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Prepartum body conditions affect insulin
signaling pathways in postpartum adipose
tissues in transition dairy cows
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Abstract

Background: Overconditioned dairy cows are susceptible to excessive lipolysis and increased insulin resistance
during the transition period. The associations among body fat reserve, insulin resistance, and lipolysis in adipose
tissues (AT) remain to be elucidated. Therefore, this study aimed to investigate whether excessive fat reserves
influence the insulin signaling pathway in AT postpartum.

Results: Twenty multiparous dairy cows were selected and assigned to one of two groups, according to prepartum
body condition score (BCS): Control group (BCS = 3.0–3.5; n = 10) and Overconditioned group (BCS ≥ 4.0; n = 10).
Blood samples were collected on days −14, −7, −4, −2, −1, 0, 1, 2, 4, 7, and 14 relative to parturition. Subcutaneous
AT were collected on day 2 following parturition for quantitative real-time polymerase chain reaction and western
blot analyses. No differences were observed between the two groups in serum glucose, non-esterified fatty acids,
β-hydroxybutyric acid, tumor necrosis factor (TNF) α, insulin, or leptin concentrations during the experimental
period. Compared with the control cows, the overconditioned cows had lower serum triglyceride levels and
higher adiponectin concentrations. In the AT postpartum, insulin receptor mRNA and protein levels were lower
in the overconditioned cows than in the control cows, and no differences were found in glucose transporter 4
mRNA. Compared with the control cows, the overconditioned cows had lower mRNA levels of TNFα and higher
mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ) in AT postpartum. The
phosphorylated protein kinase B (AKT) content and phosphorylation rate of AKT were increased in the
overconditioned cows compared with the control cows, which suggested that the downstream insulin signaling in AT
was affected.

Conclusions: In the present study, transition dairy cows with higher BCS did not show more fat mobilization. The
changes of insulin signaling pathway in AT postpartum of overconditioned cows may be partly related to the
expression of PPARγ and TNFα, and the secretion of adiponectin.
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Background
During transition from late pregnancy to early lactation,
most dairy cows, especially high-yielding dairy cows which
need more energy for milk production, undergo negative
energy balance (NEB), leading to the mobilization of fatty
acids from adipose tissues (AT) [1]. AT are important for
the dynamic control of energy metabolism, and adequately
regulated lipolysis is necessary for dairy cows to successfully

adapt to NEB, and the limited release of non-esterified
fatty acid (NEFA) can fully meet the energy demand
[2, 3]. However, excessive lipolysis can lead to accumu-
lation of high concentrations of NEFA and beta hydro-
xybutyric acid (BHBA) in the blood, which can result
in health problems such as ketosis and fatty liver [4, 5]
and potential losses in milk yield [6, 7].
Insulin resistance (IR) can accelerate AT lipolysis and

the accumulation of NEFA in turn increases the degree
of IR, which is associated with the development of
inflammatory and metabolic diseases [8]. Transition
dairy cows with an excessive lipolytic response exhibit
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impaired insulin signaling in AT [9]. Therefore, main-
taining a balance between IR and fat mobilization is
beneficial to the metabolic adaptation of transition dairy
cows. The regulation of insulin signaling pathway by
blood metabolites during lipolysis may be responsible
for the development of IR in AT [10, 11].
The body condition score (BCS) is recognized as an

important variable in transition dairy cow management
[12], and a higher BCS, namely obesity, indicates a
greater risk for postpartum metabolic disorders [13–15].
The influence of nutrition factors on insulin sensitivity
[16] and insulin signaling [10] has been extensively
investigated in dairy cows. Overconditioned cows are
known to be susceptible to excessive fat mobilization
during transition period [17]. Although previous studies
have suggested that overfed cows or cows with a higher
BCS are more insulin resistant [18, 19], it was reported
recently that body condition did not affect AT IR post-
partum [11]. Studies have also suggested that cows with
high weight loss were more prone to specific IR in AT
[9]. AT also play endocrine roles by secreting adipokines,
including adiponectin, leptin and tumor necrosis factor
(TNF) α, which are involved in the regulation of AT me-
tabolism [20]. Peroxisome proliferator-activated receptor
gamma (PPARγ), a subtype of the PPAR family, is highly
expressed in ruminant AT and has been shown to play a
central role in the transcriptional control of genes en-
coding proteins involved in glucose and lipid metabolism
[21–23]. The metabolic changes of transition dairy cows
with different BCS may be related to IR development.
Considering that the interaction mechanism of IR and

lipolysis is still unclear, we hypothesized that excessive
lipolysis happened in overconditioned cow, and their
blood metabolites affected the development of IR in AT
postpartum, especially during the first wk after calving
because of sudden increase in energy demand at the
initiation of milk synthesis [24]. The objective of the
present study was to investigate the association of a
higher BCS prepartum with dynamic changes in metabo-
lites, hormones, and adipokines in transition dairy cows,
and to reveal whether excessive fat reserves influence
the insulin signaling pathway at the gene and protein
levels in AT immediate postpartum.

Materials and methods
Animals and diets
This study was carried out in a high-yielding commercial
dairy herd in Beijing, China. Prepartum BCS was assessed
according to a 5-point scale method [23] on approxi-
mately day −21 relative to the expected calving date. A
total of 20 clinically healthy, multiparous (parity from
2 to 4) Holstein cows, with no history of debilitating
disease, were selected and assigned to one of two
groups according to the scored BCS as follows: control

group (BCS = 3.0–3.5; n = 10) and overconditioned
group (BCS ≥ 4.0; n = 10). All the selected cows had
free access to water throughout the study and were fed
three times daily (07:00, 12:00 and 19:00 h) with a total
mixed ration ad libitum. Table 1 reports the composition
of the diet used during the experiment (close-up dry
period, 20d prior to expected parturition; lactation period,
days following parturition). During the lactation period,
the cows were milked at 05:30, 10:30, and 17:00 h. Milk
yield for each experimental cow was recorded daily from
day 11 to day 30 relative to parturition.

Blood and adipose tissue sampling
Blood samples were collected from the caudal vein prior
to the morning feeding on days −14, −7, −4, −2, −1, 0, 1,
2, 4, 7, and 14 relative to parturition. The samples were
centrifuged (2,000×g for 10 min) and the serum was col-
lected and stored at −20 °C until analysis.
AT samples of approximately to 5 g were collected on

day 2 postpartum from the area below the spinal pro-
cesses between the ischium (pin bone) and coccygeal
vertebrae of the three cows in each group, as previously
described [25]. The AT samples were immediately placed
into plastic vials, snap-frozen in liquid nitrogen and
stored at −80 °C.

Serum metabolite, hormone, and adipokine analysis
The concentrations of glucose and triglycerides were
determined for each serum sample using commercially
available kits (Biosino Bio-technology and Science Inc.,
Beijing, China) in an automatic clinical chemistry analyzer
(Accute TBA-40FR, Toshiba, Tokyo, Japan).
Serum concentrations of NEFA (Cusabio, Wuhan,

China), BHBA (Cusabio, Wuhan, China), TNF-α (Abcam,

Table 1 Ingredient and nutrient composition (DM basis) of the
basal diet for dairy cows during the experimental period

Itema Close-up dry period Lactation period

Ingredient, %

Roughage 56.8 45.0

Concentrate 43.2 55.0

Chemical analysis

NEL, Mcal/kg 1.47 1.76

DM, % 58.7 53.8

CP, % 14.2 17.4

Fat, % 3.1 6.1

NDF, % 52.9 33.4

ADF, % 28.1 19.6

Calcium, % 0.42 0.8

Phosphorus, % 0.44 0.3
aDM Dry matter, NEL Net energy for lactation, CP Crude protein, NDF Neutral
detergent fiber, ADF Acid detergent fiber
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Cambridge, UK), insulin (Colorfulgene Biological
Technology, Ltd., Wuhan, China), leptin (Colorfulgene
Biological Technology, Ltd., Wuhan, China), growth hor-
mone (GH; Cusabio, Wuhan, China), and adiponectin
(Colorfulgene Biological Technology, Ltd., Wuhan, China)
were determined using commercially available ELISA kits,
according to the manufacturer’s instructions.

RNA extraction and reverse transcription
Total RNA was extracted from the AT samples using TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA), following the
manufacturer’s instructions. The concentration and purity
of the total RNA were determined spectrophotometrically
at 260/280 nm. The RNA purity was assessed by its A260/
A280 ratio with expected values between 1.8 and 2.0 using
a NanoDrop ND-2000C spectrophotometer (NanoDrop
Technologies Inc., Wilmington, DE, USA). The RNA
integrity was measured using agarose gel electrophoresis
and the gel image showed the distinct intact bands of 5S,
18S and 28S rRNA. The total RNA was reversed tran-
scribed into cDNA using the ImProm-II Reverse Tran-
scription kit (Promega, Madison, WI, USA), according
to the manufacturer’s instructions. The synthesized
cDNA was stored at −20 °C prior to real-time poly-
merase chain reaction (PCR) analysis.

Quantitative real-time PCR analysis
Quantitative real-time PCR analysis was performed using
an ABI 7500 Real-Time PCR system (Applied Biosystems,
Foster City, CA, USA). Table 2 lists the sequences of
primers used in this study. The cDNA was amplified with
SYBR® Premix DimerEraser™ (Takara Biotechnology, Inc.,
Shiga, Japan) containing 2 μL cDNA, 1.0 μmol/L primers,

10 μL 2× SYBR Premix DimerEraser, and 0.4 μL ROX
(passive reference dye). The templates were amplified
following preincubation at 95 °C for 30 s, followed by
amplification for 39 cycles (95 °C for 5 s, 60 °C for 30 s,
and 72 °C for 15 s). All the reactions revealed a single
product as determined by melting curve analysis. All
the reactions were performed in triplicate.
The relative abundance of mRNA was calculated accor-

ding to the method of Li et al. [26]. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), β-actin and
hypoxanthine phosphoribosyl-transferase (HPRT) were
chosen as the housekeeping control genes. To evaluate the
relative quantification of mRNA expression, the cycle
threshold (CT) values of the target genes were normalized
to the geometric mean of the CT values of the three
selected housekeeping genes, and the results were pre-
sented as fold changes using the 2−ΔΔCT method. The
relative mRNA expression of the target genes in each
group was calculated using the following equations:

ΔCT ¼ CT target geneð Þ−CT geometric mean of housekeeping genesð Þ;

ΔΔCT ¼ ΔCT treated groupð Þ−ΔCT control groupð Þ:

Western blotting
Proteins were extracted from the AT using a commercial
kit for AT (Invent Biotechnologies, Inc., Plymouth, MN,
USA), according to the manufacturer’s instructions. A
BCA protein assay kit (Pierce Chemical Co., Rockford, IL,
USA) was used to determine the concentration of protein
in the supernatant from each sample. The following
primary antibodies were used: rabbit polyclonal anti-pro-
tein kinase B (AKT) (#9272S; 1:1,000 dilution), rabbit

Table 2 Sequences and accession numbers of oligonucleotide primers used for real-time PCR and the length of the PCR products

Gene name Oligonucleotide sequences (5’to3’) of primers GenBank accession number Product length, bp

GAPDH F: CCACGTTGTAGCCGACATC NM001034034 201

R: CCCTGAAGAGGACCTGTGAG

β-actin F: CACCGCAAATGCTTCTAGGC NM_173979.3 186

R: TGTCACCTTCACCGTTCCAG

HPRT F: GACCAGTCAACAGGCGACAT NM_001034035.2 130

R: TGACCAAGGCAAGCAAAGTC

INSR F: AGGAGCTGGAGGAGTCCTCGTTCA XM005208817.2 147

R: CATTCCCCACGTCACCAAGGGCTC

GLUT4 F: TTCATTGGCGCCTACTCAGG NM174604.1 142

R: CTAGCACCTGGGCGATTAGG

TNFα F: CCACGTTGTAGCCGACATC NM173966 155

R: CCCTGAAGAGGACCTGTGAG

PPARγ F: ACTTTGGGATCAGCTCCGTG NM181024.2 137

R: GTCAGCTCTTGGGAACGGAA

GAPDH Glyceraldehydes 3-phosphate dehydrogenase, HPRT Hypoxanthine phosphoribosyl-transferase, INSR insulin receptor, GLUT4 Glucose transporter 4, TNFα
Tumor necrosis factor-alpha, PPARγ Peroxisome proliferator-activated receptor gamma
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monoclonal anti-phospho(p)-AKT (Ser473) (#9272;
1:2,000 dilution), rabbit monoclonal anti-p-AKT (Thr308)
(D25E6; 1:1,000 dilution), mouse monoclonal anti-INSR
(ab69508; 1:1,000 dilution), rabbit polyclonal anti-insulin
receptor substrate 1 (IRS1) (#2382; 1:1,000 dilution),
rabbit polyclonal anti-p-IRS1 (#2381; 1:1,000 dilution)
(Cell Signaling Technology, Inc., Danvers, MA, USA),
and mouse anti-β-actin Mab (66009–1-Ig; 1:1,000 dilu-
tion; Proteintech Group Inc., Chicago, IL, USA). Horse-
radish peroxidase-conjugated goat anti-mouse IgG(H + L)
(SA00001–1; 1:5,000 dilution) or goat anti-rabbit IgG(H +
L) (SA00001–2; 1:5,000 dilution) (Proteintech Group,
Inc.) were used as secondary antibodies. The intensity of
the bands was quantified by densitometry analysis using
Quantity One software (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). The results are presented as the ratio
of the INSR band intensity to the β-actin band intensity,
and the ratio of the p-IRS1, p-AKT (Thr308) or p-AKT
(Ser473) band intensity to IRS1 or AKT band intensity,
respectively.

Statistical analysis
The PROC MIXED procedure of SAS (SAS Institute,
Inc., Cary, NC, USA) was used to analyze data for serum
variables. The statistical model included day (day relative
to parturition, D), BCS (control and overconditioned, B),
and the interaction of BCS and day (B × D) as fixed
effects, and cows within the BCS group as a random
effect. The GLM procedure of SAS was used to analyze
data for gene and protein expression levels in AT.
Student’s t test was used to compare differences between
the least square means. P < 0.05 was considered statisti-
cally significant.

Results
The BCS was statistically different between the con-
trol (3.2 ± 0.1) and overconditioned (4.2 ± 0.2) groups
(P < 0.01). The average daily milk yield of overcondi-
tioned cows was lower than control cows (38.4 ± 0.7
and 41.9 ± 0.6 kg/d respectively, P < 0.01).

Serum glucose, triglycerides, NEFA, BHBA, and TNFα
The BCS had no significant effect on serum glucose
concentration (Fig. 1a). Serum glucose concentration
increased gradually from day −4 and was highest on day
0 (P < 0.05), then decreased until day 4. The serum tri-
glycerides concentration was lower in the overcon-
ditioned cows (P = 0.007) than in the control cows,
particularly due to differences during the prepartum
period. There was a B × D interaction (P = 0.02) in the
triglycerides concentration due to a gradual decrease
from day −14 to day −1 in the overconditioned cows
(Fig. 1b). Serum NEFA and BHBA concentrations during

the postpartum period were higher (P < 0.05) than those
during the prepartum period. No differences were found
between the two groups in serum NEFA and BHBA con-
centrations (Fig. 1c and d). There were no overall BCS
or day effect on serum TNFα concentration (Fig. 1e). A
B × D interaction effect (P = 0.03) was observed for the
TNFα concentration due to a decrease on day 7 in the
overconditioned cows compared with an increase for the
control cows.

Serum hormone and adipokine concentration
Serum insulin concentrations in the control and over-
conditioned groups decreased to a lower level on day 2
(P < 0.01) (Fig. 2a). There was a significant B × D inter-
action (P < 0.001) in the serum insulin level due to a
gradual decrease in the overconditioned group from day
− 2 to day 0. On day 14, the insulin concentration in the
overconditioned cows was higher (P < 0.01) than that in
the control cows.
The serum concentrations of GH and adiponectin in the

overconditioned cows were higher overall than those in the
control cows during the experimental period (P = 0.046
and 0.042, respectively) (Fig. 2b and c). The GH concentra-
tions during the postpartum period were higher (P < 0.05)
than that on day −1. For the adiponectin concentration,
the overconditioned cows showed a gradual increase
from day 0 to day 4 compared with a decrease in the
control cows, which accounted for the B × D interaction
effect (P = 0.046) for serum adiponectin concentration.
Serum leptin concentrations in the control and overcon-

ditioned cows gradually decreased (P < 0.05) following
parturition. No significant difference in leptin concentra-
tions was found between the control and overconditioned
groups (Fig. 2d).

Gene and protein expression in adipose tissue
Compared with the control cows, the relative mRNA ex-
pression levels of insulin receptor (INSR) and TNFα
were decreased (P = 0.046 and P = 0.04 respectively,
Fig. 3a and b), and the mRNA expression of PPARγ was
increased (P = 0.03, Fig. 3c) in the AT from the overcon-
ditioned cows postpartum. No differences were found in
the relative mRNA expression of glucose transporter 4
(GLUT4) between the two groups (Fig. 3d).
The postpartum AT from the overconditioned cows

had lower protein expression of INSR than those from
control cows (P = 0.03, Fig. 4a and b). The higher ratios
of p-AKT (Thr308):AKT (P = 0.005) and p-AKT
(Ser473):AKT (P = 0.01) were observed in the postpar-
tum AT from the overconditioned cows. No significant
difference (P = 0.13) was found in the p-IRS1:IRS1 ratio
between the two groups.
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Discussion
Elevated blood NEFA concentration is one important in-
dicator of NEB related to adipose mobilization [5, 27].
Consistent with previous studies [28, 29], postpartum
dairy cows in this study have been in a state of NEB and
high lipolytic rate, as indicated by elevated serum NEFA
and BHBA concentration. Contrary to initial expecta-
tions, overconditioned cows did not show higher serum
NEFA than control cows, which is not consistent with

previous studies [13, 15, 30]. Overconditioned cows in
present study showed lower milk yield, which could
partly indicate a lower NEB state. Unfortunately, we did
not continuously measure milk production and dry mat-
ter intake throughout the experimental postpartum
period, which are useful for calculating accurately the
degree of NEB [5]. Additionally, lipolysis can be divided
into basal and demand lipolysis, and demand lipolysis is
the main source of blood NEFA in transition dairy cows,

Fig. 1 Effects of prepartum BCS on serum glucose (a), triglycerides (b), NEFAs (c), BHBA (d), and TNFα (e) in transition dairy cows. Error bars
indicate the standard error of the mean. Significant difference between CON (BCS = 3.0–3.5) and OVE (BCS ≥ 4.0) groups on the same
sampling day are noted with * (B × D P < 0.05) or ** (B × D P < 0.01); B, BCS; D, day (day relative to parturition); B × D, interaction between BCS and
day relative to parturition; CON, control; OVE, overconditioned; NEFA, non-esterified fatty acid; BHBA, beta hydroxybutyric acid; TNF-α, tumor necrosis
factor α
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which is mainly modulated by hormone sensitive lipase
pathway [2]. The assessment of hormone sensitive lipase
activity in AT could better reflect the level of lipolysis,
which should be considered for future study. It has been
suggested that the predisposition for intense lipolytic re-
sponses has a genetic basis [31]. Previous study showed
that BCS loss, rather than BCS, was positivity associated
with an intense lipolysis rate during the transition period
[9, 32]. Unfortunately, the changes of BCS in our study
were not measured during the experimental period.
Future study is required to evaluate the association
among the rate of BCS change, lipolysis and insulin sig-
naling pathway throughout the transition period. With
the approach of calving, overconditioned cows exhibited
gradual decrease in serum triglycerides levels. It has
been reported that fatty liver in transition cows is asso-
ciated with decreased plasma triglycerides concentration
[33, 34]. These results indicated that prepartum over-
conditioned cows were at a higher risk of developing
fatty liver, as suggested by Drackley [35].
In our study, overconditioned cows had higher serum

adiponectin concentrations than the control cows,
consistent with the results of previous studies show-
ing increased expression of adiponectin in the AT of

cows with a higher BCS [36] or overfed cows with
high BHBA concentrations [10] during the peripartum
period. Adiponectin, a type of adipokine secreted exclu-
sively from AT and abundant in plasma [37], is recognized
as an insulin-sensitizing hormone, improving whole-body
insulin sensitivity in models of genetic and diet-induced
obesity via the activation of AMP protein kinase signaling
[38]. In human studies, decreased adiponectin levels in
the plasma or AT have been observed in obese individuals
[39] and patients with type 2 diabetes [40], which shows
an association between adiponectin levels and obesity-re-
lated metabolic dysfunction. A positive association has
also been found between serum adiponectin levels and
insulin responsiveness to glucose and fatty acid in dairy
cows during the dry period [41]. In the same study, the
BCS and serum adiponectin concentration showed a
negative correlation [41], which was in agreement with a
recent study, showing higher adiponectin gene expression
in cows with a lower BCS [30]. During postpartum period
in present study, although the rate of lipolysis increased in
both groups, the changes of adiponectin were different,
that is, the concentration of adiponectin increased in over-
conditioned cow, but decreased in control cow. It is still
unclear whether the improvement of metabolic function

Fig. 2 Effects of prepartum BCS on serum insulin (a), GH (b), adiponectin (c), and leptin (d) in transition dairy cows. Error bars indicate the
standard error of the mean. Significant difference between CON and OVE groups on the same sampling day are noted with * (B × D P < 0.05) or
** (B × D P < 0.01). GH, growth hormone
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Fig. 3 Quantitative real-time PCR analysis of INSR (a), TNFα (b), PPARγ (c), and GLUT4 (d) in subcutaneous adipose tissues. The tissues were
collected on day 2 postpartum from CON (n = 3) and OVE (n = 3) cows. Error bars indicate the standard error of the mean. Significant differences
between CON and OVE groups are noted with *(P < 0.05). INSR, insulin receptor; PPAR, peroxisome proliferator-activated receptor; GLUT4, glucose
transporter 4

Fig. 4 Western blot detection of insulin signaling proteins in subcutaneous adipose tissues. These tissues were collected on day 2 postpartum
from CON cows (n = 3) and OVE cows (n = 3). a Panels of INSR, IRS1, p-IRS1, AKT, p-AKT (Thr308) and p-AKT (Ser473) protein. β-actin was
measured as an internal control. b Intensities of INSR, IRS1, p-IRS1, AKT, p-AKT (Thr308) and p-AKT (Ser473) bands were determined using Quantity
One software. The results are presented as the ratio of INSR band intensity to the β-actin band intensity, the ratio of p-ISR1 band intensity to IRS1
band intensity, and the ratio of p-AKT (Thr308) and p-AKT (Ser473) band intensities to the AKT band intensity. IRS1, insulin receptor substrate 1;
AKT, protein kinase B

Zhang et al. Journal of Animal Science and Biotechnology           (2019) 10:38 Page 7 of 10



observed in the overconditioned cows is due to the pro-
tection of adiponectin, or the lower level of NEB and
lower milk production. Further in vivo and in vitro studies
should be considered to reveal whether and how adipo-
nectin improve metabolic function in transition cows.
PPAR-γ, a central regulator of adipocyte biology and

energy homeostasis, can induce adipocyte differentiation
by activating the expression of adipocyte-specific genes
and is also known as an insulin sensitizer [10]. The
administration of thiazolidinediones, which are synthetic
PPARγ ligands, significantly increased plasma adipo-
nectin concentrations in insulin-resistant humans and
rodents [42]. Previous studies on dairy cows [22, 43] and
dairy steers [44] have confirmed the insulin sensitivity
effect of PPARγ. Postpartum overconditioned cows in
the present study showed higher expression of PPARγ
in AT, which is in accordance with previous reports
[23, 36]. We assumed that the higher serum adiponec-
tin concentrations mentioned above were regulated by
the elevated gene expression of PPARγ in the AT of
overconditioned cows. In contrast, a recent study has in-
dicated that the expression of PPARγ in AT did not differ
significantly between the cows fed a high-energy diet and
those fed a controlled-energy diet [10], which was consis-
tent with the results from a study by Selim et al. [45]. The
regulatory mechanism of PPARγ under different nutri-
tional conditions remains to be fully elucidated.
Studies in humans have suggested that adipose-derived

TNFα represents a link among obesity, inflammation,
and diabetes, and increased expression levels of TNFα in
AT of obese subjects have been strongly implicated in
the pathogenesis of IR [46, 47]. The increase in the ex-
pression of TNFα in AT has been found to be inhibited
by PPAR agonists, in vitro, suggesting that the expres-
sion of TNFα is regulated by the activation of PPAR
[48]. In the present study, overconditioned cows showed
lower TNFα not only at the gene expression level in AT
but also in serum during the immediate postpartum
period. Adiponectin and TNFα may antagonize each
other or perform opposite functions locally in AT, as
suggested by Maeda et al. [42].
Insulin is the most potent anabolic hormone, and pro-

motes the synthesis and storage of carbohydrates, lipids,
and proteins, while inhibiting their degradation and
release into the circulation. In AT, insulin signal trans-
duction starts with binding insulin to INSR. The conse-
quent intracellular cascade, including the phosphorylation
of IRS1, interaction with phosphatidylinositol 3-kinase,
and the activation of AKT by phosphorylation at
Thr308 and Ser473, promotes the expression and
translocation of insulin-dependent GLUT4, responsible
for insulin-induced glucose uptake from the blood in AT
[49]. Insulin resistance can be assessed by insulin respon-
siveness, which can be evaluated at the receptor level, and

insulin sensitivity, which can be evaluated at the post-re-
ceptor level [50]. In the AT postpartum, insulin receptor
mRNA and protein levels were lower in the overcondi-
tioned cows, indicating that insulin response to glucose
might decrease. Lower mRNA levels of INSR in AT were
also found in the overfed cows on day 21 postpartum
when compared with the normal fed cows [51]. Interest-
ingly, the overconditioned cows had increased p-AKT
content and an increased phosphorylation rate of AKT in
the AT which indicated that AT responsiveness to insulin
was likely to increase. A previous study involving 3 T3-L1
adipocytes demonstrated that the suppression of PPARγ
reduced insulin-stimulated glucose uptake by affecting the
downstream activation of AKT, without affecting the early
insulin signaling steps in the adipocytes [52]. It is unclear
whether PPARγ play regulation role in maintaining a
balance between IR and fat mobilization in transition dairy
cows. In vitro study is required to further reveal the
association among PPARγ, lipolysis and insulin resistance
in AT of transition dairy cows. Furthermore, different AT
depots of cows may differentially influence the regulation
of insulin sensitivity during lactation, and gene expression
of adiponectin receptor 1 and TNFα were mostly different
in retroperitoneal AT [53]. Different adaptations of cows
during the transition period based on different AT depots,
even of different subcutaneous AT origin should be
considered for further studies.

Conclusion
No differences in serum NEFA and BHBA concen-
trations were observed between the overconditioned and
control cows during transition period. The concen-
tration of serum adiponectin was higher in the over-
conditioned cows than in the control cows. In the AT
postpartum, the overconditioned cows showed lower
gene and protein expression levels of INSR and no
differences were found in GLUT4 gene expression. The
p-AKT content and ratios of p-AKT:AKT were in-
creased in the overconditioned cows, suggesting acti-
vation of the downstream insulin signaling pathway.
Meanwhile, a lower gene expression of TNFα and
higher expression of PPARγ were found in AT postpar-
tum of overconditioned cows. The changes of insulin
signaling pathway in AT postpartum may be partly re-
lated to the expression of PPARγ and TNFα, and the
secretion of adiponectin.
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