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Dietary proline supplementation alters
colonic luminal microbiota and bacterial
metabolite composition between days 45
and 70 of pregnancy in Huanjiang
mini-pigs
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Abstract

Background: Pregnancy is associated with important changes in gut microbiota composition. Dietary factors may
affect the diversity, composition, and metabolic activity of the intestinal microbiota. Among amino acids, proline is
known to play important roles in protein metabolism and structure, cell differentiation, conceptus growth and
development, and gut microbiota re-equilibration in case of dysbiosis.

Results: Dietary supplementation with 1% proline decreased (P < 0.05) the amounts of Klebsiella pneumoniae,
Peptostreptococcus productus, Pseudomonas, and Veillonella spp. in distal colonic contents than that in the control
group. The colonic contents of Butyrivibrio fibrisolvens, Bifidobacterium sp., Clostridium coccoides, Clostridium
coccoides-Eubacterium rectale, Clostridium leptum subgroup, Escherichia coli, Faecalibacterium prausnitzii,
Fusobacterium prausnitzii, and Prevotella increased (P < 0.05) on d 70 of pregnancy as compared with those on d 45
of pregnancy. The colonic concentrations of acetate, total straight-chain fatty acid, and total short-chain fatty acids
(SCFA) in the proline-supplemented group were lower (P < 0.05), and butyrate level (P = 0.06) decreased as compared
with the control group. Almost all of the SCFA displayed higher (P < 0.05) concentrations in proximal colonic contents
on d 70 of pregnancy than those on d 45 of pregnancy. The concentrations of 1,7-heptyl diamine (P = 0.09) and
phenylethylamine (P < 0.05) in proximal colonic contents were higher, while those of spermidine (P = 0.05) and total
bioamine (P = 0.06) tended to be lower in the proline-supplemented group than those in the control group. The
concentrations of spermidine, spermine, and total bioamine in colonic contents were higher (P < 0.05) on d 70 of
pregnancy than those measured on d 45 of pregnancy. In contrast, the concentration of phenylethylamine was lower
(P < 0.05) on d 70 than on d 45 of pregnancy.
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Conclusion: These findings indicate that L-proline supplementation modifies both the colonic microbiota composition
and the luminal concentrations of several bacterial metabolites. Furthermore, our data show that both the microbiota
composition and the concentrations of bacterial metabolites are evolving in the course of pregnancy. These results are
discussed in terms of possible implication in terms of luminal environment and consequences for gut physiology and
health.
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Background
The gut microbiome of pigs is a robust ecosystem inhab-
ited by about 100 trillion bacteria. The importance of
the maintenance of host-microbiome symbiosis is under-
scored by the observation that dysbiotic shifts in micro-
biota are associated with inflammatory bowel disorders,
type 2 diabetes, obesity, and pregnancy metabolic syn-
drome in humans [1–5]. The gut microbiota metabolizes
dietary compounds in both the small and large intes-
tines. The microbiota is present at low concentrations
and the transit time is relatively rapid in the small intes-
tine, while the concentration of bacteria is much higher
and the transit time is much longer in the large intes-
tine. The dietary compounds that are transferred from
the small intestine to the large intestine are undigested
or not fully digested compounds, notably undigested car-
bohydrates and proteins [6]. The metabolic activity of
the microbiota allows for the synthesis of various com-
pounds, including short-chain fatty acids (SCFA), in-
doles, ammonia, gaseous compounds, organic acids,
bioamines, and vitamins. Among these various metabo-
lites, some are considered beneficial whereas others are
believed to exert deleterious effects on the intestinal mu-
cosa, when present in excess [7]. For instance, among
SCFA, butyrate is considered beneficial for the colonic
mucosa, because it can exert some anti-inflammatory ef-
fects [8]. The SCFA can reach luminal concentrations of
130 mmol/L in the proximal colon [9]. The concentra-
tion of SCFA is related to the luminal pH. As weak or-
ganic acids, SCFA can decrease the luminal pH and
inhibit some pathogenic microorganisms, while increas-
ing the absorption of some nutrients [10]. Bioamines are
widely produced by various kinds of bacteria. Although
limited amounts of bioamines have no detectable effect
on health [11] and participate in the physiology of the
host, larger quantities (1.4 g/d) of bioamines can become
harmful to humans and livestock [12].
Pregnancy is a biological process involving simultan-

eous changes in many physiological systems, including
microbiome composition [13]. Many nutrients, espe-
cially amino acids (AA), are required to sustain a suc-
cessful pregnancy. For instance, arginine is a
conditionally essential AA involved by itself and/or
through its metabolites, in spermatogenesis, embryonic

survival, fetal growth, as well as maintenance of vascular
tone and hemodynamics [14]. Some other amino acid
concentrations must be tightly regulated to avoid dele-
terious effects in some fetal tissues. For instance, limited
entry of dietary aspartate and glutamate into blood cir-
culation is required to avoid brain injury in the fetuses
[15]. Thus, several evidences indicate that AA play cru-
cial roles in both female and male reproduction [16, 17].
Among AA, it has been shown that proline played sev-

eral roles in the development of the placenta, conceptus,
and fetus [18, 19]. Increasing proline availability in ma-
ternal plasma in pigs enhances the concentrations of
proline and polyamines in placentae and fetal fluids, and
promotes fetal growth [19]. Faure et al. [20] found that
dietary proline supply could promote mucin synthesis,
re-equilibrate the gut microbiota, and favor mucosal
healing in dextran sulfate sodium-treated rats. In addition,
proline plays an important role in the metabolism and re-
cycling of nitrogenous compounds in bacteria [10].
Gut microbiota changes markedly from the first to the

third trimesters of pregnancy in human beings, with an
overall increase in Proteobacteria and Actinobacteria,
and reduced richness (i.e., lower species count). Interest-
ingly, the mucosal surfaces of the gut during trimester 3
of pregnancy present low-grade inflammation [21]. Our
previous study found that the colonic microbiota dis-
played spatial and temporal heterogeneity in compos-
ition, diversity, and species abundance in different
colonic segments from the first to the third trimester of
pregnancy [22]. Considering the effect of proline on sev-
eral physiological functions during pregnancy, and the
role of this amino acid as precursors of metabolites with
biological effects; the present study was conducted to
document the effects of L-proline on the colonic luminal
microbiota and bacterial metabolite composition (in-
cluding SCFA and bioamines) in Huanjiang mini-pigs,
because pigs can be used as a relevant model for ex-
trapolation to humans [23].

Methods
Animals
The present study was carried out in accordance with the
Chinese guidelines for animal welfare and experimental
protocols and was approved by the Animal Care and Use
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Committee of Institute of Subtropical Agriculture,
Chinese Academy of Sciences [24]. A total of 32 prim-
iparous Huanjiang mini-pigs [average initial body weight
(BW) 28.30 ± 0.87 kg] were used in this study.

Study design
The gilts were obtained from a Huanjiang mini-pig farm
located in Huanjiang County, Guangxi province, China.
The experimental design consisted of a 2 × 2 factorial
arrangement, with two dietary treatments: control
(alanine) diet and experimental (proline) diet, and two
pregnancy stages: d 45 or 75 of pregnancy. The animals
were randomly assigned to one of the two dietary groups
on d 15 after mating, with eight pens per group and two
sows per pen. The average BW of pigs in the control
group and experimental group was 27.84 ± 1.32 kg and
28.82 ± 1.17 kg, respectively. The animals received a
same basal diet supplemented with 1% L-proline or
0.77% L-alanine in the control group. The basal diet was
formulated to meet the nutrient requirements and
physiological characteristics of Chinese local pigs
(Table 1). All animals were housed in 2 m × 3 m pens
with cement flooring. Temperature in the room housing
the pens was maintained at 22–28 °C. All the pigs had
access to drinking water ad libitum from a nipple
drinker and were fed twice daily (at 08:30 and 16:30 h)
with their diets (approximately 3.0% of BW) from a
feeder.

Sample collection
On d 45 or 70 of pregnancy, eight sows per group were
weighed and sacrificed using general anesthesia for sam-
ple collection at 12 h after the last feeding [25, 26]. After
colon recovery, luminal contents of the proximal colon
(10 cm at posterior to the ileocecal valve) and the distal

colon (10 cm at the end of the colon) were collected and
stored at − 80 °C for the extraction of total DNA of
microbiota, as well as for determining the concentra-
tions of SCFA and bioamines.

Colonic microbiota composition analysis
The total DNA was extracted from colonic contents
using the QIAamp DNA Stool Mini kit (Qiagen, Hilden,
Germany) after chemical and mechanical disruptions
[27]. The quality and quantity of DNA were measured
using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE, USA).
Quantitative real-time polymerase chain reaction (qPCR)
was performed to determine the number of copies of the
16S rRNA genes of several targeted bacteria [28]. The
primers, which were validated previously, are listed in
Table 2. The qPCR was performed using SYBR Premix
Ex Taq™ II kit (TaKaRa Bio Inc., Shiga, Japan) on an ABI
7900HT Fast real-time PCR system (Applied Biosystems,
Foster City, CA, USA). The standard curves for all deter-
mined bacteria were prepared using plasmid DNA con-
taining each unique 16S rRNA insert. The raw bacterial
qPCR data were transformed to lg the number of target
genomes per gram of wet digesta.

Bacterial metabolite analysis
The SCFA, including straight-chain fatty acids (acetate,
propionate, butyrate, and pentanoate) and branched-
chain fatty acids (BCFA; isobutyrate, and isopentanoate)
were analyzed by gas chromatography as described by
Zhou et al. [29]. The bioamines, including 1,7-heptyl di-
amine, cadaverine, phenylethylamine, putrescine, trypta-
mine, tyramine, spermidine, and spermine were analyzed
by high-performance liquid chromatography as de-
scribed by Xu et al. [30].

Statistical analysis
The data were analyzed by a mixed-effects model using
SAS version 8.2 (SAS Institute Inc., Cary, NC, USA).
Diet, pregnancy stage, and their interaction were in-
cluded in the statistical model. Effects were considered
statistically significant at P < 0.05, while a tendency was
considered for 0.05 ≤ P < 0.10.

Results
Microbiota composition
Tables 3 and 4 summarized the effects of diets and preg-
nancy stages on microbiota composition of proximal and
distal colonic contents, respectively, from pregnant
Huanjiang mini-pigs. In proximal colonic contents, the
proportion of Prevotella was lower (P < 0.05), but Firmi-
cutes/Bacteroidetes (F/B) ratio was higher (P < 0.05) in
the proline-supplemented group than in the control
group. The proportions of Butyrivibrio fibrisolvens,

Table 1 Composition and nutrient levels of the basal diet
(air-dry basis, %)

Ingredients Content Nutrient Levelsb , %

Corn 54.00 Digestive energy, MJ/kg 13.40

Soybean meal 12.00 Crude protein 12.04

Rice bran 30.00 Calcium 0.78

Premixa 4.00 Phosphorus 0.62

Total 100.00 Arginine 0.65

Lysine 0.53

Proline 0.67
aOne kg of premix contained the following: vitamin A, 10,200 IU; vitamin D3,
1600 IU; vitamin E, 75 IU; vitamin K3, 75 mg; thiamine, 3 mg; riboflavin, 16 mg;
pyridoxine, 3 mg; vitamin B12, 0.8 mg; nicotinic acid, 69 mg; D-pantothenic
acid, 42 mg; folic acid, 4 mg; biotin, 1 mg; chorine, 900 mg; Fe (FeSO4·H2O),
150 mg; Cu (CuSO4·5H2O), 11.2 mg; Zn (ZnSO4·H2O), 63 mg; Mn (MnSO4·5H2O),
32 mg; I (KI), 1.5 mg; Co (CoCO3), 0.3 mg; Se (Na2SeO3·H2O), 0.25 mg; Ca
(CaCO3), 200 mg; and P (KH2PO4), 20 mg
bDigestive energy was a calculated value, while the others were measured values
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Bifidobacterium sp., Clostridium coccoides, Escherichia
coli, Faecalibacterium prausnitzii, Fusobacterium praus-
nitzii, and Prevotella were higher (P < 0.05) on d 70 of
pregnancy than on d 45 of pregnancy. The proportion of
Clostridium leptum subgroup (P = 0.09), Firmicutes
(P = 0.07), Peptostreptococcus productus (P = 0.08), and F/
B ratio (P = 0.07) displayed an increasing trend with preg-
nancy progress. The proportion of C. coccoides-
Eubacterium rectale and Firmicutes, and F/B ratio were
changed (P < 0.05) owing to diet × stage interactions, and
a trend was measured for Pseudomonas (P = 0.06).

In distal colonic contents, the proportion of Klebsiella
pneumoniae (P = 0.06), P. productus (P < 0.05), Pseudo-
monas (P = 0.08), and Veillonella spp. (P = 0.09) tended
to be lower in the proline-supplemented group than in
the control group. The proportion of most bacteria, in-
cluding B. fibrisolvens, Bifidobacterium sp., C. coccoides,
C. coccoides-E. rectale, C. leptum subgroup, E. coli,
Faecalibacterium prausnitzii, Firmicutes, Fusobacter-
ium prausnitzii, P. productus, and Prevotella increased
(P < 0.05), whereas that of Pseudomonas aeruginosa
decreased (P < 0.05) with the progress of pregnancy.

Table 2 Primer pairs for 16S rRNA genes of bacteria

Bacteria Phylum Primer sequences (5′ → 3′) Product size, bp References

Bacteroidetes Bacteroidetes F: AGCAGCCGCGGTAAT
R: CTAHGCATTTCACCGCTA

184 [62]

B. fibrisolvens Firmicutes F: CGCATGATGCAGTGTGAAAAGCTC
R: CCTCCCGACACCTATTATTCATCG

625 [63]

Bifidobacterium sp. Actinobacteria F: CTCCTGGAAACGGGTGG
R: GGTGTTCTTCCCGATATCTACA

226 [64]

C. coccoides Firmicutes F: AAATGACGGTACCTGACTAA
R: CTTTGAGTTTCATTCTTGCGAA

440 [65]

C. coccoides-E. rectale Firmicutes F: CGGTACCTGACTAAGAAGC
R: AGTTTYATTCTTGCGAACG

429 [65]

C. leptum subgroup Firmicutes F: GCACAAGCAGTGGAGT
R: CTTCCTCCGTTTTGTCAA

239 [66]

E. coli Proteobacteria F: GACCTCGGTTTAGTTCACAGA
R: CACACGCTGACGCTGACCA

96 [67]

F. prausnitziia Firmicutes F: AATTCCGCCTACCTCTGCACT
R: GGAGGAAGAAGGTCTTCGG

248 [68]

Firmicutes Firmicutes F: GTCAGCTCGTGTCGTGA
R: CCATTGTAKYACGTGTGT

179 [69]

F. prausnitziib Bacteroidetes F: CCCTTCAGTGCCGCAGT
R: GTCGCAGGATGTCAAGAC

158 [70]

K. pneumoniae Proteobacteria F: CCTGGATCTGACCCTGCAGTA
R: CCGTCGCCGTTCTGTTTC

165 [71]

Lactobacillus sp. Firmicutes F: TACATCCCAACTCCAGAACG
R: AAGCAACAGTACCACGACC

116 [72]

M. elsdenii Firmicutes F: GACCGAAACTGCGATGCTAGA
R: TCCAGAAAGCCGCTTTCGCCACT

128 [73]

P. aeruginosa Proteobacteria F: TCCAAGTTTAAGGTGGTAGGCTG
R: CTTTTCTTGGAAGCATGGCATC

117 [74]

P. productus Firmicutes F: AACTCCGGTGGTATCAGATG
R: GGGGCTTCTGAGTCAGGTA

268 [67]

Pseudomonas Proteobacteria F: GAGTTTGATCCTGGCTCAG
R: CCTTCCTCCCAACTT

440 [75]

Prevotella Bacteroidetes F: CACRGTAAACGATGGATGCC
R: GGTCGGGTTGCAGACC

513 [64]

Roseburia Firmicutes F: TACTGCATTGGAAACTGTCG
R: CGGCACCGAAGAGCAAT

230 [76]

S. ruminantium Firmicutes F: TGCTAATACCGAATGTTG
R: TCCTGCACTCAAGAAAGA

513 [77]

Veillonella spp. Firmicutes F: A(C/T)CAACCTGCCCTTCAGA
R: CGTCCCGATTAACAGAGCTT

335 [70]

aFaecalibacterium prausnitzii
bFusobacterium prausnitzii
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The F/B ratio displayed an increasing trend (P = 0.09)
with the progress of pregnancy. The proportion of
Bifidobacterium sp. (P = 0.09), K. pneumoniae (P < 0.09),
P. aeruginosa (P = 0.06), P. productus (P = 0.06), and
Pseudomonas (P = 0.07) changed owing to the diet × stage
interactions.

The SCFA concentrations
The SCFA concentrations in colonic contents of preg-
nant Huanjiang mini-pigs are summarized in Table 5.
In proximal colonic contents, the concentrations of
acetate, total straight-chain fatty acids, and total SCFA
were lower (P < 0.05) in the proline-supplemented
group. The concentrations of butyrate tended to be
decreased (P = 0.06) in the proline-supplemented
group, when compared with the control group. Almost
all of the SCFA in proximal colonic contents presented
higher (P < 0.05) concentrations on d 70 of pregnancy
than on d 45 of pregnancy. The concentrations of acetate
(P = 0.099), butyrate (P = 0.05), isovalerate (P = 0.09), total
straight-chain fatty acids (P = 0.06), and total SCFA
(P = 0.05) were changed, or tended to be changed, owing
to the diet × stage interactions. In distal colonic contents,
the concentrations of isobutyrate and total BCFA were

higher (P < 0.05) on d 70 of pregnancy than on d 45 of
pregnancy. Proline supplementation, however, did not
affect the concentrations of SCFA.

Bioamine contents
The bioamine concentrations in colonic contents of
pregnant Huanjiang mini-pigs are summarized in Table 6.
In proximal colonic contents, the concentrations of
1,7-heptyl diamine (P = 0.09) and phenylethylamine
(P < 0.05) tended to and were significantly higher in the
proline-supplemented group, respectively, whereas those
of spermidine (P = 0.05) and total bioamine (P = 0.06)
were lower or tended to be lower than those in the control
group. The concentrations of spermidine, spermine, and
total bioamine were higher (P < 0.05) on d 70 of
pregnancy, whereas that of phenylethylamine (P < 0.05)
was lower than those on d 45 of pregnancy. The concen-
trations of 1,7-heptyl diamine, phenylethylamine, sperm-
ine, and tryptamine displayed differences (P < 0.05)
according to diet × stage interactions, as well as
total bioamine concentration (P = 0.096). In distal co-
lonic contents, the concentrations of 1,7-heptyl diamine
(P = 0.07) and tryptamine (P < 0.05) were higher in the
proline-supplemented group, whereas those of cadaverine

Table 3 Bacteria groups or species in proximal colonic contents of pregnant Huanjiang mini-pigs (lg bacteria cells/g wet weight)

Bacteria Control group Proline group SEM P-values

45 d 70 d 45 d 70 d Diet Day Diet × Day

Bacteroidetes 11.18 11.21 10.96 11.06 0.23 0.18 0.63 0.78

B. fibrisolvens 8.97 9.54 8.73 9.33 0.26 0.20 0.003 0.93

Bifidobacterium sp. 8.97 9.98 8.73 9.98 0.24 0.71 0.001 0.70

C. coccoides 10.23 10.77 10.01 10.76 0.25 0.47 0.001 0.54

C. coccoides-E. rectale 9.94 10.31 9.68 10.09 0.24 0.11 0.90 0.01

C. leptum subgroup 10.56 10.67 10.29 10.66 0.23 0.30 0.09 0.33

E. coli 9.93 10.31 9.77 10.30 0.22 0.53 0.003 0.56

F. prausnitzii1 10.50 10.75 10.28 10.77 0.22 0.41 0.01 0.34

Firmicutes 11.10 11.04 10.83 11.33 0.21 0.94 0.07 0.03

F. prausnitzii2 8.55 10.75 8.15 10.77 0.29 0.41 0.01 0.34

K. pneumoniae 7.57 7.53 7.72 7.51 0.24 0.67 0.39 0.56

Lactobacillus sp. 10.27 10.53 10.25 10.61 0.31 0.90 0.22 0.84

M. elsdenii 8.23 7.55 7.72 7.88 0.33 0.75 0.36 0.14

P. aeruginosa 8.73 8.43 8.93 8.72 0.25 0.15 0.13 0.76

P. productus 7.87 8.07 7.81 8.04 0.22 0.68 0.08 0.87

Pseudomonas 6.80 7.24 7.03 6.99 0.22 0.92 0.12 0.06

Prevotella 9.01 9.86 8.59 9.23 0.30 0.03 0.004 0.67

Roseburia 8.31 8.47 7.95 8.37 0.28 0.27 0.16 0.54

S. ruminantium 7.26 7.53 7.03 7.17 0.28 0.16 0.34 0.74

Veillonella spp. 7.21 6.83 6.88 6.90 0.27 0.48 0.34 0.29

F/B ratio 0.99 0.99 0.99 1.02 0.05 0.02 0.07 0.01

F/B ratio Firmicutes/Bacteroidetes ratio
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(P < 0.05), phenylethylamine (P < 0.05), and tyramine
(P = 0.098) were lower than those in the control
group. The concentrations of spermidine (P < 0.05),
spermine (P < 0.05), tryptamine (P < 0.05), and total
bioamine (P = 0.08) were higher, but cadaverine and
phenylethylamine were lower (P < 0.05) on d 70 than
on d 45 of pregnancy. The concentrations of cadaver-
ine, phenylethylamine, putrescine, and tryptamine dis-
played differences (P < 0.05) according to diet × stage
interactions.

Discussion
Several studies revealed that the indigenous microbiota
in the gut play important roles in the metabolism and
recycling of nitrogenous compounds, including AA [10,
20]. Furthermore, changes in gut microbiota of pregnant
human and animals have been documented in recent
years [13, 23, 31]. The present study indicates that diet-
ary supplementation with proline affects the colonic lu-
minal microbiota and bacterial metabolite composition
in Huanjiang mini-pigs. In addition, our study confirms
that the composition of bacteria in the colon, as well as
the luminal environment, differ according to the stage of
pregnancy.

Pregnancy is a time of dramatic host remodeling for
the mother, and may be partly viewed as the develop-
ment of adaptive processes in a context of major new
physiological constraints. Our previous study showed
that during pregnancy, both the body weight and fat
over lean mass ratio increased in the Huanjiang mini-
pigs [32]. In agreement with the above, it has been re-
ported that pregnant female Ossabaw mini-pigs dis-
played higher body weight, notably due to fat deposition
[33], which was association with higher levels of trigly-
ceride and very low-density lipoprotein [34], and lower
levels of high-density lipoprotein cholesterol, and low-
density lipoprotein cholesterol [35].
A previous study showed that the pregnancy stage and

diet composition may affect gut microbial composition
[36]. The present study confirms these results and eluci-
dates that the proportion of Prevotella increased with
progress of pregnancy. This is consistent with the study
of Collado and Isolauri [3], who reported that the abun-
dances of Bacteroides-Prevotella group, Clostridium, and
Staphylococcus increased from first trimester to third tri-
mester of normal-weight and overweight pregnant
women. Moreover, Santacruz et al. [37] confirmed that
the proportion of Firmicutes, especially Clostridium

Table 4 Bacteria groups or species in distal colonic contents of pregnant Huanjiang mini-pigs (lg bacteria cells/g wet weight)

Item Control group Proline group SEM P-values

45 d 70 d 45 d 70 d Diet Day Diet × Day

Bacteroidetes 11.04 11.03 10.91 11.11 0.23 0.84 0.47 0.46

B. fibrisolvens 8.72 9.12 8.63 9.22 0.23 0.98 0.001 0.49

Bifidobacterium sp. 9.17 9.99 9.39 9.53 0.27 0.52 0.02 0.08

C. coccoides 10.28 10.72 10.19 10.61 0.21 0.40 0.001 0.94

C. coccoides-E. rectale 9.79 10.12 9.81 10.08 0.23 0.95 0.04 0.84

C. leptum subgroup 9.98 10.42 9.97 10.19 0.24 0.42 0.04 0.44

E. coli 9.89 10.14 9.82 10.21 0.22 0.98 0.02 0.59

F. prausnitzii1 10.10 10.33 10.11 10.35 0.20 0.88 0.03 0.94

Firmicutes 10.77 11.08 10.70 10.95 0.21 0.38 0.02 0.78

F. prausnitzii2 7.92 8.43 7.91 8.29 0.23 0.57 0.003 0.65

K. pneumoniae 7.66 7.39 7.15 7.43 0.22 0.06 0.98 0.03

Lactobacillus sp. 9.82 10.10 9.73 9.97 0.31 0.66 0.29 0.93

M. elsdenii 8.12 7.77 7.84 7.84 0.31 0.68 0.48 0.49

P. aeruginosa 8.70 8.68 9.13 8.52 0.24 0.37 0.04 0.06

P. productus 7.70 8.23 7.65 7.77 0.20 0.02 0.01 0.06

Pseudomonas 7.23 6.81 6.60 6.82 0.26 0.08 0.56 0.07

Prevotella 8.61 9.25 8.18 8.90 0.31 0.12 0.01 0.87

Roseburia 7.98 8.07 8.06 8.12 0.28 0.75 0.69 0.93

S. ruminantium 7.03 7.12 7.01 7.37 0.29 0.61 0.31 0.54

Veillonella spp. 7.19 6.98 6.83 6.78 0.25 0.09 0.43 0.63

F/B ratio 0.98 1.00 0.98 0.99 0.06 0.46 0.09 0.21

F/B ratio Firmicutes/Bacteroidetes ratio
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clusters, is associated with excessive BW and obesity in
human subjects. Similar to the obese human subjects,
the sows at d 70 of pregnancy had increased proportions
of C. coccoides, C. leptum subgroup, E. coli, Faecalibac-
terium prausnitzii, P. productus, and Firmicutes, as com-
pared with those at d 45 of pregnancy. The increased
proportion of Firmicutes is considered to affect the
metabolic potential of the gut microbiota and enhance
the capacity of the body to harvest energy from the diet
[38]. In addition, colonization of germ-free mice with
the butyrate-producing bacteria B. fibrisolvens rescued
colonic epithelia from the energy starvation status [39].
Based on our results, it appeared that some bacteria in-
volved in indigestible carbohydrate fermentation in-
creased by d 70 of pregnancy, thereby allowing the
production of more SCFA and increased energy recyc-
ling for the pregnant sows and their fetuses.
Bacterial cross-feeding has a huge impact on the final

balance of the SCFA production, absorption, and effi-
cient exploitation of the substrates in the gut [40]. The
vast majority of acetate in the body is produced by the
gut microbiota, and the total fecal propionate concentra-
tion is linked to the relative abundance of Bacteroidetes
and Firmicutes [41]. Butyrate produced by the gut
microbiota is dependent on butyrate-producers, such as
Faecalibacterium, Eubacterium, and Roseburia [42]. In

accordance with some data on the evolution of the
microbiota composition during pregnancy, SCFA pre-
sented higher concentrations in proximal colonic con-
tents. In the distal colonic contents recovered at d 70 of
pregnancy. Isobutyrate and total BCFA concentrations in
the distal colonic contents were higher at d 70 than at d
45 of pregnancy. As BCFA concentrations are consid-
ered as indicators of protein catabolism by the micro-
biota in the luminal intestinal content [43], these results
are suggestive of increased protein fermentation in the
distal colon at d 70 of pregnancy as compared with that
at d 45. The present study shows that the proportion of
saccharolytic bacteria generating SCFA [44], including C.
coccoides, C. coccoides-E. rectale, and C. leptum sub-
groups, increases similarly when compared with the
Firmicutes phylum. Faecalibacterium prausnitzii, Fuso-
bacterium, and Clostridium are known butyrate pro-
ducers [45–48]. Prevotella had been proposed to
enhance calorie extraction from resistant starches, oligo-
saccharides, and other indigested carbohydrates [49],
and its concentration is associated with increased co-
lonic SCFA. In addition to participating in the digestive
process, microbiota allows local synthesis of SCFA,
which are used as energy substrates by the host [50].
Parts of SCFA are absorbed and metabolized by the
colonocytes, while the unmetabolized portion can enter

Table 5 Short-chain fatty acid concentrations in colonic contents of pregnant Huanjiang mini-pigs (mg/g)

Item Control group Proline group SEM P-values

45 d 70 d 45 d 70 d Diet Day Diet × Day

Proximal colonic contents

Acetate 16.72 34.24 14.70 22.76 1.07 0.02 < 0.01 0.099

Propionate 5.95 12.56 6.36 9.44 0.71 0.28 < 0.01 0.16

Isobutyrate 0.23 0.92 0.28 0.71 0.19 0.41 < 0.01 0.17

Butyrate 3.64 6.69 3.68 4.18 0.51 0.06 0.010 0.05

Isovalerate 0.19 0.70 0.21 0.50 0.16 0.15 < 0.01 0.09

Valerate 0.43 1.43 0.44 1.16 0.24 0.35 < 0.01 0.34

Total BCFA 0.42 1.61 0.49 1.21 0.25 0.28 < 0.01 0.13

Total straight-chain fatty acids 26.75 54.92 25.18 37.54 1.27 0.02 < 0.01 0.06

Total SCFA 27.17 56.53 25.67 38.74 1.29 0.03 < 0.01 0.05

Distal colonic contents

Acetate 10.48 9.07 10.38 10.02 0.60 0.60 0.28 0.52

Propionate 4.01 3.81 4.00 4.60 0.38 0.24 0.54 0.24

Isobutyrate 0.36 0.49 0.34 0.48 0.13 0.78 0.01 0.92

Butyrate 2.94 2.95 2.93 2.71 0.38 0.71 0.75 0.73

Isovalerate 0.33 0.39 0.31 0.34 0.13 0.34 0.25 0.62

Valerate 0.48 0.50 0.41 0.51 0.14 0.57 0.17 0.39

Total BCFA 0.69 0.88 0.66 0.82 0.18 0.53 0.03 0.84

Total straight-chain fatty acids 17.90 16.33 17.72 17.85 0.76 0.61 0.59 0.52

Total SCFA 18.59 17.21 18.38 18.67 0.77 0.64 0.69 0.54
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diverse carbohydrates and lipid metabolic routes in the
peripheral tissues. While most of the butyrate pro-
duced by the microbiota is metabolized in enterocytes/
colonocytes during its transfer from the intestinal
lumen to the bloodstream, propionate mainly incorpo-
rates into the gluconeogenesis pathway, while acetate
is mostly metabolized into the lipid biosynthesis path-
way [41]. Collectively, the increased SCFA production
and absorption may provide additional nutrients for
pregnant sows; however, additional work outside of the
scope of the present study is necessary to test this
hypothesis.
The AA serve not only as protein building bricks but

also act as energy substrates, signaling molecules, and/or
as precursors for bioactive compounds [51]. Thus, AA
intervene in the regulation of diverse physiological
process related to the reproductive functions, ranging
from spermatogenesis to oocyte fertilization and embryo
implantation [52]. In the large intestine, AA are not
absorbed to any significant extent by the colonic mucosa
(except in the neonatal period), and thus are mostly me-
tabolized by the microbiota into various intermediary
and end products [53]. The present study showed that
dietary proline supplementation decreased the propor-
tion of Prevotella in the proximal colonic contents, and
the proportions of K. pneumoniae and P. productus in

the distal colonic contents. These bacterial species can
metabolize carbohydrates, especially indigestible fiber
[54]. Klebsiella pneumoniae, which is the most signifi-
cant member of Enterobacteriaceae and Peptostreptococ-
cus productus, are predominant for the utilization of
glutamate or tryptophan [52]. Ren et al. [55] reported
that dietary proline supplementation confers a positive
immune effect in porcine circovirus-infected pregnant
and non-pregnant mice.
Proteins are degraded by the bacterial protease and pep-

tidase activities, and the AA released from the proteins
can be precursors of various bioamines in the colon via
specific AA decarboxylation pathways by specific bacteria
[56]. In bacteria, the bioamines are involved in many pro-
cesses related to transcription, translation, growth, metab-
olism, and other functions, including improved acid
resistance, protection from oxidative stress and host im-
munological defenses [56–60]. For instance, E. coli synthe-
sized cadaverine during anaerobic growth at low pH in
the presence of its precursor lysine [61]. Several
bioamine-producing taxa belong to Prevotella and Mega-
sphaera [60]. This may explain why the concentrations of
spermidine, spermine, and total bioamines in colonic con-
tents increased with the progress of pregnancy.
The way by which supplemental proline exerts its ef-

fect on colonic microbiota remains elusive, considering

Table 6 Bioamine concentrations in colonic contents of pregnant Huanjiang mini-pigs (μg/g)
Items Control group Proline group SEM P- values

45 d 70 d 45 d 70 d Diet Day Diet × Day

Proximal colonic contents

1,7-heptyl diamine 2.22 2.36 2.95 2.28 0.26 0.09 0.15 0.04

Cadaverine 13.61 12.77 12.99 16.67 0.98 0.50 0.56 0.36

Phenylethylamine 6.67 8.64 12.99 6.36 0.44 0.001 < 0.01 < 0.01

Putrescine 20.30 24.38 21.83 19.12 0.99 0.45 0.78 0.18

Spermidine 35.97 67.63 30.96 44.35 1.64 0.05 0.005 0.19

Spermine 5.71 15.79 9.15 10.67 0.83 0.64 0.006 0.03

Tryptamine 1.46 2.14 2.46 1.03 0.39 0.89 0.35 0.02

Tyramine 2.82 2.53 2.02 1.79 0.45 0.15 0.61 0.96

Total bioamine 101.90 151.18 98.32 106.42 2.15 0.06 0.03 0.096

Distal colonic contents

1,7-heptyl diamine 1.63 1.24 1.80 2.06 0.32 0.07 0.78 0.22

Cadaverine 15.81 6.23 5.71 6.81 0.80 0.01 0.02 0.005

Phenylethylamine 10.09 4.47 5.70 4.57 0.54 0.011 < 0.01 0.008

Putrescine 13.87 10.51 8.84 14.30 0.65 0.56 0.33 0.001

Spermidine 29.54 33.79 22.67 38.67 1.21 0.79 0.02 0.13

Spermine 7.31 9.92 7.86 9.95 0.66 0.79 0.046 0.81

Tryptamine 0.28 0.23 0.17 1.31 0.23 0.002 0.001 < 0.01

Tyramine 1.71 1.87 0.96 1.67 0.33 0.098 0.12 0.32

Total bioamine 64.82 73.97 68.31 79.33 1.47 0.42 0.08 0.86
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that the capacity of the small intestine for the absorption
of amino acids is high. In other words, the dietary pro-
line originating from the dietary proteins and supple-
ment is most likely large, if not totally absorbed by the
small intestinal epithelium. Thus, we propose that the
effects of dietary proline on the colonic ecosystem would
be dependent, at least in part, on the effect of this AA
on the microbiota composition and metabolic activity in
the small intestine; such effects presumably affect the
large intestinal luminal environment. This hypothesis is
worthy of testing in future experiments.

Conclusion
In conclusion, the present study indicates that L-pro-
line supplementation modifies the colonic microbiota
composition and the luminal concentrations of several
bacterial metabolites. Furthermore, our data show that
both the microbiota composition and the concentra-
tions of bacterial metabolites are evolving in the
course of pregnancy. The changes in the luminal en-
vironment associated with these changes in micro-
biota composition need to be evaluated in terms of
beneficial over deleterious effects for the colonic mu-
cosa and for peripheral tissues in the mother and the
fetuses.
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