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Abstract

Background: Commercial pre-weaning diets are formulated to be highly digestible and nutrient-dense and contain
low levels of dietary fibre. In contrast, pigs in a natural setting are manipulating fibre-rich plant material from a
young age. Moreover, dietary fibre affects gastrointestinal tract (GIT) development and health in older pigs. We
hypothesised that supplemental diets that contain vegetal fibres are accelerating GIT development in suckling
piglets in terms of size and functionality. From d 2 of life, sow-suckled piglets had access to a low fibre diet (CON),
a diet with a fermentable long-chain arabinoxylan (Ic-AXOS), a diet with a largely non-fermentable purified cellulose
(CELL), or a diet containing both fibres. During the initial 2 weeks, the control diet was a high-density milk replacer,
followed by a dry and highly digestible creep meal. Upon weaning at 25d, 15 piglets from each treatment group,
identified as eaters and originating from six or seven litters, were sacrificed for post-mortem examination of GIT
morphology, small intestinal permeability and metabolic profile of the digesta. The microbiota composition of the
mid-colon was evaluated in a sub-set of ten piglets.

Results: No major statistical interactions between the fibre sources were observed. Piglets consumed the fibre-
containing milk supplements and creep diets well. Stomach size and small intestinal permeability was not affected.
Large intestinal fill was increased with Ic-AXOS only, while relative large intestinal weight was increased with both
fibre sources (P < 0.050). Also, CELL decreased ileal pH and tended to increase ileal DM content compared to CON
(P < 0.050). Moreover, the concentration of volatile fatty acids was increased in the caecum (P < 0.100) and mid-
colon (P <0.050) by addition of CELL. Ic-AXOS only stimulated caecal propionate (P < 0.050). The microbiota
composition showed a high individual variation and limited dietary impact. Nonetheless, CELL induced minor shifts
in specific genera, with notable reductions of Escherichia-Shigella.

Conclusions: Adding dietary fibres to the supplemental diet of suckling piglets altered large intestinal morphology
but not small intestinal permeability. Moreover, dietary fibre showed effects on fermentation and modest changes
of microbial populations in the hindgut, with more prominent effects from the low-fermentable cellulose.
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Introduction

A piglet is born with an immature digestive system that
must go through major changes to digest and absorb
solid food. Although partly following an innate develop-
mental path, the gastrointestinal tract (GIT) displays a
high plasticity and is able to respond to luminal factors,
such as those originating from the diet and the establish-
ing gut microbiota [1, 2]. Initially, colostrum and milk,
and the bioactive components herein, will initiate devel-
opment. Typically starting at the 2nd week of life, the
GIT might be stimulated by solids when wild neonatal
piglets follow the dam on her foraging trips, thus having
access to all kinds of plant, animal and soil material. In-
deed, observations in a semi-natural environment show
that chewing straw and rooting is already performed
during the second week of life [3, 4]. It is conceivable
that this behaviour will result in intake of non-milk ma-
terials. In a commercial setting, suckling piglets are
regularly offered supplemental diets in the form of milk
replacers and dry feed (‘creep feed’) aiming to prepare
the piglet for weaning. These diets are typically milk
based, nutrient-dense and are formulated to be highly
digestible and palatable. Commonly, they contain low
levels of dietary fibre (DF) and may deviate largely from
what neonatal wild pigs ingest. However, whether or not
the early intake of DF is beneficial for GIT maturation
in the pre-weaning piglet has received limited attention
in scientific research.

As the pigs’ own enzymes cannot degrade DF, they re-
quire microbes harbouring in their intestines to utilize
them. In contrast to the suckling piglet, the older pig’s
microbiota has adapted to degrade the complex polysac-
charides like arabinoxylans, pectin and, to a certain ex-
tent, cellulose present in plant cell wall. This allows the
host to absorb and use the degradation products of fer-
mentation, mainly volatile fatty acids (VFA), as energy
substrate for maintenance and growth. Moreover, from
post-weaning pig studies, it is known that DF is impli-
cated in GIT development and health [5-7]. For in-
stance, DF might stimulate the early development of the
fibrolytic gut microbiota and the production of VFA [8].
The VFA, especially butyrate, stimulate gut epithelial cell
proliferation and differentiation [9]. Furthermore, the
inert, i.e. non-fermentable, fibre fraction might stimulate
the gut wall through its bulking and abrasive effect and
contribute to washing out pathogenic microbes [10]. Via
these actions, DF might have an effect on the gut devel-
opmental trajectory. This may lead to a gut system, in-
cluding its associated microbiota, which is readily
prepared for post-weaning life where vegetal carbohy-
drates, fats and proteins will be the main nutrients.

Therefore, a study was conducted to investigate the effect
of DF when added to milk- and dry creep feed diet supple-
ments fed to suckling piglets. To this end, we selected a
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wheat arabinoxylan and a wood cellulose representing a fer-
mentable and a non-fermentable fibre source, respectively.
Both DF represent the main non-starch polysaccharides
(NSP) found in cereal grains and other vegetable feedstuffs.
Arabinoxylans belong to the hemicellulose fraction in
grains and mainly consist of a backbone of the pentose xy-
lose with arabinose side-chains. An array of non-host
carbohydrate-active enzymes are needed for degradation of
arabinoxylans, and therefore, they are assumed to be fer-
mented post-ileum [11, 12]. Also, they are reported to have
prebiotic properties in humanized rats [11] and piglets. For
example, arabinoxylans can be utilized by fibrolytic Bacter-
oides spp. and Prevotella spp. which are dominant species
in the adult pig colon [13]. Moreover, isolated arabinoxy-
lans can decrease small intestinal and colonic permeability,
lower caecal pH, increase VFA in the hindgut and modulate
parameters of gut immunity [14, 15]. On the other hand,
cellulose consists of tightly packed linear chains of glucose
monomers (7—15 K monomers). This structural character-
istic makes them poorly soluble and less readily used as a
substrate for most gut bacteria, except those possessing cel-
lulolytic enzymes [16]. High cellulose containing feedstuffs
have been reported to alter stomach and large intestine (LI)
development and to improve small intestinal barrier func-
tion, reduce the proliferation of pathogens and improve fae-
cal consistency in post-weaning pigs [10, 17-19].

We hypothesised that supplemental diets enriched with
both lc-AXOS and cellulose would stimulate the develop-
ment of the GIT and its associated intestinal microbiota
of the suckling piglet.

Material and methods

The study was a 2 x 2 factorial design with four dietary
treatments, ie. diets with and without long-chain arabi-
noxylans (Ic-AXOS) and cellulose (CELL).

Animals and housing

Thirty-four Hypor Libra sows (Hendrix Genetics, Boxm-
eer, The Netherlands) of the resident herd of the research
station were inseminated (Hypor Maxter) and moved to
the farrowing unit 1 week prior to expected farrowing.
The unit consisted of four climate-controlled rooms with
ten farrowing crates (dimensions 200 cm x 260 cm) each.
Rooms were lit from 06:00 h until 22:00 h. Sow dry feeders
were elevated 40 cm above the floor hindering access by
the piglets. No bedding material was provided. The sows
were allowed to farrow spontaneously over a five-day
period. Two sows with small litters were immediately
weaned and their piglets redistributed over the remaining
32 litters. Litter size was equalised after 24 h while mini-
mising cross-fostering. Piglets were ear-tagged to allow
identification and processed following routine procedures,
including an iron injection within 3 d after birth and vac-
cination against porcine reproductive and respiratory
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syndrome virus (Porcilis PRRS, MSD Animal Health) and
F18 E. coli (Ecoporc Shiga, IDT Biologika GmbH). Neither
teeth clipping nor castration were applied.

Feeds and feeding

The basal composition of the milk supplement consisted
of dairy ingredients, vegetal proteins and fats, synthetic
amino acids and a vitamin and mineral premix. The test
creep meals were based mainly on native and extruded
cereals (corn, wheat, oats and barley), highly digestible
vegetable proteins, whey powder, fish and vegetable oils,
synthetic amino acids and a vitamin and mineral premix.
The final diet was made with the basal mixtures to
which extruded corn starch was added. The latter was
exchanged on a w/w basis with the two model com-
pounds (Tables 1 and 2). A purified finely ground wood
cellulose powder was used as the first test compound
(CELL; Arbocel BWW 40, Rettenmaier & Sohne, Rosen-
berg, Germany) and was characterised as having a low
viscosity and a water-binding capacity of 6 g water per g
DM. The second test compound was a low-viscous,
water-extractable long-chain arabinoxylan oligosacchar-
ide from wheat endosperm (lc-AXOS; BioActor, Maas-
tricht, The Netherlands). Based on supplier information,
it has a purity of at least 60% with a degree of polymer-
isation between 50 and 70.

Dose-response relations for DF and its effect on zootech-
nical or GIT parameters are not established for suckling
pigs. The lc-AXOS was included at 2% because of the rela-
tively low feed intake of suckling piglets. The CELL was in-
cluded at 5%, which was extrapolated from the levels used
by Metzler-Zebeli et al. [20] and Chen et al. [14]. The com-
bination supplemental diet contained 2% lc-AXOS and 5%
CELL. This resulted in four final milk supplements and
four creep meals that were only marginally different in en-
ergy and protein content. Organic acids were added to both
the milk supplement and the creep meal as preservatives
while palatants were added to increase attractiveness. Chro-
mium oxide (0.3% w/w) was added as a faecal colour
marker. No other feed additives were used. Moreover, all
test diets were formulated to meet or exceed the nutrient
requirements for this category of pigs.

Upon entering the farrowing unit, sows were fed a lac-
tation diet (ForFarmers, The Netherlands; 9.0 MJ NE per
kg, 156 g crude protein and 8.2 g lysine per kg). Once
born, their piglets were allowed to suckle freely. Supple-
mental milk was freshly prepared at least three times per
day from milk powder mixed with water (1 kg milk pow-
der:2.5 kg water) and provided from experimental d 2
until d 13. Then, from d 14 to 16, the milk was gradually
replaced by dry creep meal, which was fed until weaning.
Supplemental feeds were available ad libitum in round
feeders (diameter 27 cm) designed for suckling piglets.
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Table 1 Composition of the experimental milk supplements®

CON  Ic-AXOS  CELL  Ic-AXOS+CELL
Ingredient composition, %
Basal milk supplement® 920 920 90 90
Chromium oxide (Ill) 03 03 03 03
Cellulose® 50 50
lc-AXOS? 20 20
Corn starch heat treated 9.7 77 4.7 27

Calculated nutrient composition, per kg

ME, MJ 183 18.0 17.6 17.3
NE, MJ 14.7 144 14.1 139
Lys, g 160 159 159 158
Met+Cys, g 9.5 94 93 9.2
Thr, g 107 106 105 105
Trp, g 32 32 3.1 3.1
Starch (Ewers method), g 64 51 33 20
Lactose, g 348 348 348 348
Calcium, g 5.0 5.0 50 5.0
Phosphorus, g 4.8 4.7 46 46
Copper (total), mg 141 141 141 141
Zinc (total), mg 92 92 91 91
Analysed nutrient composition, per kg
Moisture, g 40 38 36 34
Crude protein, g 212 213 213 212
Crude fat, g 195 194 198 193
Ash, g 65 64 65 65
NDF, g 34 26 57 60

Piglets were fed supplemental milk diets (water:powder ratio 2.5:1) from d 2
to 13. From d 14 to 16 milk was gradually replaced by dry creep meals which
were fed until weaning

PBasal milk supplement consisted of dairy whey products (63.3%), fats and oils
(20.0%), wheat protein (5.6%), dextrose (5.0%), soy protein (2.8%), synthetic
amino acids (1.3%), vitamin and mineral premix (1.0%) and organic

acids (1.0%)

“Arbocel® BWW, natural pure cellulose (J. Rettenmaier & Sohne GmbH,
Rosenberg, Germany)

4Naxus, long-chain arabinoxylans extracted from wheat endosperm (BioActor
B.V., Maastricht, The Netherlands)

Water was always available through nipple waterers spe-
cifically suited for sows or for suckling piglets.

Sampling and measurements

Individual body weight of piglets was measured at birth, 24
h, d 13 and at weaning on d 25. Piglet weight increments
during the first 24 h were used to estimate the colostrum
intake. Daily supplemental diet disappearance was recorded
per litter. In order to identify piglets that actually were con-
suming supplemental diets, faecal swabs were taken on d 6,
13,19 and 22 and checked for the presence of the green dye
as previously described [21]. ‘Eaters’ were those animals ob-
served to have green coloured faeces on d 13 and 19 or d
22. Prior to weaning (i.e. d 23 and 24), 15 clinically healthy
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Table 2 Composition of the experimental dry creep meals®

CON  Ic-AXOS ~ CELL  Ic-AXOS+CELL
Ingredient composition, %
Basal meal ° 910 910 910 910
Chromium oxide (Ill) 03 03 03 03
Cellulose® 5.0 50
lc-AXOS* 20 20
Corn starch heat treated 8.7 6.7 37 1.7
Calculated nutrient composition, per kg
ME, MJ 7.5 72 6.8 6.5
NE, MJ 115 112 109 107
Lys, g 157 156 156 155
Met+Cys, g 9.0 89 8.8 88
Thr, g 10.2 10.1 10.0 10.0
Trp, g 3.1 3.1 3.1 3.1
Starch (Ewers method), g 241 229 210 198
Lactose, g 145 145 145 145
Calcium, g 52 52 52 52
Phosphorus, g 59 58 57 57
Copper (total), mg 176 176 176 176
Zinc (total), mg 101 100 100 99
Analysed nutrient composition, per kg
Moisture, g 65 65 64 62
Crude protein, g 188 189 186 185
Crude fat, g 125 123 119 118
Ash, g 50 51 50 50
NDF, g 60 67 114 107

?Piglets were fed supplemental milk diets (water:powder ratio 2.5:1) from d 2
to 13. From d 14 to 16, milk was gradually replaced by dry creep meals which
were fed until weaning

PBasal meal consisted of heat-treated cereals (29.1%), mono- and
disaccharides (17.2%), dairy whey products (16.5%), extruded soybean meal
(12.6%), heat-treated soy beans (6.78%), vegetable proteins (5.56%), barley
(4.44%), fats and oils (3.56%), vitamins and minerals (1.94%), synthetic amino
acids (1.79%) and organic acids (0.53%)

“Arbocel® BWW natural pure cellulose (J. Rettenmaier & Sohne GmbH,
Rosenberg, Germany)

?Naxus, long-chain arabinoxylans extracted from wheat endosperm (BioActor
B.V., Maastricht, The Netherlands)

and normal growing piglets per treatment were selected for
sampling. These piglets were also required to meet the fol-
lowing additional criteria: designated as ‘eater’, average
(within +1 SD of the mean) birth weight and colostrum in-
take. Piglets were euthanized by an intra-cardiac injection
containing 40% barbiturate pentobarbital, and a midline
laparotomy was performed immediately thereafter to gain
access to the gastrointestinal tract. The stomach was re-
moved and weighed, both full and emptied. The small in-
testine (SI) was cut at the ileo-caecal junction and prepared
free from its mesentery ligaments and its length and weight
was recorded. Subsequently, 20 cm of the most distal part
and a 20-cm section at 25% of the proximal SI was
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collected on ice-mounted petri discs for the everted sac
procedure (described below). The remainder of the SI was
emptied by gently squeezing contents into a container.
From this, a representative sample was taken and stored for
pH, VFA and ammonia analysis. The LI was cut at the rec-
tum, prepared free from mesentery ligaments, weighed
(empty and full) and its length was taken. Digesta samples
from the caecum and at 50% of the LI length were snap fro-
zen for microbiota profiling, pH measurement, VFA and
ammonia analysis.

Gut content metabolic profile

Homogenous 1g digesta samples were diluted with 2 M
sulfuric acid, thoroughly mixed and centrifuged. The
supernatant was analysed for lactic acid and VFA by
HPLC on a BioRad Aminex HPX-87H using a 0.005 mol/
L sulfuric acid eluent at a flow rate of 0.7 mL/min.
Ammonia-N (nitrogen as NH," and NH3) was analysed
colourimetrically using the Berthelot reaction. Briefly, the
sample was deproteinated using trichloroacetic acid and
then chlorinated with sodium hypochlorite under alkalic
conditions. This resulted in the conversion of NHj to
chloramine (NH,Cl). Subsequently, indolphenol and so-
dium nitroprusside were added to form indolphenol blue
[22]. The absorbance was measured in microtitration
plates at 630 nm (SpectraMax M2, Molecular Devices, San
Jose, CA, USA) and compared to a standard curve.

Gut permeability

The everted sac procedure was used to assess gut perme-
ability of the proximal and distal SI as described by De
Greeff et al. [23]. Briefly, a 20 cm gut section was cleaned
with PBS, everted and filled with a 5 mmol/L glucose-PBS
solution and submerged in PBS kept aeriated and at 39 °C.
The submersion fluid also contained permeability markers,
i.e. patent blue (Mol. weight 583; 3.6 g/L) and Co-EDTA
(Mol. weight 347; 40g/L). Both markers are assumed to
permeate para-cellularly based on their molecular weight.
They were analysed in a 10-mL sample extracted from the
gut segment after 1 h of incubation. The Patent Blue con-
centration was determined spectro-photometrically (Spec-
traMax M2, Molecular Devices, San Jose, CA, USA) at a
wave-length of 640 nm. Cobalt was analysed by inductively
coupled plasma-mass spectrometry (NexION 350D, Perki-
nElmer Inc., Waltham, MA, USA).

Microbiota analysis based on 16S rRNA

From the 15 animals sacrificed per treatment, a subset of
ten randomly chosen individuals was used for microbiota
analysis. To this end, a representative luminal sample from
the mid-colon was taken, immediately snap frozen on dry
ice and then transferred to a - 80 °C freezer. Subsequently,
cell lysis was performed (MagNA Lyser; Roche, Burges Hill,
UK) and genetic material was extracted using the MO BIO
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(Carlsbad, CA, USA) PowerMicrobiome™ RNA isolation kit
following the manufacturer’s instructions with a few modi-
fications, i.e. by omitting the B-mercaptoethanol and DNase
I. Mid-colon 16S rRNA gene libraries were prepared by
amplification of the V3—4 regions as described by Kozich,
Westcott [24] with some modifications. For example, to re-
duce PCR bias in high template samples,12.5 ng bacterial
DNA was used as template in the PCR with KAPA HiFi
Hotstart ReadyMix (Kapa Biosystems, Woburn, MA, USA).
Equimolar amounts of the correctly sized fragments were
pooled for sequencing. The pool was run on an agarose gel
and the amplicon was extracted from the gel and purified
by QIAquick Gel Extraction Kit (Qiagen, Hilden,
Germany). The library was sequenced on an Illumina
HiSeq platform 2 x 300 paired end. Sequence data was
processed and annotated using mothur (version 1.39 [25]).
100K reads per sample were merged and quality-filtered
against ambiguous bases and short fragments (< 400 bases).
Next, sequences were de-replicated and aligned against the
SILVA database NR-123 [26]. Only sequences that aligned
from positions 6428 to 23,440 were retained while others
were trimmed. Sequences were pre-clustered, and chimeras
were removed. Vsearch was used to cluster the final se-
quence set into operational taxonomic units (OTUs) at
97% similarity. Taxonomy was assigned using the Riboso-
mal Database Project Classifier (RDP; [27]), and sequences
classified as unknown, chloroplast, mitochondria, Archaea
or Eukaryotes were removed.

Statistical analysis

No major interactions between CELL and lc-AXOS were
observed (P <0.010). Hence, the main effects are re-
ported herein. The zootechnical parameters were evalu-
ated using the PROC GLM procedure of SAS Studio
(SAS Institute Inc., Cary, NC, USA) with treatment and
farrowing room as class variables. Diet and day of eu-
thanasia were class variables to evaluate the effect on gut
metrics while individual piglets were nested within a
sow-litter combination using the following model:

Yija = p + day; + lc-AXOS; + CELLy
+ SOW(CELL7 lC—AXOS) + €ijkl

where Yj; = dependent variable, p=overall mean, day=
sampling day (i = 23,24), dietary treatments, i.e. Ic-AXOS (0
or 2%) and CELL (0 or 5%) and e; = residual error. Differ-
ences were considered significant if P < 0.050 and 0.05 < P <
0.100 was considered a trend.

Microbiota data analysis were performed in R using
vegan (vegan: Community Ecology Package, R-package
version 2.4-3) and phyloseq [28]. We used permutation
ANOVA to determine the correlation between the micro-
bial composition and other gut and animal performance
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parameters. Deseq2 was used to test differential abun-
dance of the OTUs between treatments [29].

Results

Generally, clinical health of the animals during the study
was good. The supplemental feed intake showed a high
inter-litter variation and a typical pattern of low intakes
during the initial days after birth followed by a gradual
increase up to 2 weeks and a steep rise during the week
prior to weaning. Prior to weaning, 77% of the piglets
were consuming the supplemental diets, and this was
the same for all treatment groups (Table 2). Supplemen-
tal milk intakes were higher for CELL and the combin-
ation of Ic-AXOS and CELL when compared to CON
(P =0.018), while DM intakes from creep meal were not
different (P =0.108; Table 3). Additional zootechnical
data are presented in Table 3.

Gastrointestinal morphometrics

Fibre source did not affect stomach weight (Table 4).
The SI tended to be longer with CELL (P =0.080). The
SI permeability was not affected by fibre source (P>
0.100). The LI contained more digesta with fibrous diets
(P=0.006 and 0.082, for lc-AXOS and CELL, respect-
ively). Moreover, CELL increased LI length (P =0.019),
and both fibres increased relative LI weight expressed as
percentage of body weight (P =0.026 and 0.021 for lc-
AXOS and CELL, respectively). SI and LI weight:length
ratio did not differ between treatments.

Microbiota and metabolic profiles

The DM concentration tended to increase (P =0.064)
and pH of the ileum content for piglets fed CELL de-
creased (P =0.030). Dietary fibres did not alter DM and
pH in the more distal gut (Table 5). In the caecum,
CELL tended to increase acetic acid (P =0.073) and total
VFA (P =0.092) concentration, while lc-AXOS increased
propionic acid (P =0.030). In the mid-colon, concentra-
tions of acetic- and butyric acid and total VFA were in-
creased by CELL (P < 0.050), while 1c-AXOS elicited no
significant changes.

In general, the most abundant OTUs belonged to the
Firmicutes and Bacteroides phyla covering over 95% of
the sequences, followed by Actinobacteria and Spiro-
chaetes. Within Firmicutes, the classes Clostridia and
Bacilli were highly represented in all samples. The core
microbiota on genus level revealed a large individual
variation within all groups (Fig. 1la). While treatments
did not show a shift in alpha diversity (expressed as
Shannon-index) or Bray-Curtis beta-diversity (Fig. 1b
and c), variance of Shannon diversity was increased for
the piglets fed CELL (P =0.007). An increased variance
was not observed for between-sample diversity (beta-dis-
persion; Fig. 1b). The constrained correspondence plot
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Table 3 Zootechnical data of animals under study. Data expressed as means

Parameter CON |c-AXOS CELL lc-AXOSXCELL Pooled P-value
SEM
Number of sows 7 7 6 6 - -
Parity (range) 3.0 (1-6) 34 (1-6) 4.0 (2-6) 33 (1-5) 0.69 0.857
Litter size after cross fostering 129 13.1 13.2 133 0.26 0.638
Litter size at weaning 12.3 13.1 13.0 12.7 0.31 0.215
Boar/qilt ratio 8/7 7/8 7/8 6/9 - -
Birth 142 1.62 1.64 152 0.118 0.713
D13 497 481 491 4.80 0300 0.776
End (d 23/24) 7.99 7.87 8.25 7.80 0438 0817
Estimated colostrum intake, g 443 519 515 463 447 0.662
Milk supplement intake, g DM 218° 253 342° 346° 434 0018
Creep meal intake, g DM! 369 468 649 555 95.5 0.108
Ratio eaters:non-eaters 0.76 0.77 0.73 0.80 0.082 0.930

'Estimate based on DM intake per litter divided by litter size at weaning. ?In litters used for the study. ‘Eaters’ were animals that had green coloured faeces on d
13 and 19 or d 22. *® Values with different superscripts within a row are significantly different (P < 0.05)

Table 4 Gastrointestinal morphometrics and ex-vivo small intestinal permeability. Data are expressed as LSmeans (n =15 per
treatment)

Parameter Lc-AXOS CELL Pooled P-value
No Yes No Yes SEM Ic-AXOS CELL
Absolute metrics
Stomach weight, g 45 44 43 45 20 0.606 0572
Small intestine length, cm? 746 771 728 789 237 0.408 0.080
Small intestine weight, g ° 219 222 219 222 9.5 0.746 0.789
Large intestine length, cm 132 136 127 140 36 0.347 0.019
Large intestine weight, g 64 71 64 71 2.8 0.123 0.108
Large intestine fill, g 56 76 60 72 4.6 0.006 0.082
Weight relative to body weight, %
Stomach 0.56 0.57 0.54 0.58 0.020 0.726 0.178
Small intestine 271 287 272 286 0.096 0223 0334
Large intestine 0.80 0.92 0.80 0.92 0.035 0.026 0.021
Weight: length ratio, g/cm
Small intestine (SI) 030 029 030 028 0.0M1 0.657 0201
Large intestine 0.50 0.52 0.51 0.51 0.021 0480 0910
SI permeability, log;o mg/L °
Proximal (PB) 1.18 1.05 1.14 1.09 0.074 0.246 0.699
Proximal (Co) 1.97 1.87 1.94 1.90 0.054 0.219 0.631
Distal (PB) 0.99 0.99 097 1.02 0.069 0.855 0.587
Distal (Co) 1.84 1.83 1.82 1.85 0.045 0.896 0.557

?Excluding the gut sections used for the everted sac procedure
PData are log;, transformed concentrations of Patent Blue (PB) and cobalt (Co) in the everted sac section
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Table 5 Bacterial metabolites (mmol/L), pH and dry matter in different sections of the gut. Data are expressed as LSmeans (n =15

per treatment)

Parameter Ic-AXOS CELL Pooled P-value
No Yes No Yes SEM Ic-AXOS CELL
lleum
Dry matter, kg/kg 0.17 0.14 0.15 0.18 0.011 0.501 0.064
pH 6.16 6.28 6.37 6.07 0.091 0.355 0.030
Ammonia-N 8 7 9 7 09 0.277 0.135
Lactate 6 7 6 7 09 0.178 0.202
Acetic acid 4 3 4 3 06 0.534 0.245
Propionic acid bd' bd bd bd -
Butyric acid bd bd bd bd -
Valeric acid bd bd bd bd -
Branched-chain VFA*? 5 4 4 5 05 0.166 0479
Total VFA? 10 8 10 9 0.8 0.248 0.725
Caecum
Dry matter, kg/kg 0.13 0.12 0.12 0.13 0.005 0.837 0.921
pH 6.10 6.09 6.11 6.08 0.041 0.784 0.547
Ammonia-N 58 55 58 55 32 0.386 0491
Lactate bd bd bd bd -
Acetic acid 72 74 69 77 32 0.770 0.073
Propionic acid 22 25 23 24 1.1 0.030 0451
Butyric acid 12 12 12 12 0.7 0914 0.559
Valeric acid 2 2 2 2 03 0.813 0.952
Branched-chain VFA® 5 5 4 5 04 0.886 0.651
Total VFA* 114 118 111 121 39 0475 0.092
Mid-colon
Dry matter, kg/kg 0.17 0.18 0.18 0.17 0011 0.523 0.653
pH 6.17 6.15 6.20 6.12 0.051 0.769 0314
Ammonia-N 62 62 62 62 2.2 0.861 0.975
Lactate 7 5 4 8 16 0.599 0.057
Acetic acid 44 44 35 53 44 0.955 0.007
Propionic acid 10 13 10 13 14 0.187 0.238
Butyric acid 15 15 13 16 0.8 0.871 0.021
Valeric acid 1 1 1 1 0.2 0.180 0.982
Branched-chain VFA? 4 5 5 5 05 0401 0.881
Total VFA* 74 77 64 87 6.5 0.642 0.024

! bd = below detection limit;  Iso-butyric and iso-valeric acid; > Mainly iso-butyric as iso-valeric acid was below detection limit;  Total VFA = sum of acetic,

propionic, butyric, valeric and branched chain VFA

(CCA) did not reveal associations between treatments and
microbiota composition, GIT or performance parameters,
other than associations between pH and relative daily gain
(g body weight gain per kg of birth weight) versus the or-
ganic acid concentrations (Fig. 1b). Differential abundance
tests showed various taxa responding to CELL, most
markedly by the changes in two genera belonging to the
family of Ruminococcaceae and a reduction in the Escheri-
chia-Shigella genus (Fig. 1d).

Discussion

Our data suggest that dietary fibres (DF) stimulate as-
pects of large intestinal development in suckling piglets.
Unlike most other studies, piglets utilized for dissection
were verified to consume the test diets. This is an im-
portant experimental aspect as up to one quarter of pig-
lets were reported to not eat solid diets prior to weaning
[21, 30], as was the case in the current study. The fibre-
containing supplemental diets were well consumed when



Hees et al. Journal of Animal Science and Biotechnology (2019) 10:83 Page 8 of 11
p
A Genus composition B Beta-Diversity (CCA)
Control lc-AXO0S o [ J
. L Taxa _& dm
= = Others &, PA
_ B Ruminococcaceae_NK4A214_group o
== = % B Alloprevotella 3
1 —| = B Megasphaera Treatment
@ B l = . gtreplococcus Lee-ote 8 VA
c I ] B Blavia c \‘ @ Control
5 - Coprococcus_3 & o ® ® Ic-AXOS
< 2 Bagtgreida\esﬁs%# '_group_unclassified a C
§. ' W Ruminococcus_2 >° ® CELL
Christe 1l R-7.
&0 B [Eubscienum] sopostandigenes_group = A+C
o Lachnospiraceae_unclassified -
o B Dorea =24 @® pH
2 Phascolarctobacterium N
o B Ruminococcaceae_UCG-005 <
= | M Subdoligranulum I3
M Clostridium_sensu_stricto_1 o
M Peptostreptococcaceae_unclassified
L il T T

C Alpha-Diversity

Observed Shannon Beta_dispersion
0.6 [ ]
800
4.0 o ©
0.5
700+ ]
3.6
0.4 °
6001
32 03] ?
5004
28+ 02—
2849 £282%9% £2837¢%
§ X8 < £ X8 < £ X8 <
o T o T o T
© © ©

nce

a

Relative abund

Fig. 1 a-d Microbiota composition analysis of the mid-colon. CELL = diet enriched with purified cellulose, Ic-AXOS = diet enriched with long-chain
arabinoxylans (n =10 per treatment). a Proportions of the 20 most abundant genera in the mid-colon per dietary treatment and animal. b
Constrained Correspondence Analysis (CCA) of the Bray-Curtis beta-diversity ordinated against zootechnical parameters and bacterial metabolites
in the mid-colon. AA; Acetic acid, BA; Butyric acid; PA; Propionic acid, LA; Lactic acid; VA; Valeric acid, IBA; Isobutyric acid, IVA; Isovaleric acid, dry
matter, BWa; Body weight at autopsy; BWb Body weight at birth; WGr; weight gain relative to BWb. ¢ Diversity metrics, i.e. observed diversity in
OTUs, Shannon index and Beta-dispersion index on Bray-Curtis None of them were significantly different (P> 0.100). d Relative abundance of six
genera with a significant (P < 0.05) differential abundance in response to dietary treatments

-2
CCA1: 25% Variance explained
D Responding genera

Anaerovibrio Cloacibacillus Collinsella
@
1e-021 b 1e-02+ 0.030 [ ]
1e-031 1e-031 0.0101
? —— 0.003
_04] 6-041
1e-04 hd 0.0014
1e-054 1e—05-gi
Escherichia-Shigella Ruminococcus_1 Ruminococcus_2
0.1001
1e-021 1e-021 ;
0.010 *
1e-031 ° 1e-031 * ?
1e-04 1 1e-041 0.0014 [ ]
. - @ e
2849  283% 2839
s X 6 < 5§ X 6 < s X o <
o T o T o T
© o o

compared to the control diet as indicated by greater sup-
plemental feed intake and large intestinal fill. This is
consistent with observations by Hanczakowska et al. [31]
and Zhang et al. [8]. Yet, despite the fact that the ob-
served intakes on litter level are similar or higher com-
pared to literature reports (e.g. [8, 21, 30]), the paucity
of significant differences may have been caused by the
low supplemental feed intake. Moreover, the experimen-
tal design did not allow the quantification of individual
nutrient intakes, which are known to be variable [32].
Clearly, another complexing factor when studying the
effect of supplemental diets in the suckling piglet is the
fact that sow milk consumption will have a significant
yet unquantifiable impact on gut development, its bac-
terial community and its metabolic activity. For instance,
sow milk contains a suite of bioactive compounds, such
as growth factors (e.g. epidermal growth factor, insulin
like growth factor) and immunoglobulins. In addition, it
contains a plethora of different oligosaccharide struc-
tures (porcine milk oligosaccharides; PMO, [57, 58]) that
are substrates for fermentation by gut microbes. Indeed,

sow milk composition varies between individuals and
can shape the microbiota composition [34]. Compared
with data in sow milk fed piglets [59, 60], in the current
study VFA levels of the control animals seemed to be
stimulated in the caecum and colon section of the gut.
This is indicative of a background stimulation brought
about by the basal diet. The above suggests that back-
ground substrate levels may already be present at con-
siderable concentrations, and that their profile — and
how to modulate that — deserves more attention in the
light of gut maturation strategies.

Effect of dietary fibre on large intestinal microbiota and
metabolites

In general, the effect of DF on gastrointestinal function
and development are primarily ascribed to alterations in
the gastrointestinal microbial composition and its meta-
bolic activity, i.e. VFA production. The GIT microbiota
of the neonatal piglet under commercial conditions is
shaped by the sow vagina, manure, milk and the pen
flooring in interaction with the host genome [33]. The
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introduction of supplemental feeds was shown to be an-
other source of influence [34]. However, enrichment with
DF of the supplemental feeds did not lead to major
changes in the microbiota composition. In our experi-
ment, animals that were consuming the supplemental di-
ets from experimental d 13 onwards were used, while we
observed only a few of them to eat on d 6. This implies
that consumption of diets occurred for at least 10 d prior
to the time of the measurements. Still, this period may
have been too short for the adaptation of the intestinal
microbiota to fully ferment NSP, especially a more struc-
turally complex type. It has been suggested that a period
of 14-21d in pigs over 25kg [35] or even longer in the
young pig [36, 37], is needed for full adaptation. Moreover,
individual differences in adaptation time to DF in micro-
bial composition have been reported [38]. Indeed, the ob-
served increased variance in diversity of the mid-colon
microbial composition may reflect an individual response,
whether or not caused by the underlying variation in feed
and milk intake pattern. However, this hypothesis is not
supported by the variance in beta diversity.

Only a few literature reports exist on pre-weaning DF in-
duced microbial shifts. For instance, Zhang and co-workers
observed shifts in specific groups with fibre-enriched diets
when compared to a low-fibre control diet [8]. In a follow-
up paper, using qPCR, they were able to demonstrate an
upward trend in Clostridium cluster XIVa and genes for
the butyrate pathway with cellulose [39]. This is consistent
with an increase in colonic butyrate concentration by cellu-
lose observed in the present study. Moreover, shifts in the
metabolic profile in the lumen of the hindgut were detected
with CELL. This suggested the stimulation of cellulolytic
microbes, as was earlier shown in the older pig [40, 41].
The observed shifts within Ruminococcaceae do support
this notion (Fig. 1d). Alternatively, cellulose may have in-
creased the transit of substrate through the digestive tract,
thus reducing the time for pre-caecal digestion and absorp-
tion [42, 43]. Moreover, DF and particularly insoluble fibre
sources lead to increased ileal endogenous nitrogen losses
[44]. As a result, more nutrients, e.g. starch, proteins but
perhaps also lactose, are arriving in the hindgut to become
substrate for the microbiota. Indeed, the higher DM and
lower pH does point toward more substrate reaching the
end of the SL Also, the increased concentrations of acetate,
butyrate and lactate in the hindgut, indeed indicate a gen-
eral stimulation of microbial fermentation and this is con-
sistent with increased colonic fill and size. The increased LI
size observed with the arabinoxylans might be attributed to
the increase in digesta volume and less through the stimu-
latory effect of VFA.

Based on several studies, stimulation of specific groups
of gut bacteria e.g. Lactobacillus spp. [14] and Bifidobac-
terium, Bacteriodes and Roseburia [45, 46] by lc-AXOS
were expected. Partly, this lack of incongruence with
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earlier work may be explained by differences in the re-
search model used, the composition of the basal diet and
the DF inclusion level. Still, a slight but significant increase
in caecal propionic acid concentration was observed,
which is in agreement with earlier reports [11, 14, 46].

Dietary fibre enrichment and indicators for intestinal
health

Gut permeability is regarded as an important maturational
aspect because a more permeable gut could lead to trans-
location of toxins and pathogens, causing a health risk for
the animal. In young piglets receiving only sow milk, a re-
duction of marker passage over the SI wall with age was
observed [47], and the same group showed that diet might
modulate this parameter [48]. In the post-weaning pig fed
a synthetic low-fibre basal diet enriched with lc-AXOS,
Chen and co-workers reported reduced SI and colonic
permeability. Still, this was only true for a high molecular
weight marker and not for a smaller-sized marker mol-
ecule, indicating an effect on transcellular permeability
only [14]. The same authors ascribed the main gut barrier
enhancing properties of wheat bran to the arabinoxylans
and not to the cellulose fraction. In contrast, we were not
able to confirm a reduction of small intestinal permeability
with either of the two model fibres. Similarly, the study by
De Greeff et al. [23] showed that supplemental feeding
stimulated several parameters of gut development but not
gut barrier function.

During the initial post-natal weeks, the microbiota is
variable and prone to perturbations. In this phase, intes-
tinal pathogens start to proliferate and can cause clinical
disease [49]. The observed stimulation of VFA and lac-
tate in the hindgut with cellulose may be regarded as
beneficial as it can inhibit the growth of bacterial patho-
gens like E. coli [50, 51]. Specifically, butyrate is regarded
as important for the maintenance of the gut barrier
function, since it is the main energy source for colono-
cytes [9]. Furthermore, the abrasive effect of the insol-
uble cellulose may cause sloughing of epithelial mucus
together with the adherent microbes. This lowers the
opportunities for potential pathogens from the Entero-
bacteriaceae family to proliferate [10, 52, 53] and agrees
with the reduction of the closely related and potentially
pathogenic genera Escherichia-Shigella in our data.

Branched-chain fatty acids (BCFA) and ammonium con-
centrations reflect bacterial protein breakdown and are ir-
ritants for gut epithelium [54]. Despite earlier reports that
DF can reduce putrefactive fermentation [50], we were
not able to confirm this in our study. This suggests an un-
altered protein:carbohydrate ratio of the substrate avail-
able for fermentation by the colonic microbiota.

The increased large intestinal fill caused by DF may
lead to shorter digesta transit time reducing the risk of
constipation [55]. It is currently not clear, however, what
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the clinical relevance is for suckling pigs. A more devel-
oped LI can lead to an increased resorption of water and
electrolytes, thus lowering faecal fluid losses and the risk
of faeces inconsistency after weaning, as suggested by
van Beers-Schreurs [56]. However, at the mid-colon level
the DM concentration was not altered in our study.

Finally, it remains to be elucidated whether the magni-
tude of the observed changes due to DF are able to elicit
health and performance benefits when piglets are sub-
jected to weaning.

Conclusions

The suckling piglets accepted the fibre-enriched supplemen-
tal diets. In support of our hypothesis, addition of dietary fi-
bres increased large intestinal size and fill. VFA production
in the hindgut was stimulated mainly by cellulose. Effects on
mid-colon microbial composition were absent, except for
some minor shifts in specific genera with cellulose.
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