AR, et al. Symposium
review: uncertainties in enteric methane inventories, measurement
techniques, and prediction models. J Dairy Sci. 2018;101(7):6655-74.

Wood GM, Boettcher PJ, Jamrozik J, Jansen GB, Kelton DF. Estimation of
genetic parameters for concentrations of milk urea nitrogen. J Dairy Sci.
2003;86(7):2462-9.

Miglior F, Sewalem A, Jamrozik J, Bohmanova J, Lefebvre DM, Moore RK.
Genetic analysis of milk urea nitrogen and lactose and their relationships
with other production traits in Canadian Holstein cattle. J Dairy Sci. 2007;
90(5):2468-79.

Mitchell RG, Rogers GW, Dechow CD, Vallimont JE, Cooper JB, Sander-
Nielsen U, et al. Milk urea nitrogen concentration: heritability and genetic
correlations with reproductive performance and disease. J Dairy Sci. 2005;
88(12):4434-40.

Stoop WM, Bovenhuis H, van Arendonk JAM. Genetic parameters for Milk
urea nitrogen in relation to Milk production traits. J Dairy Sci. 2007,90(4):
1981-6.

Soyeurt H, Misztal |, Gengler N. Genetic variability of milk components
based on mid-infrared spectral data. J Dairy Sci. 2010,93(4):1722-8.

Rovere G, de los Campos G, Tempelman RJ, Vazquez Al, Miglior F, Schenkel
F, et al. A landscape of the heritability of Fourier-transform infrared spectral
wavelengths of milk samples by parity and lactation stage in Holstein cows.
J Dairy Sci. 2019;102(2):1354-63.

Zaalberg RM, Shetty N, Janss L, Buitenhuis AJ. Genetic analysis of Fourier
transform infrared milk spectra in Danish Holstein and Danish Jersey. J Dairy
Sci. 2019;102(1):503-10.

Dagnachew BS, Meuwissen THE, Adnay T. Genetic components of milk
Fourier-transform infrared spectra used to predict breeding values for milk
composition and quality traits in dairy goats. J Dairy Sci. 2013;96(9):5933-42.
Bonfatti V, Vicario D, Degano L, Lugo A, Carnier P. Comparison between
direct and indirect methods for exploiting Fourier transform spectral
information in estimation of breeding values for fine composition and
technological properties of milk. J Dairy Sci. 2017;100(3):2057-67.

Belay TK, Dagnachew BS, Boison SA, Adnay T. Prediction accuracy of direct
and indirect approaches, and their relationships with prediction ability of
calibration models. J Dairy Sci. 2018;101(7):6174-89.

Jiang L, Liu J, Sun D, Ma P, Ding X, Yu Y, et al. Genome wide association
studies for milk production traits in Chinese Holstein population. PLoS One.
2010,5(10):e13661.

Kemper KE, Reich CM, Bowman PJ, Vander Jagt CJ, Chamberlain AJ, Mason
BA, et al. Improved precision of QTL mapping using a nonlinear Bayesian
method in a multi-breed population leads to greater accuracy of across-
breed genomic predictions. Genet Sel Evol. 2015;47(1):29.

Littlejohn MD, Tiplady K, Fink TA, Lehnert K, Lopdell T, Johnson T,

et al. Sequence-based association analysis reveals an MGSTT eQTL
with pleiotropic effects on bovine Milk composition. Sci Rep. 2016;6:
25376.

Lopdell TJ, Tiplady K, Struchalin M, Johnson TJJ, Keehan M, Sherlock R, et al.
DNA and RNA-sequence based GWAS highlights membrane-transport
genes as key modulators of milk lactose content. BMC Genomics BioMed
Central. 2017;18(1):968.

Raven L-A, Cocks BG, Hayes BJ. Multibreed genome wide association can
improve precision of mapping causative variants underlying milk
production in dairy cattle. BMC Genomics. 2014;15(1):62.

Bouwman AC, Bovenhuis H, Visker MHPW, van Arendonk JAM. Genome-
wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 2011;
12(1):43.

Buitenhuis B, Janss LL, Poulsen NA, Larsen LB, Larsen MK, Sgrensen P.
Genome-wide association and biological pathway analysis for milk-fat
composition in Danish Holstein and Danish Jersey cattle. BMC Genomics.
2014;15(1):1112.

Buitenhuis B, Poulsen NA, Gebreyesus G, Larsen LB. Estimation of genetic
parameters and detection of chromosomal regions affecting the major milk
proteins and their post translational modifications in Danish Holstein and
Danish Jersey cattle. BMC Genet. 2016;17(1):114.



Tiplady et al. Journal of Animal Science and Biotechnology

91

92.

93.

94.

95.

96.

97.

98.

99.

101.

103.

104.

106.

107.

109.

110.

1.

112.

113.

115.

(2020) 11:39

Li C Sun D, Zhang S, Wang S, Wu X, Zhang Q, et al. Genome Wide
Association Study Identifies 20 Novel Promising Genes Associated with Milk
Fatty Acid Traits in Chinese Holstein. PLoS One. 2014;9(5):¢96186.

Sanchez MP, Govignon-Gion A, Ferrand M, Gelé M, Pourchet D, Amigues Y,
et al. Whole-genome scan to detect quantitative trait loci associated with
milk protein composition in 3 French dairy cattle breeds. J Dairy Sci. 2016;
99(10):8203-15.

Benedet A, Ho PN, Xiang R, Bolormaa S, Marchi MD, Goddard ME, et al. The
use of mid-infrared spectra to map genes affecting milk composition. J
Dairy Sci. 2019;102(8):7189-203.

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet. 2011,88(1):76-82.

Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM,
et al. Efficient Bayesian mixed-model analysis increases association power in
large cohorts. Nat Genet. 2015;47(3):284-90.

Loh P-R, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association
for biobank-scale datasets. Nat Genet. 2018;50(7):906-8.

Jiang L, Zheng Z, Qi T, Kemper KE, Wray NR, Visscher PM, et al. A resource-
efficient tool for mixed model association analysis of large-scale data. Nat
Genet. 2019,51(12):1749-55.

van den Berg |, Boichard D, Guldbrandtsen B, Lund MS. Using Sequence
Variants in Linkage Disequilibrium with Causative Mutations to Improve
Across-Breed Prediction in Dairy Cattle: A Simulation Study. G3 Genes
Genomes Genet. 2016, 6(8):2553-61.

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The
Ensembl variant effect predictor. Genome Biol. 2016;17(1):122.

. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al.

Systematic localization of common disease-associated variation in
regulatory DNA. Science. 2012;337(6099):1190-5.

Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A
method to predict the impact of regulatory variants from DNA sequence.
Nat Genet Nature Publishing Group. 2015/47:955-61.

. Pausch H, Emmerling R, Schwarzenbacher H, Fries R. A multi-trait meta-

analysis with imputed sequence variants reveals twelve QTL for mammary
gland morphology in Fleckvieh cattle. Genet Sel Evol. 2016;48(1):14.
O'Neill LP, Turner BM. Immunoprecipitation of native chromatin: NChIP.
Methods. 2003;31(1):76-82.

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-
resolution mapping and characterization of open chromatin across the
genome. Cell. 2008;132(2):311-22.

. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for

assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;
109(1):21-9.

Kemper KE, Littlejohn MD, Lopdell T, Hayes BJ, Bennett LE, Williams RP, et al.
Leveraging genetically simple traits to identify small-effect variants for
complex phenotypes. BMC Genomics. 2016;17(1):858.

Sawva YA, Rieder LE, Reenan RA. The ADAR protein family. Genome Biol.
2012;13(12):1.

. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, et al.

RNA editing by ADART prevents MDAS sensing of endogenous dsRNA as
nonself. Science. 2015;349(6252):1115-20.

Garrett S, Rosenthal JJ. RNA editing underlies temperature adaptation in K+
channels from polar octopuses. Science. 2012;335(6070):848-51.
Ramaswami G, Deng P, Zhang R, Carbone MA, Mackay TF, Li JB. Genetic
mapping uncovers cis-regulatory landscape of RNA editing. Nat Commun.
2015;6(1):1-9.

Gu T, Gatti DM, Srivastava A, Snyder EM, Raghupathy N, Simecek P, et al.
Genetic architectures of quantitative variation in RNA editing pathways.

Page 13 of 13

Genetics. 2016;202(2):787-98.

Park E, Guo J, Lin L, Demirdjian L, Shen S, Xing Y, et al. Population and
allelic variation of A-to-l RNA editing in human transcriptomes. Genome
Biol. 2017;18(1):143.

Lopdell TJ, Hawkins V, Couldrey C, Tiplady K, Davis SR, Harris BL, et al.
Widespread cis-regulation of RNA editing in a large mammal. RNA. 2019;
25(3):319-35.

. Lopdell TJ, Tiplady K, Couldrey C, Johnson TJJ, Keehan M, Davis SR, et al.

Multiple QTL underlie milk phenotypes at the CSF2RB locus. Genet Sel Evol.
2019;51(1):3.

Knapp J, Laur G, Vadas P, Weiss W, Tricarico J. Invited review: enteric
methane in dairy cattle production: quantifying the opportunities and

impact of reducing emissions. J Dairy Sci. 2014;97(6):3231-61.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Introduction
	Phenotyping applications of FT-MIR spectra
	FT-MIR data quality and prediction model accuracy
	Pre-processing
	Outlier removal and removal of low signal-to-noise regions of the MIR spectrum
	Managing systematic instrument variation

	The genetics of FT-MIR predicted traits
	Milk fatty acid and protein composition traits
	Milk processability traits
	Animal health traits
	Environment traits

	The genetics of individual FT-MIR wavenumbers
	GWAS of individual FT-MIR wavenumbers
	Computational challenges

	Consolidating FT-MIR spectra with other omics data sources for QTL mapping
	Expression-based phenotypes
	Metabolomics


	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References

