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Abstract

finishing pigs.

and phosphorylated-AMPK (P < 0.05).

transport and fatty acid oxidation.

Background: Betaine affects fat metabolism in animals, but the specific mechanism is still not clear. The purpose
of this study was to investigate possible mechanisms of betaine in altering lipid metabolism in muscle tissue in

Methods: A total of 120 crossbred gilts (Landrace x Yorkshire x Duroc) with an average initial body weight of 70.
1 kg were randomly allotted to three dietary treatments. The treatments included a corn—soybean meal basal diet
supplemented with 0, 1250 or 2500 mg/kg betaine. The feeding experiment lasted 42 d.

Results: Betaine addition to the diet significantly increased the concentration of free fatty acids (FFA) in muscle

(P < 0.05). Furthermore, the levels of serum cholesterol and high-density lipoprotein cholesterol were decreased

(P < 0.05) and total cholesterol content was increased in muscle (P < 0.05) of betaine fed pigs. Experiments on
genes involved in fatty acid transport showed that betaine increased expression of lipoprotein lipase(LPL), fatty acid
translocase/cluster of differentiation (FAT/CD36), fatty acid binding protein (FABP3) and fatty acid transport protein (FATPT)

(P < 0.05). The abundance of fatty acid transport protein and fatty acid binding protein were also increased by betaine
(P < 0.05). As for the key factors involved in fatty acid oxidation, although betaine supplementation didn't affect the level
of camitine and malonyl-CoA, betaine increased mRNA and protein abundance of carnitine palmitransferase-1(CPT1)

Conclusions: The results suggested that betaine may promoted muscle fatty acid uptake via up-regulating the genes
related to fatty acid transporter including FAT/CD36, FATP1 and FABP3. On the other hand, betaine activated AMPK and
up-regulated genes related to fatty acid oxidation including PPARa and CPT1. The underlying mechanism regulating fatty
acid metabolism in pigs supplemented with betaine is associated with the up-regulation of genes involved in fatty acid
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Background

Betaine is a derivative of the amino acid glycine with
three chemically reactive methyl groups. Betaine is dis-
tributed widely in animals, plants and microorganisms,
and it is also a metabolite of choline oxidation in ani-
mals [1]. The principal physiologic role of betaine is as a
methyl group donor [2], which means betaine partici-
pates in many important biochemical pathways, includ-
ing methionine-homocysteine cycle and the biosynthesis
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of many compounds such as carnitine, creatine and
phospholipids. Since carnitine is required for transport
of long chain fatty acids into mitochondria [3], scientists
have paid much attention to effects of betaine on energy
metabolism especially lipid metabolism in animals. Stud-
ies showed that dietary betaine supplementation affected
energy partitioning in pigs [4, 5] and it’s also widely re-
ported that betaine promotes animal growth and de-
creases carcass fat percentage in finishing pigs [6—10].
Further investigations found that betaine supplementa-
tion could decrease hepatic triglyceride accumulation
[11, 12] and prevent fatty liver in rats fed high-fat-diets
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[13, 14]. The intramuscular fat content in the longissi-
mus muscle was increased when pigs were fed betaine
[15, 16]. Madeira et al. [17] reported that betaine might
be involved in the differential regulation of some key
genes of lipid metabolism in muscle and subcutaneous
adipose tissue. However, studies on the mechanism of
betaine affecting lipid metabolism in muscle are lacking.
Therefore, the objective of the present study was to in-
vestigate possible mechanisms of betaine in altering lipid
metabolism in muscle tissue of finishing pigs.

Methods

Animals and treatments

The experiment protocol used in this study was ap-
proved by the Institutional Animal Care and Use Com-
mittee of Zhejiang University. A total of 120 crossbred
gilts (Landrace x Yorkshire x Duroc) with an average
initial body weight of 70.1 kg (SD 0.70 kg) were ran-
domly allotted to three dietary treatments. Each treat-
ment consisted of four pens replicates with 10 gilts per
pen. The treatment diets included a corn—soybean meal
basal (Table 1) supplemented with 0, 1250 mg/kg (Low
Betaine) or 2500 mg/kg (High Betaine) betaine (provided
by Healthy Husbandry Sci-tech Co., Ltd. Hangzhou,
China) respectively at the expense of corn. The basal
diet was formulated to meet or exceed the nutrient re-
quirements of finishing pigs [18]. Chemical analyses of
the basal diet were carried out according to the methods
of AOAC [19]. The feeding experiment lasted 42 d after
a 7-day adaptation period. All pigs were housed in a
curtain-sided pig barn with concrete slotted floors. Feed
and water were provided for ad libitum consumption
throughout the experiment.

Table 1 Nutrition formulation of basic diet

Ingredients % Nutrient %
Corn 67.83 Digestible energy, MJ/kg® 1342
Soybean meal 23 Dry matter 87.09
Rapeseed meal 3 Crude protein 17.02
Wheat midding 3 Crude fat 398
CaHPO, 15 Calcium 0.85
Limestone 1.0 Phosphorus 0.64
Salt 03 Lysine 092
Lysine 0.10 Met 0.27

Trace element premixb 0.25

Vintamin premix© 0.02

“All of the data were analyzed value except digestible energy which was
calculated using swine NRC(2012) values

bprovided the following amounts per kilogram of diet: Fe (FeSO4-7H,0),

50 mg; Cu (CuSO4-5H,0), 5 mg; Mn (MnSO4-H,0), 5 mg; Zn (ZnSO4-7H,0),
50 mg; | (KI), 0.35 mg; Se (NaSe,03), 0.15 mg

“Provided the following amounts per kilogram of diet: vitamin A, 3000 1U;
vitamin D3, 610 IU; vitamin E, 20 IU; vitamin By, 5 mg; vitamin B;,, 0.021 mg;
biotin, 0.1 mg; pantothenic acid, 10 mg; nicotinic acid, 15 mg
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Sample collection

At the end of the trial, eighteen pigs (six from each diet-
ary treatment) weighing about 111.8 kg (SD 2.08 kg)
were selected to collect tissue samples. Following an
overnight fast, pigs were stunned by electrical shock and
bleeding. Individual blood samples were collected at
slaughter during exsanguinations. After collection of
blood, samples were kept at room temperature for 2 h
and then centrifuged for 10 min at 3000xg at 4 °C.
Serum was collected and frozen at -80 °C until subse-
quent analyses. Samples of longissimus muscle between
the 6™ and 7™ rib were obtained on the left side of the
carcass within 5 min after slaughter, and then snap fro-
zen in liquid nitrogen and stored at —80 °C until subse-
quent analyses.

Analysis of lipid metabolites in serum

Serum concentration of high-density lipoprotein choles-
terol (HDLC), total cholesterol (TC), free fatty acid
(FFA) and triglyceride were measured with commercial
assay kits (Nanjing Jiancheng Bio-engineering Institute,
Code No. A112-2, A111-2, A042-1 and A110-2, re-
spectively, Nanjing, China) following the manufacturer’s
instructions.

Muscle lipid metabolites analysis

A 10% muscle homogenate was prepared with a mixture
of chloroform and formaldehyde (a volume ratio of 2:1).
Then extracted at room temperature for 24 h [20]. The
organic solvent layer was taken and the level of triglycer-
ide in muscle was measured with commercial assay kit
(Nanjing Jiancheng Bio-engineering Institute, A110-2,
Nanjing, China). Before the levels of TC and FFA in
muscle were measured by the kits (Nanjing Jiancheng
Bio-engineering Institute, Code No. A112-2, A111-2,
A042-1 and A110-2, respectively, Nanjing, China),
muscle tissue was made homogenate with physiological
saline. The concentrations of carnitine and malonyl-CoA
were measured using ELISA kits (Biovol Technologies,
Code No.50R-E.3088P & 50R-E.3035P, Shanghai,
China) for porcine assay according to the instructions.

RT-PCR analysis

Total RNA was extracted from frozen porcine muscle
tissue using the Trizol reagent as described by the
manufacturer (Invitrogen). The RNA concentration and
purity were determined by the NanoDrop ND-2000
spectrophotometer (Thermofisher, USA) and its integrity
was confirmed by agarose gel electrophoresis. The
c¢DNA synthesis was performed in a 10-pL reaction vol-
ume containing 2 pg total RNA using the SYBR Prime-
Script™ RT-PCR kit with gDNA Eraser (Code No.
RRO047A, TaKaRa, Dalian, China). Genomic DNA is
eliminated by treatment for 2 min at 42 °C with gDNA
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Eraser, which has potent DNA degrading activity. Then
a reverse-transcription reaction reagent is added that in-
cludes a component that completely inhibits DNA deg-
radation activity, and the reverse-transcription reaction
proceeds for 15 min at 37 °C. The abundance of the tar-
get genes was measured by quantitative real-time PCR,
performed with the ABI Stepone Plus™ RT-PCR system
(ABI Biotechnology, USA) using SYBR Premix Ex Taq™
(Tli RNaseH Plus) RT-RCR kit (TaKaRa, Dalian, China).
Primers for the selected genes were synthesized com-
mercially by Invitrogen (Shanghai, China), shown in
Table 2. The reaction protocol comprised a cycle of 95 °C
for 1 min, 40 cycles of 95 °C for 10 s and 64 °C for 25 s.
The expression of the target genes were normalized by the
endogenous housekeeping gene (B-actin) [21, 22]. Each
sample was analyzed in triplicate and the PCR amplifica-
tion efficiency was close to 100%. The gene expression
was calculated by using the comparative (2 ~ **“) method
[23].

Western blot analysis

Protein form muscle samples was extracted by T-PER
Tissue Protein Extraction Reagent containing protease
inhibitor cocktail (Thermo Pierce, Code No.78510,
USA), and quantified with BCA protein assay kit (Beyo-
time, Code No.P0010, Shanghai, China) according to kit
instructions. Proteins were separated on SDS - PAGE
gels (12%), and then electrophoretically transferred onto
immobilon-P polyvinylidene fluoride membranes (PVDF
membrane, Millipore, Code No. IPVH00010, America).

Table 2 Primers of target genes for RT-PCR
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Membranes were blocked 1 h in Tris-buffered saline
containing 5% nonfat-dried milk at room temperature.
Membranes were then incubated overnight at 4 °C in
blocking buffer containing primary antibodies (as shown
in Table 3). A goat anti-rabbit IgG (H + L) Secondary
antibody (Thermo Pierce, Code NO.31210, USA) with 1/
5000 dilution was used in the detection of specific pro-
teins. For loading control, B-actin antibody was used as
control. In addition, the relative expression of p-AMPK
was normalized with AMPK. Finally, Super Signal West
Dura Extended Duration Substrate (Thermo Pierce,
Code No. 34075, USA) was used to visualize the protein
bands. Band intensities were determined by using
BandScan 5.0 software.

The relative expressions of target proteins = (The op-
tical density of target proteins/The optical density of B-
actin).

Statistical analyses

Results were presented as means and standard devia-
tions. Statistical analysis was performed by one-way ana-
lysis of variance (ANOVA) and the Duncan method was
used to put up multiple comparison with the statistical
software SPSS 19.0. In all analyses, the level of signifi-
cant difference was set at P < 0.05.

Results

Betaine on serum lipid metabolites

As shown in Fig. 1, there was no significant difference in
the levels of serum FFA and triglyceride in the pigs fed

Genes GenBank accession Primers sequences(5' to 3') Product size, bp Annealing temperature, °C

B-actin XM_003124280.3 CCTGCGGCATCCACGAAAC 123 63
TGTCGGCGATGCCTGGGTA

AMPKa2 AY159788.1 GGTCTGGTTCCTCAACACCTCA 90 63
GGCTCTCCGCAGTGACAGAAT

PPARy NM_214379 GTGGAGACCGCCCAGGTTTG 108 64
GGGAGGACTCTGGGTGGTTCA

LPL NM_214286.1 CCCTATACAAGAGGGAACCGGAT 138 63
CCGCCATCCAGTCGATAAACGT

CPT1 NM_001007191.1 GGACGAGGAGTCTCACCACTATGAC 128 63
TCTTGAACGCGATGAGGGTGA

FATP1 NM_001083931.1 CCCTCTGCGTCGCTTTGATG 151 63
GCTGCGGTCCCGGAAATACA

FAT/CD36 NM_001044622.1 CTGGTGCTGTCATTGGAGCAGT 160 63
CTGTCTGTAAACTTCCGTGCCTGTT

FABP3 NM_001099931.1 CCAACATGACCAAGCCTACCACA 176 63
ACAAGTTTGCCTCCATCCAGTGT

PPARa NM_001044526.1 GGCTTACGGCAATGGCTTCA
CGGTCTCCGCACCAAATGA 168 64
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Table 3 The primary antibodies for Western blot

Primary antibody Order numbers Dilution Size, kDa

Anti-Cardiac FABP abca ab45966 1:1500 15

Anti-FATP1 abcam ab81875 1:2000 65

Anti-CPT1B abcam ab104662 1:2000 88

Anti-Phospho-AMPK Cell Signaling 1:1000 62
Technology 2535

Anti-AMPKa Cell Signaling 1:1000 62
Technology 5832

B-actin (C4) Santa Cruz SC-47778 1:1500 43

betaine compared with control group. Additionally, the
concentration of HDLC and TC were significantly lower
in the betaine treated pigs (P < 0.05).

Betaine on muscle lipid metabolites

The level of FFA and TC were markedly higher in
muscle when pigs were fed betaine (P < 0.05, Fig. 2).
Compared to the control group, the level of triglyceride
in muscle was not affected by betaine addition
(P > 0.05).

Key factors involved in muscle FFA intake
As shown in Fig. 3, the gene expression of FAT/CD36,
FATPI and PPARy (P < 0.05) were higher in betaine-fed
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groups than control group. The addition of 2500 mg/kg
betaine markedly up-regulated the gene expression of
FABP3 and LPL (P < 0.05). In addition, the abundance
of fatty acid transport protein and fatty acid binding pro-
tein were significantly increased by betaine supplementa-
tion (P < 0.05, Fig. 4).

Key factors involved in muscle FA oxidation

Betaine supplementation did not affect carnitine or
malonyl-CoA in muscle compared to the control group
(P > 0.05, Fig. 5).

The gene expression of AMPKa2, PPARax and CPT1
were significantly higher in pigs fed with betaine than
the control group. (P < 0.05, Fig. 6). Furthermore, beta-
ine supplementation markedly increased the abundance
of phosphorylated-AMPK and CPT1
(P < 0.05, Fig. 7).

in muscle

Discussion

Fatty acid metabolism in muscle includes uptake, synthe-
sis and oxidation [24—26], but the synthesis is at a slow
rate [27]. The main source of fatty acid in muscle tissue
includes transport from plasma and hydrolysis from
chylomicron and very-low-density-lipoprotein (VLDL)
with LPL. Our study found that the concentration of
FFA was significantly increased in muscle when pigs
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were fed betaine, similarly to the studies carried out by
Yang et al. [28] and Ferndndez-Figares et al. [29]. We
speculated that the transport of FFA and/or the hydro-
lysis may be enhanced. More experiments were carried
out regarding factors involved in fatty acid transport in
muscle tissue. It is widely recognized that long chain

fatty acid (LCFA) cross the plasma membrane via a
protein-mediated mechanism. A number of fatty acid
transporters have been identified, including fatty acid
translocase/cluster of differentiation (FAT/CD36) and
fatty acid transport proteins (FATP1) [30]. We found that
betaine supplementation up-regulated gene expression for
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FATPI and FAT/CD36. Experiments in vitro have shown
that over expression of FATPI increased the uptake of
LCFA in cells [31] and studies in vivo documented that
muscle-specific over-expression of FAT/CD36 enhanced
cellular fatty acid uptake in mice [32]. FABP3, another im-
portant protein in fatty acid transportation, plays a role in
transporting fatty acid from the sarcolemma to their intra-
cellular sites of metabolism [33]. In muscle cells, the intra-
cellular transport of LCFAs is facilitated to a great extent
by FABP3 [34] Additionally, FABP3 is confirmed to be

associated with intramuscular fat in pigs [35]. Our studies
showed that feeding betaine up-regulated the protein
abundance of FABP3. In addition, the gene expression of
FABP3 was enhanced when pigs were fed with 2500 mg/
kg betaine but no difference was found with 1250 mg/kg-
betaine addition. The possible reason maybe that FABP3
expression is translationally rather than transcriptionally
regulated [36]. In summary, betaine may promote the up-
take of fatty acids in muscle via regulating the expression
of FAT/CD36, FATPI and FABP3. As mentioned above,
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LPL is the principal enzyme that hydrolyzes circulating
triglycerides and it also can increase lipid uptake [37]. The
results showed a significant increase in the gene expres-
sion of LPL with the addition of 2500 mg/kg betaine,
which indicates betaine might enhance lipid uptake as well
as chylomicron hydrolysis. The nuclear receptor PPARY is
a central regulator of adipose tissue development and an
important modulator of expression in adipocytes [38]. To
date, only a limited number of genes are known to be dir-
ect targets of PPARy in adipose tissue. The majority of
these encode proteins with direct links to lipid metabolism
including LPL, FATP and FAT/CD36 [39, 40]. In present
study, the gene expression of PPARy was significantly
higher in betaine-fed groups than the control group. We
found that the effect of betaine on PPARy was similar to
its downstream target genes. All these results were similar
to Albuquerque [41] and imply that betaine may facilitate
fatty acids uptake in muscle via affecting key factors in-
volved in FFA uptake, and the specific regulation mechan-
ism needs more research.

The concentration of FFA in muscle tissue resultes
from the balance of transport and oxidation. As a methyl
donor, betaine participates in the biosynthesis of car-
nitine and because of this, betaine may be related to
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fatty acid B-oxidation. LCFAs are first transformed into
acyl CoA, then transferred into mitochondria after com-
bining with carnitine where it is oxidized. Carnitine pal-
mitoyl transferase I (CPT1) is the rate-limiting enzyme
that controls the step of combination and malony-CoA
is an allosteric inhibitor of CPT1 [42]. Whereas the syn-
thesis of malonyl-CoA is catalyzed by acetyl-CoA carb-
oxylase (ACC), the activity of the ACC is regulated by
phosphorylation of AMPK [43]. Hence, AMPK-ACC-
CPT1 is an important signaling pathway to regulate fatty
acid B-oxidation in mitochondria. Cai et al. [44] found
that gestational dietary betaine supplementation down-
regulated expression of ACC in neonatal piglets and Pek-
kinen et al. [11] found betaine supplementation had an
impact on carnitine metabolism in high-fat-fed mice.
Our experiment didn’t find significant changes in muscle
concentrations of malonyl-CoA or carnitine. The differ-
ent results might be related to the different experiment
condition and the mechanism needs to be further inves-
tigated. Increased gene expression and protein expres-
sion of CPTI were up-regulated with betaine addition,
which implied betaine may enhance fatty acid p-
oxidation in muscle tissue. However, others have shown
betaine supplementation reduced the activity of CPT1
and mRNA abundance, and further increased IMF in
finishing pigs [Duroc x (Seghers x Seghers)] [15]. We
speculate that the effect of betaine addition on CPT1
might be influenced by breed and muscle type. In order
to get a better understanding, we further analyzed effects
of betaine on AMP-activated protein kinase (AMPK)
and PPARa, which are both upstream regulatory factors
of CPT1. AMPK is a crucial energy sensor for cells,
which can promote the catabolism of fatty acids by en-
hancing their uptake into mitochondria and their conse-
quent breakdown by beta-oxidation [45]. It was reported
that activated AMPK in muscle enhances the gene ex-
pression of PPARa and CPT1 [46], and CPT1 also seems
to be a target of PPARa [47]. In the current experiment,
the gene expression of both PPARa and AMPK were
higher in betaine-fed groups as well as protein expres-
sion of p-AMPK (the activated form of AMPK). Similar
to our previous report in rat liver [12], it can be inferred
that betaine affected fatty acid oxidation in muscle via
activating AMPK and up-regulated PPARa and CPTI
gene expression.

The effect of betaine supplementation on cholesterol
metabolism was of interest. The present study showed
that betaine supplementation decreased the concentra-
tion of serum cholesterol and HDLC and increased chol-
esterol level in muscle, which was consistent with the
studies by Albuquerque et al. [41] and Yang et al. [20].
However, Matthews et al. [48] and Martins et al. [49] re-
ported that betaine supplemented pigs presented higher
serum cholesterol. The efficacy of betaine in regulating
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the concentration of cholesterol in pigs shows variable
results and seems to depend on both animal and dietary
factors. Although the results were inconsistent, it seems
to indicate that betaine might affect cholesterol parti-
tioning or maybe enhances the transport of cholesterol
in pigs, and more research is needed to clarify the spe-
cific mechanism.

Conclusions

In present study, betaine supplementation increased the
level of free fatty acids in muscle, which may have resulted
due to a change in the balance of fatty acid uptake and
oxidation. Betaine may promote fatty acid uptake via in-
creasing the expression of fatty acid transporters including
FAT/CD36, FATP1 and FABP3 in muscle. Additionally,
betaine activated AMPK and up-regulated PPARa and
CPT1I, and may enhance fatty acid oxidation in muscle.
Fatty acid accretion in muscle represents a balance be-
tween uptake and oxidation, and it seems that the effect of
betaine on uptake was stronger than oxidation.
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