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Abstract

Background: Genomic growth curves are generally defined only in terms of population mean; an alternative approach
that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression (QR). This methodology
allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose
and evaluate a regularized quantile regression for SNP marker effect estimation of pig growth curves, as well
as to identify the chromosome regions of the most relevant markers and to estimate the genetic individual
weight trajectory over time (genomic growth curve) under different quantiles (levels).

Results: The regularized quantile regression (RQR) enabled the discovery, at different levels of interest (quantiles), of the
most relevant markers allowing for the identification of QTL regions. We found the same relevant markers simultaneously
affecting different growth curve parameters (mature weight and maturity rate): two (ALGA0096701 and ALGA0029483)
for RQR(0.2), one (ALGA0096701) for RQR(0.5), and one (ALGA0003761) for RQR(0.8). Three average genomic growth
curves were obtained and the behavior was explained by the curve in quantile 0.2, which differed from the others.

Conclusions: RQR allowed for the construction of genomic growth curves, which is the key to identifying and
selecting the most desirable animals for breeding purposes. Furthermore, the proposed model enabled us to
find, at different levels of interest (quantiles), the most relevant markers for each trait (growth curve parameter
estimates) and their respective chromosomal positions (identification of new QTL regions for growth curves in
pigs). These markers can be exploited under the context of marker assisted selection while aiming to change
the shape of pig growth curves.
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Background
In general, the study of growth curves is carried out by
fitting nonlinear models to weight (dependent variable)
and age (independent variable) data. These models are
used because they are flexible and have parameters with
biological interpretations, such as maturity rate and
adult weight.
With the goal of estimating SNP marker effects on

parameter estimates of growth curves, Pong-Wong and
Hadjipavlou [1] proposed a two-step approach. In the
first step, nonlinear models were fitted to the weight-age
data of each animal. In the second step, genomic regres-
sion models were fitted while considering the parameter

estimates from the previous step as the dependent va-
riable. Such an approach allows for the estimation of
marker effects based only on the conditional mean of
the dependent variable. Specifically, genomic growth
curves are defined only in terms of population mean,
i.e., the identification of genetically superior individuals
in relation to the growth efficiency is based on popula-
tion mean distribution (quantile 0.5 of a normal distri-
bution of the sampled data).
An alternative approach for the second step that has

not yet been exploited in genomic analyses of growth
curves is the Quantile Regression (QR) [2]. This metho-
dology allows for the estimation of marker effects at dif-
ferent levels (quantiles) of the variable of interest.
Obtaining these effects in specific quantiles allows for a
more informative study on the chromosomal regions af-
fecting the growth curve trajectory.
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In general, the larger number of markers and the de-
pendence between them due to linkage disequilibrium
leads to multicolinearity estimation problems. Thus,
methods such as shrinkage estimation, which highlight
the high dimensionality and multicollinearity issues, are
required. Under a QR framework, this method is named
regularized quantile regression (RQR), since the shrin-
kage (or penalty) parameter regularizes the variance of
the markers’ effects, thus performing a direct variable se-
lection framework.
We aimed to propose and evaluate a regularized quan-

tile regression for SNP marker effect estimation of pig
growth curves, as well as to identify the chromosome re-
gions of the most relevant markers and to estimate the
genetic individual weight trajectory over time (genomic
growth curve) under different quantiles (levels).

Methods
Animals and genotyping data
Phenotypic data was obtained from the Pig Breeding
Farm of the Department of Animal Science of the Federal
University of Viçosa, Minas Gerais, and refer to the
weights at birth, 21, 42, 63, 77, 105 and 150 days of age.
These weights were measured in 345 animals from a F2
outbred population (Brazilian Piau X commercial). More
details about this population are found by Azevedo et al.
[3] and Band et al. [4].
DNA was extracted at the Animal Biotechnology Lab

from Animal Science Department of Federal University
of Viçosa. The low-density customized SNPChip with
384 markers was based on the Illumina Porcine SNP60
BeadChip (San Diego, CA, USA, [5]). The number of
SNP markers was distributed as follows in the pig chro-
mosomes: (Sus scrofa; SSC): SSC1 (n = 56), SSC4
(n = 54), SSC7 (n = 59), SSC8 (n = 31), SSC17 (n = 25),
and SSCX (n = 12), totaling 237 SNPs. These markers
were selected according to QTL positions that were pre-
viously identified in this population by using meta-
analyses [6] and fine mapping [7, 8]. Thus, although a
small number of markers have been used, the custom-
ized SNPchip based on previously identified QTL posi-
tions ensures appropriate coverage of the relevant
genome regions in this population.

Statistical analysis
Initially, the logistic nonlinear regression model [9] was
fitted to the individual weight-age data:

wij ¼ α1i
1þ exp α2i−tj

� �
=α3i

� �þ eij; ð1Þ

where wij is the weight of the animal i at age tj(0, 21, 42,
63, 77, 105 and 150); α1i, α2i and α3i are the parameters.
If α3i > 0 then α1i is the horizontal asymptote as tj→∞

(mature weight) and 0 is the horizontal asymptote astj→
− ∞. If α3i < 0 these roles are reversed. The parameter
α2i is the tj value at which the response is α1i/2. It is the
inflection point of the curve. The scale parameter α3i
(growth scale) represents the distance on the t-axis be-
tween this inflection point and the point where the re-
sponse is α1i/(1 + e−1) ≈ 0.73α1i; eij is the independent
and normally distributed residual term, eijeN 0; σ2

e

� �
: In

this parameterization, the growth scale parameter is the
reciprocal of growth rate on the model presented by Rat-
kowsky [10].
After obtaining parameter estimates of the logistic

model, they were used as dependent variables in a linear
model to carry out fixed effect corrections (sex, lot, and
halothane gene). The corrected variables were identified
based on the residual of the fitted linear model plus the
overall mean. Subsequently, the corrected variables (α ̂

�
1i;

α ̂
�
2i and α̂

�
3i ) were used as dependent variables in a mul-

tiple regression model while using SNP markers as the
independent variables. This procedure is known in the
literature as a two-step approach: in the first step, a
growth curve is fitted to the data of each animal, and in
the second step, the parameter estimates from the previ-
ous step are used as phenotypic values [1, 11].
In the second step, the following genomic model pro-

posed by Meuwissen et al. [12] was fitted separately for
each trait (parameter estimates from previous step):

yi ¼ μþ
X237
k¼1

xikβk

" #
þ εi; ð2Þ

in which yi is the corrected phenotype α̂
�
1i; α̂

�
2i and α̂

�
3i

from the first step; μis the general mean; xik is the SNP
marker, encoded as 2 (AA), 1 (Aa), or 0 (aa); βk is the ef-
fect of the marker k; and εi corresponds to the residual
term, εieN 0; σ2

e

� �
.

To obtain the markers’ effects at different levels of the
variables (traits defined by α̂

�
1; α̂

�
2 and α̂

�
3), the regularized

quantile regression [13] was used. This method consists
of obtaining the marker effects (βk) that solve the follo-
wing optimization problem:

β̂s ¼ argminβ
X345
i¼1

ρτs α̂
�
si− μþ

X237
k¼1

xikβsk

 !" #
þλs

X237
k¼1

βsk
�� ��

( )
;

where s = 1, 2, and 3 (respectively for each assumed

trait, α̂
�
1; α

^�
2 and α̂

�
3 );
P
k¼1

237
βsk0
�� �� is the sum of the absolute

values of the regression coefficients; λs is the
regularization parameter for each trait; and τ ∈ (0, 1) in-
dicates the quantile of interest. This parameter (λs) is re-
quired to avoid multicollinearity problems that are a
result of the larger number of highly dependent markers
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associated with linkage disequilibrium. It leads to the
formulation of the RQR.
The parameter ρτs(.) is denoted as a check function [2]

and is defined by:

ρτs α̂
�
si− μþ

X237
k¼1

xikβsk

 !" #

¼
τ⋅ α̂

�
si− μþ

X237
k¼1

xikβsk

 !" #
; if α̂

�
si−μþ

X237
k¼1

xikβsk > 0;

− 1−τð Þ⋅ α̂
�
si− μþ

X237
k¼1

xikβsk

 !" #
; otherwise:

8>>>><
>>>>:

in which τ ∈ (0, 1) indicates the quantile of interest.
Thus, the values of βsk(τ) represent the markers’ effects
in the τ th quantile of interest for sth trait.
In this study, for each trait ( α̂

�
1; α

^�
2 and α̂

�
3 ), the quan-

tiles τ = 0.2 , 0.5 and 0.8 were used to generate results at
three distinct levels that may characterize the low, ave-
rage, and high distribution of the phenotypic values
under study ( α̂

�
1i; α̂

�
2i and α̂

�
3i ). Furthermore, these quan-

tiles were chosen to minimize the residual term in pre-
vious studies (pilot analysis) by using the same datasets.
In order to verify whether marker effects differ be-

tween the quantile levels of the traits ( α̂
�
1; α

^�
2 and α ̂

�
3 ),

the 2.5% most relevant SNPs (highest absolute values)
and their p values, based on bootstrapped standard error
values, were presented. In addition, these SNPs were
used to identify possible QTL regions affecting growth
traits in pigs.
The Genomic Estimated Breeding Values (GEBV) from

RQR were obtained through GEBV τð Þ ¼ u^ ¼P
k

xikβ
̂
k

τð Þ, in which τ represents the quantile of interest. Subse-
quently, the genomic growth curves were obtained for
each animal based on GEBV (û) according to the follo-
wing expression:

ŷij ¼
μ ̂α̂�1þu^

�
α̂1i

1þ exp μ ̂α̂�2þû�α̂2i
� �

− μ̂α ̂�3
þû�α̂3i

� �
tij

h in o ; ð3Þ

in which y ̂ij is the predicted breeding value for each ani-

mal i for the weight at each age (tij) (j = 0 to 150 d); μ̂α̂�1
; μ^α̂�2 and μ ̂α̂�3 are the means of each trait (parameter esti-

mates for the logistic model); and û
�
α̂1i
; û

�
α̂2i

and û
�
α̂3i

are
the GEBV of these traits.
Finally, the genetic parameters for the interpretable

traits derived from the logistic model (α1 and α3) as well
as the original traits associated with slaughter weight
(SW) and average daily gain (ADG) were estimated by
using the following multi-trait model:

y1
y2

	 

¼ X1 0

0 X2

	 

β1
β2

	 

þ Z1 0

0 Z2

	 

g1
g2

	 

þ e1

e2

	 

;

ð4Þ

where
y1
y2

	 

is the vector of response variables of traits I

and II (α1 and α3 with SW and ADG), X1 and X2 are the
fixed-effects design matrix (Sex, Batch, and Halothane
presence), Z1 and Z2 are the random-effects design

matrix, and
e1
e2

	 

is the vector of random residuals of

the two traits. It is assumed that
g1
g2

	 

eN 0;G⊗Hð Þ ,

where H ¼ σ2
g1

σg12
σg21 σ2g2

" #
is the additive genetic variance

and covariance matrix of the two traits, and
e1
e2

	 

eN

0; I⊗Rð Þ , where R ¼ σ2e1 σe12
σe21 σ2e2

	 

is the residual vari-

ance and covariance matrix of the two traits. Finally, G
is the additive relationship matrix constructed by using
501 pigs and I is the identity matrix.

Computational features
Fitting of the models was carried out by using the nls (to
fit the logistic nonlinear model in the first step) and
rq (to fit the regularized quartile regression in the
second step) functions of the stats and quantreg pac-
kages [14] of R software [15], respectively. The Mixed
Model Analyses were performed in ASReml 3.0 [16].
To obtain the shrinkage parameter values (λ), a grid of

λ values between 0 and 50 was utilized, varying in 0.5 in-
crements. The predictive capacity, defined as the corre-
lation between the estimated and observed values (curve
parameters that were obtained from fitting the Logistic
model to the weight-age data), was used as a criterion to
define the optimal value λ.
The computational codes that were implemented in

the R software are found on the website of the Statistics
Department of the Federal University of Viçosa (2017):
https://licaeufv.wordpress.com/scriptrqr_jasb/.

Results
The summary containing the descriptive statistics of the
adjusted phenotypic data is presented in Table 1.
The summary containing the correlation and descrip-

tive statistics of the adjusted phenotypic data ( α ̂
�
1i; α̂

�
2i

and α ̂
�
3i) is presented in Table 2.

Considering the aforementioned grid (0 to 50, by 0.5),
the shrinkage parameter value that showed the best
results in terms of predictive capacity was λ = 0.5.
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Specifically, the predictive capacity ranged between
0.6219 and 0.8252 (Table 3).

The mean and standard error for marker effects (β ̂k
′
s)

and R1 goodness of fit measure for each quantile ad-
justed model are present in Table 4. The goodness of fit
ranged between 0.67 and 0.75 (Table 4).
In order to verify whether the most relevant SNPs for

the three approaches (RQR (0.2), RQR (0.5), and RQR
(0.8)) were the same, the 2.5% most relevant SNPs for
each phenotype (α̂

�
1i; α

̂�
2i and α ̂

�
3i) were reported (Table 5).

Table 5 describes the most relevant markers considering
the fitting through RQR (0.2). For the mature weight (α1),
the markers are located on chromosomes SSC1, SSC4,
SSC7, SSC8, and SSC17 (Table 5). The position of the
marker ALGA0096701 on chromosome 17 (55.81 cM) is
in accordance with the results of Pierzchala et al. [17], in
which the authors found QTL for the slaughter weight at
the position 51.1 cM with the cross between Meishan,
Pietrain, and European Wild Boar. For birth weight (α2),
the marker ALGA0044519 stands out, which is found in
the SSC7 at the position 115.23 cM, next to the QTL for
the birth weight found by Guo et al. [18] at the position
120.9 cM for crosses of Large white and Meishan. In
terms of growth rate (α3), the marker that presented with
the highest effect is found on chromosome 8. The position
of the marker ALGA0049546 at SSC8 (60.04 cM) is close
to the position 62.2 cM, as reported by Casas-Carrillo et
al. [19] for average daily gain when using families from
outbred lines that were selected for high (fast) and low
(slow) growth rates.

Considering the RQR (0.5) in Table 5, the most im-
portant markers for α1, α2 and α3 are located on chro-
mosomes SSC4 and SSC8 (Table 5; RQR (0.5)). For α1,,
the marker ALGA0047992 stands out, which is found on
SSC8 at the position 30.17 cM, which is close to the
QTL for slaughter weight found by Beeckmann et al.
[20], and at the position 33.9 cM on chromosome 8 in
pigs obtained from crosses between Meishan, Pietrain,
and European Wild Boar. For the birth weight trait (α2),
the marker with the greatest estimated effect was
ALGA0026100. The position of this marker at SSC4
(75.53 cM) is close to the position at 74.4 cM reported
by Walling et al. [21] for body weight at birth. For α3,
the position of marker ALGA0048131 on SSC8 (35.02 cM)
was close to the position 33.1 cM reported by Beeckmann
et al. [20] who used data from an experimental cross
between Meishan, Pietrain, and European Wild Boar for
average daily gain (Table 5; RQR (0.5)).
Considering the RQR (0.8) in Table 5, the most signifi-

cant SNPs for α1, α2 and α3 are located on chromosomes
SSC1 and SSC8 (Table 5; RQR (0.8)). Regarding the ma-
ture weight trait (α1), the marker with the highest abso-
lute value pertaining to the estimates of the parameter
effect is ALGA0007216. This marker is located on
chromosome 1 (160.61 cM). Chen et al. [22] used a pig
population comprised of Yorkshires and Meishans to
find significant QTLs for slaughter weight at the position
122.4 cM of SSC1, i.e., close to the position 160.61 cM
of the ALGA0007216 marker (Table 5; RQR (0.8)).

Table 1 Means, standard deviations and ranges for weights at
seven different ages of F2 outbred population

Age, d n Mean weight ± SD, kg Min, kg Max, kg

0 345 1.20 ± 0.27 0.53 2.13

21 345 4.90 ± 1.00 2.56 8.00

42 345 8.36 ± 1.81 2.66 12.90

63 345 16.29 ± 3.38 7.43 26.53

77 345 21.44 ± 4.39 9.30 34.50

105 345 36.25 ± 6.64 12.79 55.00

150 345 64.97 ± 5.72 39.09 85.20

Table 2 Correlation and descriptive statistics among the

adjusted phenotypic data (α̂�
1i; α̂

�
2i and α̂�

3i)

Correlation Descriptive statistics

α̂�
1i α̂�

2i α̂�
3i Mean ± SD Min Max

α̂�
1i 1.00 0.82 0.63 89.43 ± 22.32 35.70 149.85

α̂�
2i 0.82 1.00 0.83 113.18 ± 17.97 72.83 166.43

α̂�
3i 0.63 0.83 1.00 32.03 ± 4.24 22.76 47.29

Table 3 Predictive capacity obtained by means of RQR,
considering estimates of the nonlinear regression parameters

Quantile Trait

α1(λ = 0.5) α2(λ = 0.5) α3(λ = 0.5)

0.2 0.7143 0.6938 0.6219

0.5 0.8252 0.7889 0.7904

0.8 0.7678 0.7663 0.7636

Table 4 Mean, standard error for marker effects and Pseudo R2

for each quantile adjusted model

Model Trait Mean (Standard error) Pseudo R2a

RQR (0.2) α̂1 0.43(0.37) 0.71

α̂2 0.44(0.45) 0.69

α̂3 0.11(0.14) 0.70

RQR (0.5) α̂1 0.28(0.44) 0.68

α̂2 0.42(0.40) 0.67

α̂3 0.10(0.12) 0.68

RQR (0.8) α̂1 0.48(0.44) 0.75

α̂2 0.52(0.49) 0.74

α̂3 0.13(0.09) 0.75
a Pseudo R2 [28]
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Table 5 Absolute values of the estimated effects of the 2.5% most relevant SNP by RQR

Phenotype Quantile SNP marker Estimated effect (abs) P-value* Chromossome (SSC) Position, cM

0.20 ALGA0096701 18.93 0.099 17 55.81

0.20 ALGA0026109 15.29 0.019 4 75.57

0.20 ALGA0024036 14.98 0.007 4 20.55

0.20 ALGA0038840 14.50 0.041 7 15.18

0.20 ALGA0029474 14.15 0.060 4 122.99

0.20 ALGA0029483 14.07 0.042 4 123.28

0.50 ALGA0047992 30.89 0.008 8 30.17

Mature 0.50 ALGA0047995 29.47 0.006 8 30.31

Weight, 0.50 ALGA0096701 21.81 0.058 17 55.81

α1 0.50 ALGA0003761 17.22 0.098 1 50.37

0.50 ALGA0044299 15.65 0.153 7 110.66

0.50 ALGA0096707 15.57 0.144 17 55.84

0.80 ALGA0007216 22.14 0.001 1 160.61

0.80 ALGA0003761 19.86 0.018 1 50.37

0.80 ALGA0096701 19.71 0.005 17 55.81

0.80 ALGA0042986 15.88 0.014 7 90.01

0.80 ALGA0029474 15.57 0.042 4 122.99

0.80 ALGA0042863 15.57 0.009 7 86.24

0.20 ALGA0048131 13.55 0.027 8 35.02

0.20 ALGA0044519 13.12 0.020 7 115.23

0.20 ALGA0096701 12.98 0.011 17 55.81

0.20 ALGA0029483 12.50 0.029 4 123.28

0.20 ALGA0026109 11.23 0.033 4 75.57

0.20 ALGA0003761 10.85 0.095 1 50.37

0.50 ALGA0026100 19.87 0.009 4 75.53

Birth 0.50 ALGA0047995 18.71 0.027 8 30.31

Weight, 0.50 ALGA0048131 18.47 0.029 8 35.02

α2 0.50 ALGA0047992 16.36 0.062 8 30.17

0.50 ALGA0039880 14.78 0.047 7 30.13

0.50 ALGA0021973 14.36 0.015 4 0.28

0.80 ALGA0048131 17.66 0.007 8 35.02

0.80 ALGA0005071 17.64 0.002 1 80.44

0.80 ALGA0042986 16.32 0.005 7 90.01

0.80 ALGA0029483 15.21 0.010 4 123.28

0.80 ALGA0003761 15.08 0.025 1 50.37

0.80 ALGA0026769 14.49 0.073 4 90.18

0.20 ALGA0049546 3.91 0.015 8 60.04

0.20 ALGA0029483 3.77 0.005 4 123.28

0.20 ALGA0096701 3.42 0.011 17 55.81

0.20 ALGA0021973 3.31 0.014 4 0.28

0.20 ALGA0048854 3.29 0.031 8 50.17

0.20 ALGA0048131 3.27 0.035 8 35.02

0.50 ALGA0048131 5.89 0.004 8 35.02

Growth 0.50 ALGA0021973 4.37 0.023 4 0.28
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Another interesting result that was observed through
RQR is the simultaneous existence of important markers
for different traits (Table 5). This fact is important for
breeding, since pleiotropy is the main factor in genetic
correlation. Specifically, for RQR (0.5) (Table 5), two
markers (ALGA0047992 and ALGA0047995) were simul-
taneously important for the mature weight (α1) and birth
weight (α2) traits. In addition, three SNPs for RQR (0.2)
(ALGA0096701, ALGA0026109, and ALGA0029483) and
one for RQR (0.8) (ALGA0042986) were simultaneously
relevant for α1 and α2.
Considering the traits α1 (mature weight) and α3

(growth rate), two (ALGA0096701 and ALGA0029483),
one (ALGA0096701), and one (ALGA0003761) markers
were simultaneously important for the methodologies
RQR (0.2), RQR (0.5), and RQR (0.8), respectively. For
the traits α2 (birth weight) and α3 (growth rate), three
markers in the RQR (0.2) methodology (ALGA0048131,
ALGA0096701, and ALGA0029483), two in the RQR
(0.5) methodology (ALGA0048131 and ALGA0021973),
and three in the RQR (0.8) methodology (ALGA0003761,
ALGA0026769, and ALGA0048131) were simultaneously
relevant for these two traits (Table 5).
The three genomic growth curves (τ = 0.2 , 0.5 , 0.8)

that were obtained based on all of the data are shown in
Fig. 1b. The estimated curve based on the three quan-
tiles showed a similar pattern until 100 d. After that, dif-
ferences in the estimated growth curves increased with
time (Fig. 1b). This result was expected given the increase
in the heterogeneity of variances that were presented at
the final evaluated times, 100 and 150 d (Fig. 1a).
The genomic growth curves for each RQR, for quantiles

0.2, 0.5, and 0.8 and their confidence intervals showed sig-
nificant differences (based on non-overlapping confidence
intervals) only in terms of mature weight (Fig. 2a). These
differences are highlighted in Fig. 2b.
Estimates of genetic parameters (heritability, and genetic

and phenotypic correlations) are presented in Table 6.
Estimates of heritability for growth curve parameters were

moderate, with 0.447 ± 0.200 and 0.4991 ± 0.164, for pa-
rameters α1 and α3, respectively. The original traits (SW
and ADG) had low heritability estimates, with
0.214 ± 0.127 and 0.094 ± 0.087, for SW and ADG,
respectively.
Estimates of genetic and phenotypic correlations are

presented in the off-diagonals (Table 6). Between the in-
terpretable growth curve parameters (α1 and α3) with
the original correspondent traits (SW and ADG), corre-
lations were, respectively, highly positive and negative,
with a positive genetic correlation estimated for parame-
ters α1 and SW (0.404 ± 0.113) and a negative genetic
correlation estimated for α3 with ADG (−0.681 ± 0.229).
Phenotypic correlations between interpretable growth
curve parameters with slaughter weight (SW) and aver-
age daily gain (ADG) traits were also moderately positive
and negative, with 0.662 ± 0.051 for α1 with SW and
−0.451 ± 0.06 for α3 with ADG.

Discussion
In this study, we aimed to propose and evaluate a regu-
larized quantile regression (RQR) for SNP marker effect
estimation on pig growth curves and to estimate the
genetic weight trajectory over time (genomic growth
curve) under different quantiles (levels). In order to do
so, a real data set consisting of 345 animals from an F2
outbred population with information on 237 SNP
markers, randomly distributed over six chromosomes,
was used. The phenotypic data refers to the weight at
birth, 21, 42, 63, 77, 105, and 150 days of age. To esti-
mate SNP marker effects for growth curves, we used a
two-step approach [1]. In the first step, we fitted logistic
nonlinear models to the data of each animal, and in the
second step, genomic regression models were fitted
while considering the estimated parameters from the
previous step as the phenotypic values. We obtained the
three genomic growth curves for the three evaluated
quantiles (τ = 0.2 , 0.5 , 0.8). Finally, the genetic para-
meters for the interpretable traits of the logistic model

Table 5 Absolute values of the estimated effects of the 2.5% most relevant SNP by RQR (Continued)

Rate, 0.50 ALGA0048854 4.13 0.058 8 50.17

α3 0.50 ALGA0096701 3.66 0.075 17 55.81

0.50 ALGA0027642 3.62 0.054 4 102.39

0.50 ALGA0027644 3.36 0.087 4 102.41

0.80 ALGA0003761 4.43 0.008 1 50.37

0.80 ALGA0048131 3.74 0.018 8 35.02

0.80 ALGA0024881 3.61 0.005 4 40.50

0.80 ALGA0044299 3.34 0.052 7 110.66

0.80 ALGA0026769 3.07 0.105 4 90.18

0.80 ALGA0048133 3.01 0.034 8 35.04
*P-value calculated using the bootstrap standard error
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(α1 and α3) and the original traits, slaughter weight and
average daily gain, were estimated.
Quantile regression (QR) can be used to provide a

more complete statistical analysis of the stochastic rela-
tionships among random variables. In general, the
chosen quantiles depend entirely on the purpose of the
study, i.e., we can study all distributions or only some
parts by defining specific quantiles. In this study, with
the aim of representing three distinct levels that
characterize low, average, and high distributions of the
phenotypic values (estimated parameters while conside-
ring a logistic nonlinear model), we choose, τ = 0.2 , 0.5 ,
0.8.
The use of RQR to estimate SNP marker effects and

obtain the estimated genomic growth curve was efficient
since it was possible to construct genomic growth curves
and find the most relevant markers, which thus allows
for the identification of QTL regions at different levels
of interest. Besides that, R1 goodness of fit measures ran-
ging from 0.67 to 0.75 indicating that the model fits well
for the observations.

Unlike traditional methods that are based on condi-
tional expectations, E(Y|X), RQR allows us to fit regres-
sion models on different parts of the distribution of the
variable response, therefore enabling a more complete
understanding of the phenomenon under study [2, 23].
Besides, the heterogeneous variance over time (Fig. 1a)
indicates that there is not a single rate of change that
characterizes changes in the probability distribution,
therefore indicating that RQR is a good tool to deal with
those situations. Also, the predictive capacity that was
obtained by means of RQR (Table 3) was better than
that obtained by Silva et al. [24].
The advantages of RQR, such as studying different

parts of the distribution of the variable response, can be
combined with those from the two-step approach. Spe-
cifically, the two-step approach enables us to obtain the
genomic values for each observed time (tj), as well as to
estimate the weight for any other time of interest within
the measured range before this weight is attained [24].
Based on the results, it is possible to note that RQR al-

lows for the identification of markers close to QTLs at

Fig. 2 a Genomic growth curves for each Regularized Quantile Regression (RQR), for quantiles 0.2, 0.5, and 0.8 and their confidence intervals. b
Genomic growth curves for each RQR, for quantiles 0.2, 0.5, and 0.8 and their confidence intervals. The genomic growth curves are highlighted
within the distribution ranges of Age (130 to 150 d) and Weight (50 to 75 kg)

Fig. 1 a Body weight (BW) data of animals over time. Each dot in the figures represents the BW of an animal, and b Genomic growth curves for
each Regularized Quantile Regression (RQR), for quantiles 0.2, 0.5, and 0.8
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different distribution levels of the phenotypic values of
interest. The regions indicated by RQR coincide with the
results of several studies in which the authors found
QTL for the traits that were evaluated in this study.
The use of quantile regression to estimate genomic

curves based on three contrasting quantiles in our popula-
tion was efficient when it came to producing distinct
growth curves. Specifically, we can see in Fig. 2b that the
final BW of the genomic growth curves was statistically
different; in other words, the growth behavior over time
changed in terms of mature weight. In fact, this result
shows that RQR is a statistical method that could be ef-
fectively used to estimate more than a single mean beha-
vior, thereby providing a more complete picture of the
relationships between variables.
The genetic correlations between α1 and α3 with BW

and ADG had, respectively, a high positive and negative
genetic correlation, which indicates that α1 and α3 have
the potential to be used as selection tools to improve
SW and ADG. Additionally, the high genetic correlation
between α1 with α3 and SW with ADG enable us to
understand causes of SNPs’ pleiotropic effects. These re-
sults are in agreement with Silva et al. [24], who found
significant genetic correlation between the interpretable
traits of logistic model (rα1;α3 ¼ −0:69) in the same po-
pulations that were used in this study. The difference
between the signals of genetic correlation estimates ob-
served in the present study is due to the different Logis-
tic model parameterizations. Specifically, our approach
uses the parameterization presented in Pinheiro and
Bates [9], where the growth scale parameter (α3) is the
reciprocal of growth rate [10, 24].
The study of different distribution levels of the variable

of interest using QR has been successfully performed in
medicine by Beyerlein et al. [25], who used QR in
GWAS (Genome-Wide Association Study) analysis in
human genetics where they emphasized statistical and
biological advantages when estimating marker effects in
different quantiles of the phenotypic distribution. Sun et
al. [26] proposed to use QR to identify hypermethylated
CpG islands (CGIs) that can be associated with breast
and ovarian cancer. They concluded that the quantile

level between 80 and 90% is the best strategy to identify
methylated and unmethylated CGIs. Moreover, regular-
ized quantile regression has already been successfully
evaluated for analyzing ultra-high dimension data [27].
These authors demonstrated that QR greatly enhances
existing tools for large dimensional data analysis, since it
revealed a substantial reduction in model complexity
when compared with alternative methods.
However, even though the use of RQR is promising

and efficient, more studies are needed to address the
choice of the shrinkage parameter value, which is always
critical to find as it can be defined by using a grid of
values, cross-validation, or by using a Bayesian approach.
Another issue about the use of RQR is the choice of the
quantile. There are a lot of quantiles that can be used;
therefore, finding the best one to explain the functional
relationship is a challenge.

Conclusions
The proposed model enabled the discovery, at different
levels of interest (quantiles), of the most relevant markers
for each trait (growth curve parameter estimates) and
their respective chromosomal positions (identification of
new QTL regions for growth curves in pigs). Furthermore,
RQR enabled the construction of genomic growth curves,
which identified genetically superior individuals in relation
to growth efficiency.
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