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Abstract

The production of transgenic farm animals (e.g., cattle) via genome engineering for the gain or loss of gene functions
is an important undertaking. In the initial stages of genome engineering, DNA micro-injection into one-cell stage
embryos (zygotes) followed by embryo transfer into a recipient was performed because of the ease of the procedure.
However, as this approach resulted in severe mosaicism and has a low efficiency, it is not typically employed in the
cattle as priority, unlike in mice. To overcome the above issue with micro-injection in cattle, somatic cell nuclear
transfer (SCNT) was introduced and successfully used to produce cloned livestock. The application of SCNT for the
production of transgenic livestock represents a significant advancement, but its development speed is relatively slow
because of abnormal reprogramming and low gene targeting efficiency. Recent genome editing technologies (e.g,,
ZFN, TALEN, and CRISPR-Cas9) have been rapidly adapted for applications in cattle and great results have been achieved
in several fields such as disease models and bioreactors. In the future, genome engineering technologies will accelerate

our understanding of genetic traits in bovine and will be readily adapted for bio-medical applications in cattle.
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Background

Livestock are very important to humans because they
provide food resources (meat and/or milk) and other by-
products such as leather. Cattle are known as the best
animals for producing large amounts of milk and/or
meat and are regarded as a valuable protein resource.
Additionally, they are utilized for research regarding
assisted reproduction technologies such as in vitro
fertilization, superovulation, embryo transfer, somatic
cell nuclear transfer (SCNT) and cryopreservation,
which help us to further our understanding of basic and
advanced embryology in animals as well as in humans.
Recently, the introduction of new genome technologies
such as whole genome sequencing and genome manipu-
lation in cattle, have opened a new era for industrial
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applications. In this review, we will summarize several
genomic engineering technologies for producing genome
modified cattle (GMC).

History of GMC

GMC production has progressed relatively slowly for
livestock (Fig. 1) [1-3]. In the initial stage of GMC pro-
duction, the plasmids including exogenous recombinant
DNAs are micro-injected into in vitro fertilized embryos,
similar to the procedures employed in mice. In other
words, transgenic (founder) cattle are produced through
the micro-injection of recombinant DNAs into the pro-
nucleus of fertilized embryos (zygotes) and transgenesis
is verified by detecting the gene [4]. Because mosaicism
is observed in founder offspring, complete genetically
modified mice can be produced by breeding genetically
modified males or females. However, research on DNA
micro-injection into bovine zygotes has progressed
slowly or has been limited due to difficulties with
discerning the pronucleus of fertilized embryos (Fig. 2).
To observe the pronucleus of bovine zygotes, centrifuga-
tion of the denuded zygotes enables clear visualization.
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Bovine transgenic blastocysts produced with mechanical
treatments (centrifugation and micro-injection) are
transferred into the recipient cow to produce GMC.
Unfortunately, the micro-injection approach is an ineffi-
cient method for production of GMC because of
transgene mosaicism, low DNA delivery efficiency, long
gestational periods (280 d) and puberty (around 14 mo),
and single pregnancy in cattle (Fig. 3).

As an alternative to micro-injection with plasmid DNAs,
high integration of a targeted foreign gene to produce
GMC using a viral gene delivery system was introduced
(Fig. 1) [5], and indeed, GMC have been successfully engi-
neered via retrovirus- or lentivirus-mediated integration
and have been born and grown to adults [6, 7]. However,
the virus-dependent GMC approach still has limitations
with regard to safety.

As an complementary procedure to micro-injection of
the target DNAs or virus-infection, SCNT has been
employed, in which a somatic cell, is injected into the
enucleated oocytes, then fused, activated, and cultured

Fig. 2 Representative pictures of oocytes. Left: oocyte from rats,
Middle: oocyte from cow, Right: oocyte from pigs. Scale =50 um

in vitro up to blastocysts [8] (Fig. 3). Scientists think that
GMC can be produced relatively easily because genome
modified somatic cells can be reprogrammed into the
pre-implantation stage (Fig. 3). In other words, because
only genetically modified cells are selected for SCNT,
there is no doubt that the pre-implantation embryos and
offspring will be positive for transgenesis without mosai-
cism. Indeed, several transgenic cattle have been pro-
duced via SCNT [3]. However, with SCNT, the success
rate of live cloned offspring is very low and abortions
and abnormalities occur with a high frequency due to
abnormal reprogramming [9], leading to slow progress
in GMC. Nevertheless, because the method is optimal
for producing complete GMC without the occurrence of
mosaicism (Fig. 3), it continues to be used in the
livestock field along with micro-injection.

DNA transposons for integrating and expressing
the target DNA in the bovine genome

Due to several disadvantages (low integration efficiency,
mosaicism, and mechanical stress) as previously
discussed, the injection of simple plasmid DNAs into
zygotes has not to be chosen for producing GMC as
priority. One of the complementary options for the
introduction of simple plasmid DNAs into GMC could
be the DNA transposon system, because this system im-
proves the occurrence of mosaicism and transgene inte-
gration (Fig. 4). Indeed, several GMC have been
produced via DNA transposon [i.e. sleeping beauty (SB)
and piggyBac (PB)] (Fig. 1) [10, 11].

The DNA transposon system is known as an efficient
method for delivering foreign DNA into the host gen-
ome. Among the known transposon systems, SB and PB
are primarily used for producing rodents with integrated
target genes [12, 13]. The transposon delivery system
has two compartments, one for transposable elements,
and another for the transposase, which transpose the
transposable elements into another locus of the genome
(Fig. 4). Without linearization, the target gene can be
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more easily integrated in a specific manner using this
method. SB is preferred for insertions into "TA" sites in
the host genome, while PB is preferred for insertions
into “TTAA” sites.

Transposon systems, where the utilization of transposon-
transgenic donor cells for bovine SCNT and the production
of transgenic blastocysts has been demonstrated [14, 15], in-
tegrate DNA elements into specific positions. Transposons
have been integrated into the intronic region in several stud-
ies [16, 17], indicating the procedure is not harmful to cells,
embryos, or animals, because it does not affect the coding
region. Consistent with previous reports, we produced sev-
eral transgenic cattle in our study using SB or PB [10]. In
our analysis using whole genome sequencing, we encoun-
tered no issues with genome modification with regard to

single nucleotide polymorphism (SNP), copy number vari-
ation (CNV), and structure variation (SV) [10], and all of
the integrated DNA was founded within non-coding re-
gions. The transgenic cattle grew up with no health issues,
with the oldest being over 40 months old, and these trans-
genic cattle will be valuable for future studies.

Currently, the production of transposon-based transgenic
cattle utilizes ubiquitous expression of the integrated ele-
ments. In the future, tissue-specific or conditional expres-
sion [18] is needed for more precise functional analysis.
Overexpression or knockout of a target gene was initially
carried out, and most recent studies are focused on tissue-
specific, time-dependent, or specific conditional expression
in rodent models. In pig models, several conditional-gene
regulated studies have been published [18-20], and
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additional research has been performed as well. In one re-
port, tissue-specific GMC were produced [11], and the ap-
plication of this technique is expected to increase. Another
type of conditional GMC was also produced and its gene
regulation was demonstrated using the Dre recombinase
protein, as presented in our previous study [10]. Although
the attempt at generating live tetracycline-controlled (tet-
on) conditionally regulated GMC was a failure due to abnor-
mal reprogramming, expression was confirmed in this
experiment in fetal tissues (Fig. 5). In the above studies, we
identified four integration sites and no genomic instabilities
as well. Because all the transgene integrations were in
intronic sites and no genomic instabilities were identified,
we considered that failure of the cloned fetus might have
been due to abnormal reprogramming. Therefore, a tissue-
specific or conditional gene regulation system combined
with a transposon system may prove to be a valuable tool
for GMC studies, despite its’ narrow applications.

Bovine pluripotent stem cells for GMC

The reason that research regarding genome modified
mice has advanced is due to the isolation of germline
transmitted embryonic stem cells, which have pluripo-
tency. Mouse embryonic stem cells combined with

homologous recombination and transgene integration
have played an important role in the production of many
disease or genetic mouse models [21-23]. However, in
contrast to rodents, germline transmitted embryonic
stem cells do not exist in livestock, though one study
has reported the potential for chimerism [24]. Even
though isolation of bovine embryonic stem cells from
blastocysts was attempted, this endeavor failed, as after a
few passages, the pluripotency of these cells disappeared
[25-27]. The recent development of induced pluripotent
cells, which are reprogrammed by embryonic transcrip-
tion factors (Oct4, Sox2, cMyc, Klf4, and Nanog) in mice
and humans [28], has raised considerable interest in re-
searchers working with the bovine species for GMC
production. Although bovine induced pluripotent stem
cells have been successfully isolated and characterized
[29, 30], this approach still requires more development
for generating germline chimerism or long-term cultures
required for genome engineering.

Bovine genome editing for endogenous bovine
genes

Previously, we described how to integrate and express
exogenous genes. Genome editing for endogenous genes
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in GMC will be reviewed in this section. Homologous the introduction of genome editing technologies such as
recombination (HR) has been used to knockout the tar-  Zinc Finger Nuclease (ZEN), Transcription activator-like
get region of the endogenous genome in cattle before effector nuclease (TALEN), and Clustered regularly
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interspaced short palindromic repeats (CRISPR)-Cas9.
In mice, embryonic stem cells using HR are screened
and single colony-derived cells are employed for chime-
rism or blastocyst complementation. However, due to
the absence of embryonic stem cells in livestock, the fre-
quency of HR events in cattle is very low. Furthermore,
due to their limited life span, long-term culture of som-
atic cells for screening knockout-single cell colony
SCNT exhibit a low efficiency in cattle (Fig. 6). As a re-
sult, since the birth of the first cloned cattle, only one
knock-out/-in cattle has been born to date using SCNT
combined with HR [31].

Genome editing technologies have recently been
highlighted in many organisms [32]. ZEN and TALEN,
which were introduced early in several fields, are being
used for editing the genome in livestock. The initial
adaptation of ZFN and TALEN for livestock enabled sci-
entists to generate genome edited livestock with rela-
tively high knockout efficiency. A few successes have
been reported in cattle using ZFN [33] and TALEN [34].
Nowadays, continuous efforts to improve genome edit-
ing techniques including the use of CRISPR-Cas9 have
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resulted in numerous genome edited animals including
cattle [3].

We believe genome editing technologies will be ap-
plied to three areas. First, the technologies will be used
for basic or disease related gene function research in cat-
tle. As previously reported, disease-related gene edited
cattle have already been produced. A study reported the
birth of tuberculosis-resistant cattle produced via
TALEN [35]. The same procedure used for the produc-
tion of virus-resistant pigs [36, 37] will also be applied in
cattle for disease related studies. Studies on prion dis-
eases using TALEN and CRISPR-Cas9 with a PRNP
(prion protein) mutation enable us to produce prion-
deleted cattle. In our in vitro studies, PRNP-mutated
cells could be used as cell models to understand the
function of the prion [38]. However, some related genes
identified as candidates in mice or human cell studies
are not co-related in bovine cells. Another group showed
that micro-injection with Cas9 and sgRNA for PRNP
may be a practical approach for future production of
prion free cattle [39]. In our study, one pregnancy was
identified with ultrasonography among SCNT embryos
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derived from PRNP mutated cells. In the future, tech-
niques for the elimination or correction of various
disease-related genes could be adapted for genome-
editing in cattle.

The second area where genome editing technologies will
be applied is the application of these technologies to im-
prove genetic traits. Bovine genome sequencing revealed
characteristic traits in proved bulls and traits introduced
via random mutation and natural selection, such as in-
creased muscle (myostatin gene mutation) or dehorning,
were identified at the genome level. Mutated myostatin
and dehorned cattle have already been born and grown
into adults with the expected phenotypes (i.e., larger mus-
cles and no horns) [34, 40]. Dehorning cattle is a low risk
procedure because transgenic cattle receive dehorning
genes from naturally hornless cattle. In the future, these
cattle will benefit the cattle industry after the germ-line
transmission is confirmed and United States Food and
Drug Administration (FDA) approval is obtained for intro-
duction into the food chain, productivity improvements,
and animal welfare. Additionally, as whole genome se-
quencing data continue to accumulate and specific se-
quence variations are found [41], the combination of
genome editing and genomic data will be enabled us to
quickly improve genetic traits.

The third area where genome editing technologies will
be applied, is in the production of designed milk or bio-
pharmacological proteins can be manufactured in gen-
ome edited cattle [42, 43]. Because the cow has a very
specialized system for flexible milk production, relatively
simple purification and large-scale milk volume, the milk
produced by cattle can be modified by genome editing
of milk protein gene promoters such as by changing the
protein composition or increasing some nutrients [44,
45]. Additionally, human or animal bio-pharmacological
proteins can be produced on a large scale using this sys-
tem. This concept of producing bio-pharmacological
proteins from transgenic animals has existed for a long
time and three recombinant proteins (Aytrin® from
goats, Ruconest® from rabbits and Knuma® from chick-
ens) have been approved for clinical use by the FDA.
These recombinant proteins were produced via ran-
domly mutated animals. One of the disadvantages of
random mutations is that it is difficult to predict their
expression levels and yields. Using genome editing with
homology directed recombination, the target protein is
integrated into a specific target locus with high expres-
sion (i.e., the whey acidic protein). Indeed, in a reported
publication, lysostaphin was integrated into a beta-
casein locus, resulting in high expression and large pro-
duction volume in ZFN-treated cows [46]. Since better
genome editing technologies (TALEN and CRISPR-
Cas9) can now be applied to livestock, cattle with bio-
pharmacological proteins can be generated.
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The topic of off-target effects should be addressed in
regard to genome editing technologies that generate live
GMC. When a target locus was selected and designed
for ZEN, TALEN, and CRISPR-Cas9, unwanted muta-
tions have occurred at non-target loci [47-49]. There-
fore, before producing GMC, DNAs, mRNA, and
proteins for ZFN, TALEN, and CRISPR-Cas9, the target
locus should be screened so as to select a locus with not
off-target effects via in vitro assay [50].

Public consensus on genome engineered cattle
The scientific technologies for genome editing have devel-
oped rapidly over time. However, national policies and
consensus on these technologies have not caught up with
current trends and there is a difference in the policies sur-
rounding this topic in different countries. For example,
SCNT-derived cattle, goats, and pigs are accepted as food
in the USA (http://www.fda.gov/downloads/AnimalVeter-
inary/SafetyHealth/AnimalCloning/UCM124756.pdf), but
not in the EU [51].

Recently, genome engineered fish (Salmon) were the
first transgenic animal to receive approval as a food
source in the USA and Canada [52, 53]. Additionally,
several genome-edited organisms, including mushroom,
have escaped from GMO regulations in the USA be-
cause they not contain any foreign DNA [54, 55]. To
date, in terms of productivity, such as growth and dis-
ease resistance, genome engineered fish or plants have
been approved. In the same line with livestock, product-
ivity or disease related gene editing have been the focus
of researcher, resulting in several studies, such as
dehorning or double muscle, have been reported [34, 40,
56, 57]. In contrast to gene-edited plants, gene-edited
animals face strict US regulation (https://www.nature.-
com/news/gene-edited-animals-face-us-regulatory-crack-
down-1.21331). The production of gene-edited livestock
is gradually increasing, and we think that it is necessary
to address its’ scientific safety and efficacy. Additionally,
here is also a need to promote rational regulations to
guide the commercial and scientific use of GMC.

Conclusions

Genome engineering technologies have been rapidly ap-
plied adopted for producing GMC because they have
powerful advantages in the cattle industry. In the future,
if policy and technological advances become harmoni-
ous, GMC will contribute to humanity and animal wel-
fare in terms of genetic traits, disease resistance and
understanding, and protein (bioreactors) production.
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