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Co-expression network analysis predicts a
key role of microRNAs in the adaptation of
the porcine skeletal muscle to nutrient
supply
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Abstract

Background: The role of non-coding RNAs in the porcine muscle metabolism is poorly understood, with few
studies investigating their expression patterns in response to nutrient supply. Therefore, we aimed to investigate
the changes in microRNAs (miRNAs), long intergenic non-coding RNAs (lincRNAs) and mRNAs muscle expression
before and after food intake.

Results: We measured the miRNA, lincRNA and mRNA expression levels in the gluteus medius muscle of 12 gilts in a
fasting condition (AL-T0) and 24 gilts fed ad libitum during either 5 h. (AL-T1, N = 12) or 7 h. (AL-T2, N = 12) prior to
slaughter. The small RNA fraction was extracted from muscle samples retrieved from the 36 gilts and sequenced,
whereas lincRNA and mRNA expression data were already available. In terms of mean and variance, the expression
profiles of miRNAs and lincRNAs in the porcine muscle were quite different than those of mRNAs. Food intake induced
the differential expression of 149 (AL-T0/AL-T1) and 435 (AL-T0/AL-T2) mRNAs, 6 (AL-T0/AL-T1) and 28 (AL-T0/AL-T2)
miRNAs and none lincRNAs, while the number of differentially dispersed genes was much lower. Among the set of
differentially expressed miRNAs, we identified ssc-miR-148a-3p, ssc-miR-22-3p and ssc-miR-1, which play key roles in the
regulation of glucose and lipid metabolism. Besides, co-expression network analyses revealed several miRNAs that
putatively interact with mRNAs playing key metabolic roles and that also showed differential expression before and
after feeding. One case example was represented by seven miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p,
ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-miR-503) which putatively interact with the PDK4 mRNA, one
of the master regulators of glucose utilization and fatty acid oxidation.

Conclusions: As a whole, our results evidence that microRNAs are likely to play an important role in the porcine
skeletal muscle metabolic adaptation to nutrient availability.
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Background
The majority of nutrigenomic studies in domestic ani-
mals have investigated the effects of dietary factors on
the mean expression of messenger RNAs (mRNAs) [1],
whereas the potential consequences of nutrition on the
expression profiles of microRNAs (miRNAs) and long
intergenic non-coding RNAs (lincRNAs) have not been
explored in depth. Although changes in the expression
of porcine genes in response to dietary and genetic fac-
tors have been reported in previous studies [2–6], the
regulatory co-expression networks underlying such
changes have not been fully elucidated yet [3, 7, 8].
Moreover, gene expression variance (GEV), also referred
as gene dispersion, has been often overlooked, being
considered just as experimental noise without any bio-
logical significance [9]. Few methods have been explicitly
designed for modeling GEV across samples in RNA-Seq
experiments [10, 11], despite the fact that changes in
gene expression in response to a specific stimulus might
have a biologically meaningful individual component
that should not be confounded with experimental noise.
Indeed, metabolic responses to nutritional factors are
often driven by complex signaling pathways and gene-
to-gene interactions that are not necessarily identical
across the whole cohort of analyzed biological replicates,
adding an intrinsic source of variation in gene expres-
sion patterns that is often ignored or modeled as a con-
stant variable [11]. A widely accepted estimator of GEV
is the biological coefficient of variation (BCV) [12]. In
contrast with the canonical coefficient of variation (CV),
the BCV effectively integrates both technical and bio-
logical variability, thus avoiding the dependence on
count size that CV commonly shows.
When the expression patterns of two experimental

groups are compared, differences in the magnitudes of
average gene expression (differential gene expression)
and GEV (differential gene dispersion) can be observed.
Differential dispersion might be particularly useful to
identify regulatory changes induced by the experimental
factor under study. For instance, it is assumed that genes
with low GEV are central members of signal transduc-
tion pathways while those with high GEV tend to occupy
more peripheral positions in gene networks [13]. How-
ever, the central or peripheral position of a given gene in
a network is not necessarily stable across time and it
could also be altered by the experimental factor being
analyzed. Differential dispersion could be a useful par-
ameter to detect such source of biological variation as
well as to infer its potential consequences.
In a previous study, we investigated how the patterns

of mRNA expression change in response to food intake
by comparing the muscle transcriptomes of fasting vs.
fed gilts [5]. Herewith, we wanted to determine how the
expression profiles of miRNAs and lincRNAs vary in

response to nutrient supply by using mRNA profiles as a
reference [5]. This analysis took into consideration both
changes in the mean (differential expression) and the
variance (differential dispersion) of gene expression.
Moreover, we have used a co-expression network ap-
proach to elucidate potential regulatory interactions be-
tween expressed miRNAs and differentially expressed
(DE) mRNA genes as well as to investigate the relation-
ship between gene co-expression modules and meat
quality and fatty acid composition traits recorded in the
gluteus medius skeletal muscle of Duroc pigs.

Materials and methods
Animal material and phenotypic recording
The Duroc pig population used in the current work
has been previously described [5]. Thirty-six female
Duroc piglets were transported to the IRTA-Pig Ex-
perimental Farm at Monells (Girona, Spain) after
weaning (age = 3–4 weeks). Gilts were kept in transi-
tion devices and fed ad libitum with a standard tran-
sition diet until they reached approximately 2 months
of age (around 18 kg of live weight). Subsequently, all
gilts were transferred to fattening pens, where they
were housed individually and fed ad libitum until
reaching approximately 155 d of age. Nutritional de-
tails about the feed provided to gilts between 60 and
155 d have been previously reported in [6]. During
fattening (60 to 125 d), gilts received feed ad libitum
with 14.6% crude protein, 4.25% crude fat, 4.8% crude
fiber, 4.9% ashes, 0.92% lysine, 0.58% methionine +
cysteine and 3190 kcal/kg. During the finishing period
(126 to 155 d), gilts were also fed ad libitum with a
diet containing 14.4% crude protein, 5.53% crude fat,
5.1% crude fiber, 4.9% ashes, 0.86% lysine, 0.53% me-
thionine + cysteine and 3238 kcal/kg. Gilts were
slaughtered in the IRTA Experimental Slaughterhouse
in Monells (Girona, Spain) in accordance with rele-
vant Spanish welfare regulations. Before slaughter, the
36 gilts were fasted for 12 h. Subsequently, 12 gilts
were slaughtered in a fasting condition (AL-T0, N =
12), and the remaining ones were slaughtered 5 h.
(AL-T1, N = 12) and 7 h. (AL-T2, N = 12) after re-
ceiving food. High concentrations of CO2 were used
to stun the gilts before bleeding. After slaughter, sam-
ples of the gluteus medius skeletal muscle were taken
from the 36 gilts, submerged in RNAlater (Thermo
Fisher Scientific, Barcelona, Spain) and stored at −
80 °C. The whole experimental design used in the
current work is depicted in Fig. 1.
Phenotypes listed in Additional file 1: Table S1 were

recorded in the 36 Duroc gilts. Meat quality traits were
measured as described in [14, 15]. Total muscle choles-
terol content was determined following Cayuela et al.
[16], whereas intramuscular fatty acids content and
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composition were determined in accordance with previ-
ous reports [17].

RNA isolation, library preparation and sequencing of
small RNAs
The gluteus medius skeletal muscle RNA-Seq data set
employed in the analysis of lincRNA and mRNA expres-
sion comprised a total of 36 individuals (12 AL-T0, 12
AL-T1 and 12 AL-T2 gilts). Details about the RNA ex-
traction and sequencing protocols can be found in [5].
Briefly, gluteus medius skeletal muscle samples were pul-
verized and subsequently homogenized in 1 mL of TRI
Reagent (Thermo Fisher Scientific, Barcelona, Spain).
The RiboPure kit (Ambion, Austin, TX) was used to iso-
late the total RNA fraction, and its concentration and
purity were determined with a Nanodrop ND-1000 spec-
trophotometer (Thermo Fisher Scientific, Barcelona,
Spain). RNA integrity was assessed with a Bioanalyzer-
2100 equipment (Agilent Technologies Inc., Santa Clara,
CA) by using the Agilent RNA 6000 Nano Kit (Agilent
Technologies, Inc., Santa Clara, CA). Libraries were pre-
pared with the TruSeq SBS Kit v3-HS (Illumina Inc. CA)
and paired-end sequenced (2 × 75 bp) in a HiSeq 2000
platform (Illumina Inc., CA) at the Centro Nacional de
Análisis Genómico (https://www.cnag.crg.eu).
In the present study, we have generated an additional

gluteus medius skeletal muscle RNA-Seq data set specif-
ically targeting small RNAs and comprising the same 36
individuals cited above. Total RNA was purified as re-
ported above. The percentage of small-RNA over total
RNA was determined with the Agilent Small RNA Kit
(Agilent Technologies Inc., Santa Clara, CA). All 36
samples met the quality threshold (i.e. 0.2–2 μg total
RNA with RIN > 7 and miRNA percentage over total

RNA > 0.5%) to be sequenced in Sistemas Genómicos
S.L. (https://www.sistemasgenomicos.com). Individual li-
braries for each sample (N = 36) were prepared with the
TruSeq Small RNA Sample Preparation Kit (Illumina
Inc., CA) according to the protocols of the manufac-
turer. Small RNA libraries were then subjected to single-
end (1 × 50 bp) sequencing in a HiSeq 2500 platform
(Illumina Inc., CA).

Quality assessment, mapping and count estimation
Quality control of paired-end reads was performed with
the FASTQC software (Babraham Bioinformatics, http://
www.bioinformatics.babraham.ac.uk./projects/fastqc/)
and filtered reads were trimmed for any remaining se-
quencing adapters with the Trimmomatic v. 0.22 tool
[18], as described in [5, 6]. In the case of single-end se-
quenced reads derived from small RNA molecules, se-
quencing adapters were trimmed and filtered with the
Cutadapt software [19], and reads outside a window of
15–25 nucleotides were discarded. Paired-end trimmed
raw reads from RNA-Seq sequences were mapped to the
porcine Sscrofa.11.1 reference assembly by using the
HISAT2 aligner [20] with default parameters. The
Stringtie software [21] was subsequently employed to es-
timate mRNA and lincRNA abundances. Single-end
trimmed raw reads derived from small RNAs were also
mapped to the Ssscrofa.11.1 assembly with the Bowtie
Alignment v.1.2.1.1 software [22], and the following
specifications for aligning short miRNA reads were taken
into consideration: 1) allowing no mismatches in the
alignment, 2) removing reads with more than 20 puta-
tive mapping sites and 3) reporting first single best
stratum alignment (bowtie -n 0 -l 25 -m 20 -k 1 --best
--strata). The featureCounts software tool [23] was then

Fig. 1 Depiction of the experimental design used in our study. Gilts were fed ad libitum (N = 36, N = 12 per group) with a commercial feeding
diet during the whole growth period. Prior to slaughter, the 36 gilts were fasted for 12 h. The day of slaughter, 12 gilts (AL-T0) were killed under
fasting conditions. The remaining 24 gilts were fed during 5 h. (AL-T1) and 7 h. (AL-T2) and they were subsequently slaughtered
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used to summarize counts of unambiguously mapped
reads from miRNA-Seq sequences.

Differential expression and differential dispersion
estimates
Raw expression matrices generated on the basis of count
estimates obtained with Stringtie (mRNAs and lincR-
NAs) or featureCounts (miRNAs) [21, 23] were normal-
ized with the trimmed mean of M-values normalization
method [24]. Sequencing depth and read count per gene
were calculated for each sequenced sample (Add-
itional file 15: Figure S1). On the basis of this analysis,
the AL-T0 7197 sample was removed from RNA-Seq
and miRNA-Seq count matrices due to the low read
coverage observed in the RNA-Seq sequencing data set.
The presence of influential outliers for each estimate of
gene expression was corrected by capping expression
values laying outside the boundaries of 1.5 times inter-
quartile range per gene and fitting them within the 10th

and 90th percentiles. For estimating GEV, the BCV was
computed for each detected annotated gene as described
in the edgeR protocol [25], and further discussed in [12].
The BCV encapsulates all sources of inter-library vari-
ation between replicates, including the contribution of li-
brary preparation biases [12].
Differentially expressed (DE) and dispersed (DD) genes

were determined by comparing the means and variances of
gene expression in the two AL-T0/AL-T1 and AL-T0/AL-
T2 contrasts. Only mRNAs and miRNAs showing an aver-
age expression value above 1 count-per-million (CPM) in at
least 50% (N = 12) of the samples (considering all AL-T0,
AL-T1 and AL-T2 samples) were retained for further ana-
lyses. Because lincRNAs are much less expressed than
mRNAs and miRNAs, all lincRNAs (N = 352) annotated in
the Sscrofa11.1 reference assembly (v. 97) were considered
for differential expression and dispersion analyses (a filtering
step imposing an expression threshold above 1 CPM would
have implied the removal of as much as 80% of annotated
lincRNA loci). The edgeR [25] and MDSeq [10] packages
with default parameters were used for performing differen-
tial expression and dispersion analyses, respectively. The
edgeR protocol uses the quantile-adjusted conditional max-
imum likelihood method for detecting differences in gene
expression between two groups. Once negative binomial
models are fitted to the input counts and dispersion esti-
mates are obtained, differential expression is determined by
using an exact test of significance. Correction for multiple
hypothesis testing is implemented by using the Benjamini-
Hochberg false discovery rate approach [26]. The MDSeq
method implements a re-parametrization of the real-valued
negative binomial distribution to allow the modelling of
gene expression variability [10]. Correction for multiple hy-
pothesis testing across genes is implemented with the
Benjamini-Yekutieli procedure [27]. The DE and DD genes

obtained with MDSeq and edgeR were considered to be sig-
nificant at a fold change > |1.5| and q-value < 0.05.

Gene Ontology and pathway enrichment analysis
The lists of mRNA genes detected as DE in the AL-T0/
AL-T1 and AL-T0/AL-T2 contrasts were used as inputs
for Gene Ontology (GO) and pathway enrichment ana-
lyses. The ClueGO v2.5.0 plug-in application [28] em-
bedded in the Cytoscape 3.5.1 software [29] was used for
determining enriched Reactome and KEGG pathways, as
well as Biological Process enriched GO terms. A two-
sided hypergeometric test of significance was applied for
determining enriched terms and multiple testing correc-
tion for pathway enrichment analyses was implemented
with a false discovery rate approach [26], whereas a
Bonferroni-based multiple testing correction was used in
the GO enrichment analysis.

Building of co-expression networks
Significant connections between predicted interacting
gene pairs were identified with the Partial Correlation
with Information Theory (PCIT) network inference al-
gorithm [30]. By using first-order partial correlation
coefficients estimated for each trio of genes along
with an information theory approach, this tool identi-
fies meaningful gene-to-gene putative interactions.
The PCIT approach has been widely used to recon-
struct co-expression regulatory networks from expres-
sion data with good performance [31]. The main aim
of this analysis was to determine truly informative
correlations between node pairs (genes in our con-
text), once the influence of other nodes in the net-
work has been considered.
Pearson pairwise correlation coefficients (r) were

calculated for each expressed miRNA and DE
mRNAs in each of the two contrasts (AL-T0/AL-T1
and AL-T0/AL-T2). The pcit function from the
PCIT R package [30, 32] was then used for detecting
meaningful co-expressed gene pairs. To further iden-
tify the putative miRNA-to-mRNA interaction pairs
with biological interest, a repressor effect of miRNAs
on mRNA expression was assumed [33] and, in con-
sequence, only miRNA-to-mRNA co-expressed pairs
showing r < − 0.5 were retained. Furthermore, we
only considered miRNA-to-mRNA interactions with
perfect 7mer-m8 pairing between the miRNA-seed
and the 3′-UTR of the putative mRNA targets,
hence removing spurious miRNA-to-mRNA signifi-
cant correlations with no robust biological meaning.
To this end, we downloaded the full set of annotated
3′-UTR sequences in the porcine Sscrofa11.1 assem-
bly available at BioMart Ensembl repositories (http://
www.ensembl.org/biomart/martview/). Seed portions
(2nd to 8th 5′ nucleotides in the mature miRNA) of
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the annotated set of porcine miRNAs were reverse-
complemented and interrogated along the 3′-UTR
sequence regions of mRNA genes by making use of
the SeqKit toolkit [34]. Additionally, we selected four
highly expressed and DE miRNAs (ssc-miR-148a-3p,
ssc-miR-1, ssc-miR-493-5p and ssc-let-7/ssc-miR-98)
and used the TargetScan webserver to evaluate the
evolutionary conservation of their binding sites in
the 3’UTR of predicted mRNA targets [35]. Only
conserved target mRNAs with TargetScan context++
scores above the 75% percentile were considered as
confidently cross-validated. The context++ score de-
scribed by Agarwal et al. [35] incorporates the infor-
mation of 14 estimated features in order to rank the
probability of all the predicted target sites to be bio-
logically functional.
For those mRNAs predicted to interact with miRNAs,

we also investigated if they also interact with other
mRNA-encoding genes. In order to focus on relevant
putative mRNA-to-mRNA gene interactions, we only
retained those meaningful mRNA co-expressed pairs
showing |r| > 0.7, as assessed with the PCIT algorithm.
We applied this threshold, which is more stringent than
the one used for miRNA-to-mRNA interactions, because
correlations between expressed mRNAs tend to be
higher than those between mRNAs and miRNAs [36].
Hub genes within selected mRNA-to-mRNA gene inter-
actions (i.e. those mRNAs showing a higher degree of
meaningful connectivity according to the PCIT algo-
rithm), were also identified by calculating a hub score
per gene (Ki), defined as:

Ki ¼ xi
�X

Where xi is the number of selected significant connec-
tions (|r| > 0.7) reported by the PCIT algorithm and X is
the average connectivity within the mRNA-to-mRNA
co-expression network among DE mRNA genes. Gene
co-expression networks were visualized with the Cytos-
cape 3.5.1 software [29].
Besides, for each selected miRNA-to-mRNA pre-

dicted interactions, we calculated the Regulatory Im-
pact Factor (RIF) of the corresponding miRNAs [37].
The RIF algorithm aims to identify regulator genes
contributing to the observed differential expression in
the analyzed contrasts. Its implementation results in
two different and inter-connected RIF scores: while
RIF1 score represents those transcriptional regulators
that are most differentially co-expressed with the
most highly abundant and highly DE genes, the RIF2
score highlights those regulators that show the most
altered ability to act as predictors of the changes in
the expression levels of DE genes [37]. Both RIF

values capture different regulatory impact features and
hence, they can be considered as two independent mea-
surements of the putative relevance of miRNAs as gene
expression regulators. The RIF1 values for each ith regula-
tory factor were calculated as follows:

RIF1i ¼ 1
nde

Xj¼nde

j¼1

PIF j � DW 2
ij

Where nde is the number of DE genes and Phenotype
Impact Factor (PIF) and differential wiring (DW) are de-
noted by:

PI F j ¼ 1
2

e12j−e2
2
j

� �

DWij ¼ r1ij−r2ij

being e1j and e2j the expression of the jth differentially
expressed gene in both conditions 1 and 2, respectively,
whereas r1ij and r2ij represent the co-expression correl-
ation between the ith regulatory factor (miRNAs in our
case) and the jth DE mRNA gene in conditions 1 and 2,
respectively.
The RIF2 values for each ith regulatory factors were

defined as:

RIF2i ¼ 1
nde

Xj¼nde

j¼1

e1 j � r1ij
� �2

− e2 j � r2ij
� �2h i

The positive or negative sign of the RIF1 score is mainly
determined by the magnitude of the PIF estimates, and
hence is dependent on the directionality of the defined
contrast (i.e. the AL-T0/AL-T2 vs. AL-T2/AL-T0 con-
trasts would generate RIF1 scores with opposite signs). In
contrast, the sign of the RIF2 score reflects the altered
ability of the regulators to act as predictors of the abun-
dance of DE genes [37].

Association between muscle phenotypes and weighted
gene co-expression networks
Significant associations between key co-expressed genes
and meat quality and fatty acids composition traits mea-
sured in the gluteus medius skeletal muscle samples
(Additional file 1: Table S1) were determined with the
weighted gene correlation network analysis (WGCNA)
approach [38]. We used the WGCNA R package [38] for
building signed weighted gene co-expression modules
based on mRNA and miRNA genes present in the AL-
T0/AL-T1 and AL-T0/AL-T2 count matrices and dis-
playing a minimum expression of 1 CPM in at least 50%
of samples. Weighted adjacency matrices were built for
each expression data set by using a power soft threshold
(β) = 16, as recommended by Langfelder and Horvath
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[38] for estimating signed correlations based on the
number of replicates used in our experimental design.
The obtained weighted adjacency matrices were subse-
quently transformed into topological overlapping matri-
ces (TOM) and corresponding dissimilarities were
calculated to minimize the effect of noise and spurious
co-expression patterns. Hierarchical clustering was then
applied to the dissimilarity matrices (1-TOM) and co-
expressed genes were merged into modules through dy-
namic tree branch cutting. Highly inter-connected mod-
ules were finally merged by calculating their eigengenes
and setting a minimum height cut of 0.25 and a mini-
mum module size of 30 genes for each identified gene
co-expression module.
To further elucidate whether the inferred gene co-

expression modules were significantly associated with
the variation of meat quality and fatty acids compos-
ition traits (Additional file 1: Table S1), module eigen-
genes (MEs) were defined as the first principal
component calculated with the Principal Component
Analysis (PCA) algorithm. In this way MEs summarize
the co-expression patterns of all genes within each
module into a single variable. Measured phenotypes
were then correlated with each defined ME. Correlated
phenotype-module pairs were considered to be signifi-
cant when P-value < 0.05. Co-expressed miRNA-only
modules were discarded for further analyses. A Student
asymptotic P-value approach was finally used for deter-
mining the significance of the contribution of each gene
within the co-expression modules to the correlation co-
efficient between MEs and each one of the recorded
phenotypes. Relevant genes within significant modules
were selected based on the estimates of gene signifi-
cance (GS, P-value < 0.05) obtained for each phenotype-
module significant association.
Additionally, hub genes within each detected gene

co-expression module showing significant correlations
with phenotypic traits were assessed. WGCNA in-
ferred networks were converted to edge graphs by
using the RNAseqDE wrapper R package (https://
github.com/jtlovell/RNAseqDE). Subsequently, hub
scores for each gene in the selected co-expression
modules were calculated by computing the scaled
Kleinberg’s hub centrality score as described in the
igraph tool (https://igraph.org) [39].

Results
Comparing the expression patterns of coding and non-
coding RNAs expressed in the porcine skeletal muscle
The RNA-Seq data set employed for mRNA and lincRNA
quantification encompassed an average of 48.6 million
paired-end reads per sample, and approximately 93% of
them mapped successfully to the Sscrofa11.1 assembly.
Roughly, 76% of unambiguously mapped reads were

assigned to annotated features (genes) after quantification.
With regard to the miRNA-Seq experiment, an average of
8.2 million single-end reads per sample were generated,
which were reduced to approximately 6.8 million reads
per sample after quality-check and adapter trimming.
From these, approximately 77% mapped to the porcine as-
sembly, and an average of 42% single-end mapped reads
were successfully assigned to annotated microRNAs in the
Sscrofa11.1 assembly. The accuracy of the RNA-Seq pro-
cedures employed in the current work were previously
validated by Cardoso et al. [40], analyzing the differential
expression of eight genes based on RNA-Seq results and
real-time quantitative PCR measurements of gene expres-
sion. Such comparison showed a high concordance be-
tween the results obtained with these two independent
methods [40].
We have characterized and compared the muscle expres-

sion profiles of lincRNAs, miRNAs and mRNAs in three
groups of pigs (Fig. 1): AL-T0 (fasted), AL-T1 (5 h after feed-
ing) and AL-T2 (7 h after feeding). The computed BCVs
measuring the range of variability in gene expression across
biological replicates within the same group were markedly
elevated for lincRNAs, moderate for mRNAs and low for
miRNAs, which ultimately showed a very stable and homo-
geneous expression profile across samples (Fig. 2a). More-
over, as expressed by the regularized log2 (Rlog)
transformation of gene counts according to Love et al. [41],
the average expression of lincRNAs was much lower than
that of mRNAs, while miRNAs occupied an intermediate
position between these two extremes (Fig. 2b). In general,
lowly expressed genes displayed higher BCVs than genes
with high levels of expression (Fig. 3). This pattern was espe-
cially relevant for mRNAs (Fig. 3a), with an average esti-
mated background BCV of 0.53 (i.e. 53% of mean variability
in gene expression across biological replicates expected for
mRNA genes), and lincRNAs (mean BCV= 115%, Fig. 3c).
In strong contrast, miRNAs showed a narrow range of gene
expression variability (mean BCV= 37%). Indeed, we did not
detect miRNA genes with extremely high BCV values even
when we considered miRNAs expressed at marginal levels
below 1 CPM (Fig. 3b). WithMDSeq tool [10], we computed
fold-changes (FC) for dispersion estimates. For each contrast,
log2FC dispersion values were then plotted against log2CPM
gene expression values (Fig. 4). In general, protein-coding
genes with medium to low expression levels (Fig. 4a) showed
higher dispersion FC values than those that were highly
expressed. This antagonistic relationship was much less obvi-
ous for miRNAs or lincRNAs than for mRNAs (Fig. 4b, c).

Identification of differentially expressed and dispersed
genes
Principal component analysis showed a clear cluster-
ing of samples according to their group of origin
(AL-T0, AL-T1 and AL-T2) when we considered
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mRNA expression patterns (Fig. 5a), and this was par-
ticularly true in the AL-T0/AL-T2 contrast. This out-
come agrees well with previously reported results
using the same experimental data [5]. In contrast, the
clustering of samples based on their miRNA expres-
sion patterns was more diffuse (Fig. 5b), and in the
case of lincRNAs, no evident pattern of clustering
was observed (Fig. 5c). This lack of sample clustering
could be due, at least in part, to the low and very
low numbers of annotated pig miRNAs and lincRNAs,
respectively. Moreover, the highly variable expression
of lincRNAs across samples could also contribute to
this lack of clustering. Joint PCA clustering consider-
ing all three contrast groups is depicted in Add-
itional file 15: Figure S2.
As previously said, statistical analyses for DE and DD

miRNA and mRNA genes were restricted to loci with ex-
pression levels above 1 CPM in each contrast and in at
least 50% (N = 12) of the samples (each contrast includes
23 samples), whereas all annotated lincRNAs, irrespective
of their expression levels, were considered. These filtering
criteria reduced approximately by half the number of ana-
lyzed mRNAs, i.e. 10,648 (AL-T0/AL-T1) and 10,714 (AL-
T0/AL-T2,) expressed mRNAs from a total of 22,342 an-
notated protein-coding genes were selected for further
analyses. Regarding miRNAs, 35% of annotated miRNAs
did not reach the expression threshold of 1 CPM (286
expressed miRNAs out of 442 annotated miRNA genes in
both AL-T0/AL-T1 and AL-T0/AL-T2).

Differential expression and/or dispersion results gener-
ated with MDSeq and edgeR approaches reflected evi-
dent changes in the skeletal muscle transcriptomic
profile of pigs after feed intake. These changes were par-
ticularly intense in the case of mRNA genes, with 149
and 435 DE mRNAs in AL-T0/AL-T1 and AL-T0/AL-
T2, respectively (Additional file 2: Table S2). Moreover,
6 and 28 miRNAs (q-value < 0.05; |FC| > 1.5) were classi-
fied by edgeR as DE in AL-T0/AL-T1 and AL-T0/AL-T2
respectively (Table 1), whereas no lincRNAs showed sig-
nificant DE in any of the two contrasts. When we con-
sidered a less stringent FC threshold for miRNAs and
lincRNAs (|FC| > 1.2), we were able to recover 5 add-
itional DE miRNAs in the AL-T0/AL-T2 contrast (Table
1). With regard to differential dispersion, 27 and 30 DD
mRNAs were detected with MDSeq in the AL-T0/AL-
T1 and AL-T0/AL-T2 contrasts, respectively (Add-
itional file 3: Table S3), and several of these mRNAs
were also differentially expressed (Additional file 2:
Table S2). Few DD miRNAs (i.e. 5 in AL-T0/AL-T1 and
1 in AL-T0/AL-T2) and only two DD lincRNAs (in AL-
T0/AL-T1) were detected (Table 2).

Functional annotation and pathway enrichment of
differentially expressed genes
A total of 26 Reactome and 8 KEGG significantly
enriched pathways were detected in the AL-T0/AL-T1
contrast, whereas 16 Reactome and 14 KEGG enriched
pathways were identified for the AL-T0/AL-T2 contrast

Fig. 2 Expression variability and quantification of expression levels of mRNAs, microRNAs and lincRNAs. a Biological Coefficient of Variation (BCV)
distribution across transcript types within each analyzed group. b DESeq2 regularized log2 mean expression (rlog) values across transcript types
within each analyzed group
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(q-value < 0.05). Gene ontology biological process enrich-
ment analyses resulted in 65 and 107 significant GO terms
for AL-T0/AL-T1 and AL-T0/AL-T2, respectively. A
complete list of enriched pathways and GO terms is
shown in Additional files 4: Table S4 (AL-T0/AL-T1) and
5: Table S5 (AL-T0/AL-T2). Among the most highly
enriched pathways, those related with circadian clock
regulation appeared in both contrasts, as well as other
pathways associated with myogenesis, nuclear receptor
transcription or NOTCH1, and interleukin 4 and 13

signaling. Regarding the GO enriched terms, many bio-
logical processes triggered by nutrient availability after
food intake were activated, such as skeletal muscle differ-
entiation (GO:0035914), carbohydrate biosynthetic
process (GO:0016051), regulation of gluconeogenesis
(GO:0035947), glycogen biosynthetic process (GO:
0005978), gluconeogenesis (GO:0006094), energy reserve
metabolic process (GO:0006112), activation of transcrip-
tion from RNA polymerase II promoter (GO:0006366), re-
sponse to lipids (GO:0033993), adipose tissue

Fig. 3 Biological Coefficient of Variation (BCV) vs. DESeq2 regularized log2 mean expression (Rlog) of (a) mRNAs, (b) microRNAs and (c) lincRNAs
in each of the analyzed groups (AL-T0, AL-T1 and AL-T2)
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development (GO:006012), regulation of fat cell differenti-
ation (GO:0045598), circadian regulation of gene expres-
sion (GO:0032922), cellular response to external stimulus
(GO:0071496), response to starvation (GO:0042594) or
regulation of energy homeostasis (GO:2000505), to men-
tion a few (Additional files 4 and 5: Table S4 and S5).

Construction of co-expression networks and
measurement of regulatory impact factors
We also aimed to determine whether the expression of
miRNAs is associated with that of mRNAs in each one

of the experimental contrasts. With the PCIT algorithm,
we detected 24 (AL-T0/AL-T1) and 55 (AL-T0/AL-T2)
miRNAs co-expressed (r < − 0.50) with sets of differentially
expressed putative mRNA targets (Additional file 6: Table
S6). For mRNA-to-mRNA connections, only meaningful
co-expression relationships with |r| > 0.7 were considered
(Additional file 7: Table S7). Hub genes showing a high de-
gree of connectivity were prioritized by means of their esti-
mated hub score values (K). A list of selected mRNA genes
and their K values is available in Additional file 8: Table S8.
Among the genes with the top (5%) hub scores, it is worth

Fig. 4 Log2 Fold change (FC) of the dispersion values estimated with MDSeq tools vs. log2 mean expression (counts-per-million, CPM) of (a)
mRNAs, (b) microRNAs and (c) lincRNAs expression patterns in the AL-T0/AL-T1 (left column) and AL-T0/AL-T2 contrasts (right column)
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mentioning the following ones: (1) AL-T0/AL-T1: Rev-Erb-β
(NR1D2), BTB domain and CNC homolog 1 (BACH1),
ETS proto-oncogene 1 (ETS1) and the cAMP responsive
element binding protein 1 (CREB1), and (2) AL-T0/AL-
T2: secretory carrier membrane protein 2 (SCAMP2),
neuraminidase 3 (NEU3), pyruvate dehydrogenase kinase
4 (PDK4), fatty acid transport protein 4 (SLC27A4),
thiamine transporter 1 (SLC19A2), NAD kinase (NADK),
BTB domain and CNC homolog 2 (BACH2) and ARID
domain-containing protein 5B (ARID5B). We have also
compared the results based on K estimates with the sets of

hub genes forming part of the co-expression modules
generated with the WGCNA algorithm [38]. By doing
so, we found several genes that in both approaches
were identified as top central players in the metabolic
response to food intake. For instance, BACH1 and
CREB1 genes were among the top hubs in the
Blue co-expression module corresponding to the AL-
T0/AL-T1 contrast (Additional file 9: Table S9). With
respect to AL-T0/ALT2, SCAMP2, NEU3 and PDK4
genes within the Green co-expression module were
also among the top hub transcripts, whereas BACH2

Fig. 5 Principal Component Analysis (PCA) clustering of gluteus medius skeletal muscle samples (11 AL-T0, 12 AL-T1 and 12 AL-T2 gilts) according
to the expression profiles of (a) mRNAs, (b) microRNAs and (c) lincRNAs
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Table 1 microRNAs detected by edgeR as differentially expressed when comparing AL-T0 (fasted) gilts with their AL-T1 (5 h after
eating) and AL-T2 (7 h after eating) counterparts

Contrast miRNA log2FC
b P-value q-valuec log2CPM AL-T0d log2CPM AL-T1d log2CPM AL-T2d

AL-T0/AL-T1a ssc-miR-7-5p 0.9978 7.56E-05 2.16E-02 6.8416 7.5115 –

ssc-miR-374a-3p 0.8568 4.73E-04 3.81E-02 6.9201 7.5034 –

ssc-miR-7 0.9229 5.26E-04 3.81E-02 6.4206 7.0178 –

ssc-miR-148a-3p 0.8989 5.97E-04 3.81E-02 13.8692 14.5105 –

ssc-miR-1 0.7686 6.66E-04 3.81E-02 16.8124 17.3183 –

ssc-miR-32 1.2420 9.92E-04 4.73E-02 2.9824 3.6098 –

AL-T0/AL-T2a ssc-miR-1285 −2.9830 3.47E-09 9.92E-07 7.9799 – 5.5849

ssc-miR-148a-3p 1.3831 2.39E-06 2.83E-04 13.8692 – 14.9315

ssc-miR-7-5p 1.1592 2.97E-06 2.83E-04 6.8416 – 7.6948

ssc-miR-493-5p 0.7464 3.84E-05 2.37E-03 6.4846 – 7.1191

ssc-miR-7 1.0724 4.14E-05 2.37E-03 6.4206 – 7.1910

ssc-miR-22-3p −0.9814 1.01E-04 4.20E-03 12.6857 – 11.7583

ssc-miR-421-5p 1.2893 1.03E-04 4.20E-03 2.6775 – 3.7359

ssc-miR-758 −0.7536 1.24E-04 4.43E-03 5.4106 – 4.5480

ssc-miR-339 −0.8760 1.68E-04 5.34E-03 2.8919 – 2.0274

ssc-let-7f-1 0.7735 2.36E-04 6.43E-03 14.0981 – 14.7031

ssc-let-7f-5p 0.7641 2.74E-04 6.43E-03 12.4788 – 13.0761

ssc-miR-374a-3p 0.9025 2.75E-04 6.43E-03 6.9201 – 7.5867

ssc-miR-30a-3p 0.6600 3.36E-04 6.43E-03 9.8397 – 10.3833

ssc-miR-151-3p 0.6940 3.37E-04 6.43E-03 12.3832 – 12.9732

ssc-miR-129a-3p −1.3858 4.09E-04 7.05E-03 4.7123 – 3.0830

ssc-miR-296-5p −0.9342 4.79E-04 7.61E-03 5.1094 – 3.9239

ssc-miR-30e-3p 0.6430 7.45E-04 1.12E-02 10.8497 – 11.3840

ssc-miR-98 0.7127 1.24E-03 1.69E-02 9.6818 – 10.2075

ssc-let-7a-1 0.4660 1.13E-03 2.53E-02 13.7761 – 14.1002

ssc-let-7a-2 0.4590 1.43E-03 2.53E-02 12.4875 – 12.8046

ssc-miR-503 0.4912 1.12E-03 2.53E-02 7.8380 – 8.1776

ssc-miR-181c −0.6665 2.02E-03 2.56E-02 3.0770 – 2.3722

ssc-miR-32 1.1189 2.11E-03 2.56E-02 2.9824 – 3.5525

ssc-miR-1 0.6586 2.15E-03 2.56E-02 16.8124 – 17.2479

ssc-miR-450b-3p 0.9689 2.78E-03 2.95E-02 1.3512 – 2.0993

ssc-miR-136-5p 0.9319 2.78E-03 2.95E-02 3.4211 – 3.8968

ssc-miR-7857-3p −1.1003 3.03E-03 3.09E-02 2.3255 – 1.5283

ssc-miR-125b −0.5858 1.88E-03 3.20E-02 13.0432 – 12.3566

ssc-miR-361-5p −0.5109 3.02E-03 4.45E-02 7.4597 – 6.8061

ssc-miR-362 −0.5567 3.45E-03 4.61E-02 6.5327 – 5.8194

ssc-miR-218b 0.7746 4.75E-03 4.62E-02 4.8429 – 5.2796

ssc-miR-532-3p −0.6865 4.84E-03 4.62E-02 7.4422 – 6.5930

ssc-miR-365-3p −0.7367 5.36E-03 4.79E-02 9.9681 – 8.9921
aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts slaughtered after 7 h of food
intake (N = 12)
bLog2FC: estimated log2 fold change mean expression levels
cq-value: P-value corrected for multiple testing with the Benjamini-Hochberg procedure
dLog2CPM: estimated log2 counts-per-million (CPM) mean expression levels in AL-T0, AL-T1 and AL-T2 groups
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and ARID5B occupied intermediate positions in the
ranking of hub genes (Additional file 9: Table S9).
Additionally, we used the TargetScan algorithm to

evaluate the accuracy of the miRNA-to-mRNA inter-
actions predicted with PCIT and 3′-UTR seed match-
ing. Four highly expressed DE miRNAs (ssc-miR-
148a-3p, ssc-miR-1, ssc-miR-493-5p and ssc-let-7/ssc-
miR-98) were selected for this task. From a total of
30 different mRNA genes predicted to be targets of
the selected miRNAs (Additional file 6: Table S6), 14
showed conserved and putatively valid interactions
(context++ score > 75% percentile) according to pre-
dictions made with the TargetScan algorithm (Add-
itional file 10: Table S10).
Particularly interesting was the case of the miRNAs

predicted to bind the 3′-UTR sequence of the PDK4
mRNA (Additional file 11: Table S11), which happened
to be the most highly downregulated gene in the AL-T0/
AL-T2 contrast (Additional file 2: Table S2). Among the
7 predicted miRNAs with putative 7mer-m8 binding
sites in the PDK4 3′-UTR, only two sites appeared to be
consistently conserved when compared against the cor-
responding orthologous regions in other phylogenetically
related species (Additional file 15: Figure S3, Add-
itional file 10: Table S10). Noteworthy, the two con-
served sites are predicted to bind to ssc-miR-148a-3p
and ssc-miR-493-5p, which were two of the most highly
DE miRNAs in the AL-T0/AL-T2 contrast (Table 1).

Besides, after estimating the RIF score for each co-
expressed miRNA, results were ranked according to
their regulatory relevance. A complete list of all RIF
values for miRNAs is presented in Additional file 12:
Table S12. Moreover, a list of the top 5 ranking posi-
tive and negative regulatory miRNAs according to
their RIF1 and RIF2 scores is presented in Tables 3
and 4, respectively. Interestingly, we observed a high
correspondence between miRNAs classified as DE
with the edgeR tool and miRNAs categorized by the
PCIT and RIF algorithms as meaningful regulators
(Tables 1, 3 and 4, Additional files 6 and 12: Table S6
and S12). For instance, ssc-miR-32, which was DE in
the two considered contrasts, ranked as the second
(AL-T0/AL-T1) and third (AL-T0/AL-T2) most rele-
vant miRNA in terms of RIF1 (Table 3,
Additional file 12: Table S12). The DE miRNAs (AL-
T0/AL-T2) ssc-miR-339 and ssc-miR-1 were also de-
tected as relevant in terms of RIF1 score (Table 3).
When considering RIF2 and AL-T0/AL-T2, the ssc-
miR-1285, ssc-miR-129a-3p, ssc-miR-296-5p, ssc-miR-
374a-3p and ssc-miR-7-5p DE miRNAs happened to
be among the top predicted regulators (Table 4). In
the AL-T0/AL-T2 contrast, several additional DE
miRNAs also belonged to the group of the top 10 most
relevant regulators according to their RIF scores, e.g.
ssc-miR-22-3p for RIF1 and ssc-miR-148a-3p or ssc-
miR-493-5p for RIF2 (Additional file 12: Table S12).

Table 2 microRNAs and lincRNAs detected by MDSeq as differentially expressed when comparing AL-T0 (fasted) gilts with their AL-
T1 (5 h after eating) and AL-T2 (7 h after eating) counterparts

Contrast log2FC
b P-value q-valuec Log2CPM AL-T0d Log2CPM AL-T1d Log2CPM AL-T2d

AL-T0/AL-T1a

miRNA

ssc-miR-17-5p −4.0190 3.20E-06 2.81E-03 6.2654 5.7652 –

ssc-miR-186-5p −4.1486 1.66E-06 2.81E-03 8.6343 8.2410 –

ssc-miR-362 −3.6875 1.64E-05 9.48E-03 6.5327 5.8885 –

ssc-miR-451 −3.6825 2.16E-05 9.48E-03 8.1730 8.1217 –

ssc-miR-29a-3p −3.3204 1.16E-04 4.07E-02 9.1335 8.7859 –

lincRNA

ENSSSCG00000032301 3.3076 3.60E-05 1.32E-02 1.4722 5.8072 –

ENSSSCG00000031192 −3.8178 1.59E-04 2.93E-02 5.8864 1.7548 –

AL-T0/AL-T2a

miRNA

ssc-miR-1285 −4.1428 4.60E-06 8.04E-03 7.9799 – 5.5849
aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts slaughtered after 7 h of food
intake (N = 12)
bLog2FC: estimated log2 fold change mean dispersion levels
cq-value: P-value corrected with the Benjamini-Yekutieli procedure
dLog2CPM: estimated log2 counts-per-million (CPM) mean expression levels in AL-T0, AL-T1 and AL-T2 groups
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Relationship between weighted gene co-expression
modules and meat quality and muscle fatty acids
composition traits
The WGCNA algorithm applied to mRNA and miRNA
expression estimates in the AL-T0/AL-T1 and AL-T0/
AL-T2 matrices made possible the identification of 5
and 10 gene co-expression modules, respectively (Add-
itional file 15: Figure S4 and S5), excluding miRNA-only
co-expression modules. Among these, the identified
modules for the AL-T0/AL-T1 contrast were signifi-
cantly associated with the following meat quality and
fatty acids composition phenotypes measured in the glu-
teus medius muscle: meat lightness (L*), intramuscular
pH (PHGM), intramuscular fat content (GMIMF), pal-
mitic acid content (C16:0), linoleic acid content (C18:2-
ω6), arachidonic acid content (C20:4), omega-6 fatty
acids content (ω6), omega-6/omega-3 ratio (ω6/ω3),
polyunsaturated fatty acids content (PUFA) and polyun-
saturated/saturated fatty acids ratio (PUFA/SFA), as
shown in Additional file 13: Table S13. Regarding the
AL-T0/AL-T2 contrast, gluteus medius phenotypes
showing significant associations with co-expression

modules were: meat redness (a*), pH measured 45 min
post-mortem (PH45GM), linoleic acid content (C18:2-
ω6), arachidonic acid content (C20:4), omega-3 (ω3),
omega-6/omega-3 ratio (ω6/ω3), unsaturated fatty acids
content (UFA) and polyunsaturated/saturated fatty acids
ratio (PUFA/SFA) and saturated/unsaturated fatty acids
ratio (SFA/UFA) (Additional file 14: Table S14). A
detailed list of all analyzed phenotypes is shown in
Additional file 1: Table S1. P-values measuring the
significance of the contribution of each gene within co-
expression modules to significantly correlated pheno-
typic traits can be found in Additional files 13: Table
S13 (AL-T0/AL-T1) and 14: Table S14 (AL-T0/AL-T2).

Discussion
Coding and non-coding RNAs show highly divergent
patterns of expression in the porcine muscle
By comparing mRNAs, miRNAs and lincRNAs expres-
sion patterns, we have observed that the expression of
mRNAs in the porcine skeletal muscle is, on average,
substantially higher than that of miRNAs and lincRNAs
(Fig. 2). This finding was expected because previous

Table 4 Top five positive and negative regulatory microRNAs
according to their Regulatory Impact Factor 2 (RIF2)

Contrast RIF2

AL-T0/AL-T1a

ssc-miR-129a-3p 1.8373

ssc-miR-219a 1.4996

ssc-miR-128 1.4256

ssc-miR-503 1.2053

ssc-miR-450b-3p 1.0913

ssc-miR-455-5p −0.9408

ssc-miR-296-5p −1.0613

ssc-miR-143-3p −1.3923

ssc-miR-542-3p −1.4893

ssc-miR-450b-5p −1.5585

AL-T0/AL-T2a

ssc-miR-1285 2.2089

ssc-miR-206 1.7993

ssc-let-7d-5p 1.7537

ssc-miR-129a-3p 1.5109

ssc-miR-129a-5p 1.3630

ssc-miR-296-5p −1.6368

ssc-miR-374a-3p −1.6758

ssc-miR-148b-5p −1.8280

ssc-miR-7-5p −2.0613

ssc-miR-7139-5p −2.6767
aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts
slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts slaughtered
after 7 h of food intake (N = 12)

Table 3 Top five positive and negative regulatory microRNAs
according to their Regulatory Impact Factor 1 (RIF1)

Contrast RIF1

AL-T0/AL-T1a

ssc-miR-450b-5p 1.7939

ssc-miR-32 1.7041

ssc-miR-136-5p 1.3928

ssc-miR-542-3p 1.2969

ssc-miR-19a 1.2620

ssc-miR-339-3p −0.9864

ssc-miR-421-5p −0.9871

ssc-miR-503 −1.1680

ssc-miR-326 −1.2569

ssc-miR-128 −1.2830

AL-T0/AL-T2a

ssc-miR-9858-5p 2.7536

ssc-miR-148b-5p 2.4587

ssc-miR-32 2.3825

ssc-miR-129a-5p 1.9010

ssc-miR-7139-5p 1.3797

ssc-let-7g −1.0629

ssc-miR-130b-5p −1.1300

ssc-miR-339 −1.2069

ssc-miR-1 −1.2630

ssc-miR-326 −1.3955
aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts
slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts slaughtered
after 7 h of food intake (N = 12)
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studies in humans have reflected the same trend for
lincRNAs [42, 43] and miRNAs [44]. On the other hand,
we have also observed an inverse relationship between
the expression means of mRNA and lincRNA genes and
the magnitude of BCVs (Fig. 3a, c), whereas such trend
was not obvious for miRNAs (Fig. 3b).
With regard to differential dispersion, the number of

DD mRNA and miRNA genes was much lower than that
of DE mRNA and miRNA genes, indicating that nutrient
supply has a stronger impact on the mean expression of
genes rather than on their BCV. Of course, these two pa-
rameters are closely related, so decreases in the mean ex-
pression of genes are usually accompanied by increases in
the variance of expression (and vice versa), being such
trend particularly true for mRNAs and lincRNAs. In con-
trast, miRNAs showed a very resilient and stable pattern
of expression across replicates (Figs. 3b and 4b).
While nutrient supply induced substantial changes in

the expression of mRNAs (Additional file 2: Table S2),
the absolute number of DE miRNAs was much lower
(Table 1), whereas no DE lincRNAs were detected. This
result is probably not due to a limited accuracy of RNA-
Seq in detecting differential gene expression, because
previous experiments [40] showed a high consistency be-
tween differential gene expression results obtained with
RNA-Seq and real time quantitative PCR data in the
same experimental system. However, it should be taken
into account that the absolute numbers of annotated
porcine miRNAs and lincRNAs are much smaller than
those of mRNAs. Indeed, when the number of DE genes
is expressed as a proportion (i.e. number of DE genes/
number of total analyzed expressed genes), the total
amount of DE mRNAs happened to be 1.39% (AL-T0/
AL-T1) and 4.06% (AL-T0/AL-T2). In the case of miR-
NAs, such proportions were 2.09% (AL-T0/AL-T1) and
9.79% (AL-T0/AL-T2). Moreover, the average |FC| of
DE mRNAs was 2.12-fold and 2.02-fold in AL-T0/AL-
T1 and AL-T0/AL-T2 respectively, while for miRNAs,
changes of 1.9-fold (AL-T0/AL-T1) and 1.85-fold (AL-
T0/AL-T2) were detected. In the light of these results, it
should be concluded that both mRNAs and miRNAs
show consistent patterns of differential expression in re-
sponse to food intake, while no conclusive evidence has
been obtained for lincRNAs. This latter observation
could be due to the poor annotation of lincRNAs as well
as to their low expression levels and elevated within
group expression variability (Figs. 2 and 3c), which ul-
timately would make the differential expression analysis
much less powerful to detect significant differences.
Nevertheless, the high variance in the expression of

lincRNAs contrasted strongly with the stable patterns
of expression across contrasts displayed by miRNAs
(Figs. 2 and 3b, c). This high stability might be due to
the fact that the expression and silencing activity of

miRNAs are decoupled to some extent [36]. There are
several factors that explain such circumstance. For in-
stance, miRNAs can be sequestered by pseudogene,
mRNA, lincRNA or circular RNA transcripts with re-
peated miRNA antisense sequences (the so-called
miRNA sponges), thus limiting their availability to
regulate the expression of target RNAs [45–47]. More-
over, compelling evidence has been accumulating dur-
ing past years highlighting the exceptional stability of
certain miRNAs, which show half-lives of days [48, 49].
This long half-life might be explained by the protective
effect of the Argonaute protein in isolating naked
single-stranded small miRNA molecules from exonu-
cleases within the cell environment [50]. Besides, miR-
NAs might localize to cell compartments other than
the cytosol, where they exert functions unrelated with
the modulation of mRNA levels [51]. Last but not least,
the expression levels of miRNAs do not necessarily cor-
relate with their functional availability as a part of the
RNA-induced silencing complex [36].

Differentially expressed and dispersed miRNAs are related
with the regulation of key metabolic processes in the
skeletal muscle
As shown in Tables 1 and 2, several miRNAs were de-
tected as either being DE and/or DD in the AL-T0/AL-
T1 and AL-T0/AL-T2 contrasts. Among the DE miR-
NAs, we found that ssc-miR-1 and ssc-miR-148a were
two of the most expressed and DE miRNAs in AL-T0/
AL-T1 and AL-T0/AL-T2 contrasts (Table 1), whereas
ssc-miR-7-5p was the most highly differentially upregu-
lated miRNA in AL-T1 gilts. Both miR-7 and miR-1
regulate the mTOR-related cell response to nutrient
availability. For instance, miR-1 was found to be directly
upregulated by the myogenic differentiation 1 (MYOD1)
gene [52], which is a transcription factor essential for
skeletal muscle development and myocyte fusion [53]
and also functions as a circadian modulator in the per-
ipheral muscle clock [54]. Noteworthy, MYOD1 was also
significantly upregulated in the AL-T0/AL-T2 contrast
(Additional file 2: Table S2), a finding that agrees well
with the observed upregulation of ssc-miR-1 (Table 1).
Additionally, miR-7 has been also associated with the
Akt-mTOR and PI3K/Akt signaling by targeting the in-
sulin receptor substrate 2 (IRS2) and the phosphoinosi-
tide 3-kinase catalytic subunit δ (PIK3CD) [55, 56], two
genes that are integrated in the coordinated signaling
cascade in response to nutrient supply to promote skel-
etal muscle growth and differentiation.
Regarding the miR-148 family, it has been reported

that these miRNAs play a key role in cholesterol me-
tabolism [57–59] and insulin homeostasis [60]. In a
fasting/feeding study resembling ours, Goedeke et al.
[59] reported that miR-148a binds the 3′-UTR of the
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low density lipoprotein receptor (LDLR) mRNA lead-
ing to the accumulation of low-density lipoprotein
(LDL) cholesterol in blood plasma. Similar results
were reported by Rotllan et al. [61]. Furthermore,
Goedeke et al. [59] suggested that the sterol regula-
tory element-binding transcription factor 1 (SREBF1)
may activate the expression of miR-148a by targeting
conserved E-box motifs in the miRNA promoter. In
the same study, the role of the ATP-binding cassette
1 (ABCA1) gene in the regulation of high-density
lipoprotein (HDL) cholesterol levels was explored, and
a binding site for miR-148a in the 3′-UTR of ABCA1
transcripts was predicted, thus providing a functional
explanation for the inhibitory effect of miR-148a on
plasma HDL cholesterol levels [59]. Other studies
have also linked miRNAs belonging to the miR-148
family with angiogenesis and glucose metabolism
through insulin like growth factor 1 receptor (IGF1R)
target inhibition [62].
With respect to other relevant DE miRNAs detected

in our study, the miR-30 family and miR-503 have been
described to be involved in skeletal muscle differenti-
ation and fiber-type composition [63, 64]. Moreover,
they also regulate adipogenesis [65], a role that has also
been reported for miR-148a [66] and miR-22 [67]. Fur-
thermore, the observed downregulation of miR-22 after
food ingestion (Table 1) could be the consequence of
the active influx of glucose within muscle cells after nu-
trient supply. Indeed, the glucose transporter 1 (GLUT1)
mRNA is targeted by miR-22 [68]. A similar reasoning
could be extended to miR-17-5p, which binds to the glu-
cose transporter 4 (GLUT4) mRNA [69] and that was
DD but not DE after feed intake (Table 2).

Relevant miRNA-to-mRNA regulatory interactions in
response to nutrient supply
Co-expression network analyses highlighted that the majority
of DE miRNAs were also potentially meaningful regulatory
factors (Tables 1, 3 and 4, Additional file 12: Table S12).
Other miRNAs also emerged as potential regulators (Tables 3
and 4, Additional file 12: Table S12) despite not being de-
tected as significantly DE, a finding that would be in agree-
ment with the very stable and low expression levels detected
for most miRNAs (Figs. 2 and 3b). These results evidence
the interest of reconstructing regulatory networks in order to
gain new biological insights that canonical differential expres-
sion analysis cannot yield [70]. Several critical downregulated
transcription factors in AL-T1 animals were identified as
potential co-expressed targets of ssc-miR-1 and ssc-miR-
148a-3p DE miRNAs (Additional files 2 and 6: Table S2 and
Table S6), e.g. the myogenic factor 6 (MYF6), FOS-related
antigen 2 (FOSL2) and arrestin domain-containing protein 3
(ARRDC3) for ssc-miR-1, and thioredoxin interacting protein
(TXNIP) and fasting-induced gene protein (DEPP1) for ssc-

miR-148a. The MYF6 gene has been previously associated
with the regulation of myogenesis and skeletal muscle cell
differentiation [8, 71]. A proliferation modulating function
has also been described for TXNIP [72] as well as for FOSL2
[73], which is also involved in leptin expression regulation
[74], whereas DEPP1 downregulation has been associated
with autophagy inhibition [75]. Moreover, ssc-miR-32 and
ssc-miR-7-5p, two miRNAs that were differentially upregu-
lated in AL-T1 gilts (Table 1), were predicted to target sev-
eral relevant genes (Additional file 6: Table S6) such as the
activating transcription factor 3 (ATF3), a key regulator of
glucose and energy metabolism [76, 77] which was signifi-
cantly downregulated in both AL-T0/AL-T1 and AL-T0/
AL-T2 contrasts (Additional file 2: Table S2). Other relevant
additional transcripts that formed part of the miRNA-to-
mRNA interconnected networks were, to mention a few, the
Kruppel-like factor 15 (KLF15), early growth factor 1 (EGR1)
and ARID domain-containing protein 5B (ARID5B), all of
which play key roles in muscle lipid metabolism [8, 78, 79],
or myogenin (MYOG), a gene that is crucial for muscle de-
velopment and differentiation [80].
With regard to AL-T2 gilts, it is worth mentioning the

PDK4 gene, which happened to be the most extremely
downregulated mRNA transcript (Additional file 2:
Table S2) and was also detected as DD in the AL-T0/
AL-T2 contrast (Additional file 3: Table S3). After
reconstructing meaningful miRNA-to-mRNA interac-
tions, seven miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p,
ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-
miR-493-5p and ssc-miR-503) were predicted to have
putative binding sites in the PDK4 3′-UTR (Additional
files 6 and 11: Table S6 and Table S11). Noteworthy, all
these miRNAs were significantly upregulated in the skel-
etal muscle of AL-T2 gilts (Table 1), with the only ex-
ception of ssc-miR-503, (Table 1). Our findings agree
well with a cooperative and synergistic interaction be-
tween the aforementioned miRNAs and the PDK4
mRNA, that would result in its strong downregulation
observed in AL-T2 pigs (Additional file 2: Table S2).
Interestingly, among the set of miRNAs significantly co-
expressed with PDK4 mRNAs, and also predicted to
interact with its 3′-UTR, ssc-miR-148a-3p and ssc-miR-
493-5p were two of the most significantly upregulated
miRNAs in AL-T2 gilts (Table 1). Moreover, the Tar-
getScan analysis [35] showed that both miRNAs have
evolutionarily conserved binding sites in the 3′-UTR of
the PDK4 gene (Additional file 15: Figure S3, Add-
itional file 10: Table S10). We may hypothesize that ssc-
miR-148a-3p and ssc-miR-493-5p play a key role in the
downregulation of the PDK4 mRNA after food intake,
but such hypothesis still needs experimental verification.
Co-expression network analysis also indicated that the

PDK4 gene might interact with a broad array of mRNA
transcripts (Fig. 6). Among these, several have been already
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mentioned (MYF6, FOSL2, KLF15, ARID5B, DEPP1,
MYOG or TXNIP) while others have not, e.g. aryl hydrocar-
bon receptor nuclear translocator like (ARNTL), forkhead
box O1 (FOXO1), neuronal PAS domain protein 2
(NPAS2), BTB domain and CNC homolog 2 (BACH2) or
the period circadian regulator 2 (PER2). The PDK4 gene is
one of the master regulators of glucose and lipid metabol-
ism [81]. Moreover, the PDK4 protein is located in the
matrix of the mitochondria and inhibits the pyruvate de-
hydrogenase complex, which catalyzes the conversion of
pyruvate to acetyl-CoA, and hence it is responsible of the
decrease in glucose utilization and the upregulation of fatty
acid oxidation in energy-deprived cells under fasting condi-
tions [82, 83].
The observed coordinated downregulation of both

PDK4 and FOXO1 mRNAs in the AL-T0/AL-T2 con-
trast (Additional file 2: Table S2) is consistent with the
active energy production and fatty acid synthesis of
muscle cells in response to nutrient supply, as already
reported by Cardoso et al. [5]. In fact, the activation of
FOXO1 is known to enhance PDK4 transcription by
binding to its promoter region [84, 85]. Besides, the
BACH2 transcription factor was also predicted to be reg-
ulated by ssc-miR-148a-3p (Additional files 6 and 10:
Table S6 and Table S10) as well as to interact with both
FOXO1 and PDK4 mRNAs (Fig. 6). These findings agree

well with the previously described role of BACH2 as a
transcriptional activator of FOXO1 by binding to its pro-
moter region [86–88]. The presence of genes involved in
the maintenance of circadian rhythms (NPAS2, ARNTL
and PER2) was also relevant, as the expression of the
PDK4 mRNA is subjected to circadian fluctuations in re-
sponse to light shifting and insulin and fatty acids avail-
ability [89–91]. Noteworthy, the potential implications
of nutrition in the regulation of the porcine peripheral
clocks was already discussed in two previous studies
using the very same animal material and experimental
design reported herewith [5, 40], a result that would be
in agreement with the reconstructed PDK4 miRNA-to-
mRNA interaction network reported in this study.

mRNA-to-mRNA hub genes reveal glucose and lipid
metabolism changes induced by food intake
Hub scoring of meaningful mRNA genes from se-
lected co-expression interaction networks also allowed
the identification of several relevant transcripts in-
volved in organizing the cell response to nutrient
availability (Additional file 8: Table S8), and several of
these were also detected as hub genes in WGCNA
analyses (Additional file 9: Table S9). With respect to
AL-T0/AL-T1, the NR1D2 gene was the most prom-
inent hub gene among all other transcripts, despite

Fig. 6 Selected miRNA-to-mRNA and mRNA-to-mRNA co-expression network according to the PCIT algorithm in the AL-T0/AL-T2 contrast.
Differentially expressed miRNAs and mRNAs were considered. Only significant correlations below − 0.5 for miRNA-to-mRNA and above |0.7| for
mRNA-to-mRNA interactions where selected. Red and blue edges indicate negative and positive correlations in the co-expression
network, respectively
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the fact that it was not detected as DE. This tran-
scription factor and its paralog Rev-Erbα (NR1D1)
contribute to establish links between circadian
rhythms and cell metabolism regulation [92]. Remark-
ably, other relevant top hub genes were not DE, e.g.
the BACH1 transcription factor, whose inhibition has
been associated with an increased protection against
oxidative stress [93], ETS1, which mediates FOXO1
acetylation and regulates gluconeogenesis in fasting-
feeding cycles [94] or CREB1, an important cofactor
for the peroxisome proliferator-activated receptor γ
coactivator 1-α (PPARGC1A), a gene that plays a key
role in insulin-mediated glucose uptake [95].
Regarding hub genes detected in the AL-T0/AL-T2

contrast (Additional file 8: Table S8), SCAMP2 has been
related to glucose transporters trafficking during insulin
stimulation [96], whereas NEU3, which was also highly
upregulated in fed gilts (Additional file 2: Table S2),
stimulates insulin sensitivity and glucose tolerance [97].
Other relevant examples are: SLC27A4, responsible for
long chain fatty acids metabolism and trafficking [98],
SLC19A2, also highly downregulated in fed gilts (Add-
itional file 2: Table S2) and reported as being negatively
regulated by glucose uptake [99], and NADK, a protein
that phosphorylates NAD+ to generate NADP+, a metab-
olite tightly linked with the regulation of circadian
rhythms [100].
These findings agree well with data previously re-

ported by Cardoso et al. [5], as well as with enrich-
ment analyses described in this study (Additional files
4 and 5: Table S4 and Table S5), where many DE
genes associated with diverse glucose and lipid metab-
olism pathways and GO terms were highlighted.
Other biological processes like muscle proliferation
associated to nutrient availability and circadian regu-
lation provided compelling evidence about the com-
plex machinery triggered in the skeletal muscle to
respond to nutrient supply after food ingestion.

Weighted co-expression analyses revealed hub genes
related with lipids metabolism regulation
Among the gene co-expression modules detected with
the WGCNA approach [38], the so-called Red and
Purple clusters (Additional file 14: Table S14),
corresponding to the AL-T0/AL-T2 contrast, con-
tained several relevant lipid metabolism-related genes
such as the fatty acid binding protein 4 (FABP4),
carbohydrate-responsive element-binding protein
(MLXIPL), fatty acid synthase (FASN), thyroid hor-
mone responsive protein (THRSP), stearoyl-CoA desa-
turase (SCD), acetyl-CoA carboxylase 1 (ACACA) or
the secreted frizzled-related proteins 1 and 5 (SFRP1
and SFRP5), as well as other loci such as the cholin-
ergic receptor nicotinic δ subunit (CHRND). From

these, the MLXIPL, FASN, SCD, SFRP1, SFRP5 and
THRSP genes were also significantly upregulated in
AL-T2 gilts after feeding (Additional file 2: Table S2).
Interestingly, the active/non-active conformation of

the muscle acetylcholine receptor function regulating
motor nerve-muscle communication and muscle con-
traction is tightly associated with the concentration of
certain surrounding fatty acid components, contributing
to stabilize or destabilize its functionality [101], a
phenomenon that could explain the observed association
between its δ subunit (CHRND) and the content of ω-3
fatty acids and ω6/ω3 content ratio in the gluteus med-
ius, as shown in Additional file 14: Table S14.
Other genes that are key regulators of lipid metab-

olism such as SCD, ACACA, FABP4, SFRP1, THRSP
or the hub genes SFRP5 and FASN (Additional file
9: Table S9), also clustered in a tight co-expression
module and they were significantly associated with
linoleic and arachidonic fatty acids content in the
gluteus medius muscle (Additional file 14: Table
S14). The SFRP5 protein has been thoroughly stud-
ied as a central regulator of lipid accumulation and
adipocytes differentiation, which are a result of an
increased mitochondrial respiration promoted by
SFRP5 blocking of Wnt signaling, hence repressing
Wnt-induced oxidative metabolism [102]. The other
identified SFRP element (SFRP1) has also been re-
ported to be located in a genomic region overlapping
a QTL for meat marbling [103, 104]. Moreover, the
THRSP, MLXIPL and FASN upregulation detected in
our analyses (Additional file 2: Table S2), as well as
their contribution to intramuscular lipid content
(Additional files 9 and 14: Table S9 and Table S14)
could be a reflection of the intramuscular adipocyte
proliferation triggered by the nutrient supply pro-
vided to AL-T2 fed gilts [105]. Indeed, the MLXIPL
is a key carbohydrate-signaling transcription factor
whose activity is enhanced by glucose metabolites,
thus binding to carbohydrate response elements
(ChoREs) present in the promoters of several key
lipid genes such as FASN [106].

Conclusions
In conclusion, we have demonstrated that the profiles
of expression of lincRNAs and miRNAs in the gluteus
medius muscle of pigs are very different than those
observed for mRNAs. For instance, the mean and the
variance of gene expression are closely interdependent
parameters in the case of mRNAs, while miRNAs do
not show such trend. We have also demonstrated that
feeding induces changes mainly in the mean expres-
sion of genes rather than on their expression vari-
ance, a parameter which remains relatively unaffected
by nutrient supply. Finally, co-expression network
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analyses predict that miRNAs and hub mRNA genes
may play an essential role in the regulation of
mRNAs showing differential expression upon feeding.
Such regulatory interactions predicted with in silico
tools should be validated experimentally in order to
verify their occurrence as well as to infer their bio-
logical significance in the context of porcine muscle
metabolism and nutrition.
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