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Cinnamicaldehyde regulates the expression
of tight junction proteins and amino acid
transporters in intestinal porcine epithelial cells
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Abstract

Background: Cinnamicaldehyde (CA) is a key flavor compound in cinnamon essential oil possessing various
bioactivities. Tight junction (TJ) proteins are vital for the maintenance of intestinal epithelial barrier function,
transport, absorption and utilization of dietary amino acids and other nutrients. In this study, we tested the
hypothesis that CA may regulate the expression of TJ proteins and amino acid transporters in intestinal porcine
epithelial cells (IPEC-1) isolated from neonatal pigs.

Results: Compared with the control, cells incubated with 25 μmol/L CA had increased transepithelial electrical
resistance (TEER) and decreased paracellular intestinal permeability. The beneficial effect of CA on mucosal barrier
function was associated with enhanced protein abundance for claudin-4, zonula occludens (ZO)-1, ZO-2, and
ZO-3. Immunofluorescence staining showed that 25 μmol/L CA promoted the localization of claudin-1 and
claudin-3 to the plasma membrane without affecting the localization of other TJ proteins, including claudin-4, occludin,
ZO-1, ZO-2, and ZO-3, compared with the control cells. Moreover, protein abundances for rBAT, xCT and LAT2 in IPEC-1
cells were enhanced by 25 μmol/L CA, while that for EAAT3 was not affected.

Conclusions: CA improves intestinal mucosal barrier function by regulating the distribution of claudin-1 and claudin-3
in enterocytes, as well as enhancing protein abundance for amino acid transporters rBAT, xCT and LAT2 in
enterocytes. Supplementation with CA may provide an effective nutritional strategy to improve intestinal integrity
and amino acid transport and absorption in piglets.
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Background
Cinnamicaldehyde (CA) is a key flavor compound in
cinnamon essential oil extracted from the stem bark of
Cinnamomum cassia in nature [1]. CA is widely used in
the perfume, pharmacy, and food processing industries
due to its antioxidant, anti-microbial, and anti-diabetic
properties [2–6]. Moreover, it has been reported that CA
has chemotherapeutic and anticancer effects through the
inhibition of proliferation, inducing apoptosis, and blocking
angiogenesis [7–9]. Importantly, CA is a safe flavor com-
pound approved by FDA and the ‘Flavor and Extract

Manufacturers’Association of the United States, suggesting
the potential administration of this dietary factor may be
achievable within an acceptable safety range for humans
and animals [5]. The well documented antimicrobial
properties and safety of CA have promoted its application
to the nutrition of humans and animals. It has been re-
ported that supplementation of essential oils, in which CA
is the major component, increases the digestibility of crude
protein in weaned pigs [10]. The beneficial effects of CA
are associated with the enhanced secretion of digestive
enzymes, improved nutrient digestion, and enhanced feed
intake [11–14]. It remains unknown whether CA has any
effect on intestinal barrier function, as well as nutrient
transport and absorption in humans and pigs.
The epithelial barrier is formed by the apical plasma

membrane and intercellular tight junction (TJ), which pro-
vides physical and functional barriers to prevent bacteria,
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endotoxins and other harmful substances from entering the
blood circulation, while also allowing for the absorption of
nutrients [15]. Diverse physiological or pathological stimuli
can regulate the intestinal mucosal-barrier function, which
contributes to nutrient transport, absorption, and intracel-
lular homeostasis [16–19]. Consistently, dysfunction of TJ
proteins has been reported to be associated with increased
paracellular permeability, and the development and pro-
gression of multiple intestinal disorders [20].
Although CA is known to improve the digestibility of

dietary fiber, lipids, and crude protein, the underlying
cellular and molecular mechanisms remain largely un-
known. We have hypothesized that CA may up-regulate
the expression of TJ proteins and amino acid trans-
porters in intestinal epithelial cells, thus contributing to
the intestinal barrier function in neonates. This hypothesis
was tested in the present study using porcine intestinal
epithelial cells (IPEC-1), isolated from neonatal pigs.

Methods
Reagents
Dulbecco’s modified Eagle’s F12 Ham medium (DMEM-
F12) and fetal bovine serum (FBS) were purchased from
Invitrogen (Carlsbad, CA, USA). Epidermal growth
factor was a product of BD Biosciences (Carlsbad, CA,
USA). Trypsin/EDTA was procured from Gibco (Carlsbad,
CA, USA). Antibodies against occludin, claudin-1, claudin-
3, claudin-4, zonula occludens (ZO)-1, ZO-2, and ZO-3
were products of Invitrogen (Carlsbad, CA, USA). Unless
indicated, all other chemicals including CA were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

Cell culture
Intestinal porcine epithelial cell line 1 (IPEC-1) cells,
which were isolated from the jejunum of newborn pigs
without access to milk or any food [21], were then cul-
tured in a DMEM-F12 medium supplemented with 5%
FBS, insulin (5 μg/mL), transferrin (5 μg/mL), selenium
(5 ng/mL), epidermal growth factor (5 μg/L), penicillin
(50 μg/mL) and streptomycin (4 μg/mL) as previously
described [22]. All cell cultures were carried out at 37 °C
in a humidified incubator containing 5% CO2.

Measurement of transepithelial electrical resistance (TEER)
The tightness of the TJ was assessed by measuring TEER
as previously described [23]. Briefly, IPEC-1 Cells
(5 × 104 cells per well) were seeded in culture transwells
(the membrane area, 0.33 cm2; pore size, 0.4 μm) which
were placed in 24-well culture plates. Cells were incu-
bated with 0, 12.5, or 25 μmol/L CA for the indicated
time periods. TEER was determined every 12 h by using
a Millicell ERS-2 Voltage-Ohm Meter (World Precision
Instruments) equipped with a STX01 electrode as

described here [24]. All values are expressed as percent-
ages of the basal level for the controls.

Monolayer paracellular permeability determination
Paracellular permeability was determined as previously de-
scribed [25]. Briefly, IPEC-1 cells were seeded in culture
transwells as for TEER determination. 1 mg/mL FITC-
dextran (20 kDa) was added to the apical side of the mono-
layer and the flux of FITC-dextran was determined by seri-
ally sampling the basolateral compartment every 12 h. The
concentration of FITC-dextran was measured using the
SpectraMax M3 Multi-Mode Microplate Reader (Molecu-
lar Devices) with excitation and emission wavelengths of
490 and 520 nm, respectively. The permeability of mono-
layer cells was defined as the amount of FITC-dextran that
was transported from the apical side into the basolateral
chamber. FITC-dextran concentration was calculated by
subtracting the fluorescence value of the FITC-free
medium.

Western blot analysis
IPEC-1 cells treated with various concentrations of CA
for 24 h were harvested for the analysis of the abun-
dance of TJ proteins, as previously described [24]. Equal
amounts of proteins (25 μg) were separated on SDS-
PAGE gels, transferred to polyvinylidene difluoride mem-
branes (Millipore), and then incubated with a primary
antibody (1:2,000) overnight at 4 °C and then incubated
with an appropriate secondary antibody (1:2,000) at 25 °C
for 1 h. The blots were detected with the Image Quant
LAS 4000 mini system (GE Healthcare Bio-sciences AB,
Inc., Sweden) after incubation with the ECL plus system
(Amersham Biosciences, Sweden). Chemifluorescence was
quantified with the use of the Quantity One software (Bio-
Rad Laboratories). All results were normalized to GAPDH
and expressed as relative values to those of the control
group.

Immunofluorescence assay
IPEC-1 cells treated with or without CA were fixed with
4% paraformaldehyde at 37 °C for 20 min, and then were
incubated with a specific primary antibody against
claudin-1, claudin-3, claudin-4, ZO-1, ZO-2 and ZO-3
for 16 h at 4 °C. Cells were washed three times with
PBS, and then were incubated with an appropriate
secondary antibody (1:100) for 1 h at 25 °C. Nuclei were
stained by using Hoechst 33258 (1 μg/mL) for 10 min at
25 °C. The distribution of TJ proteins was visualized under
a fluorescence microscope (Axio Vert. A1, Zeiss, Germany).

Statistical analysis
Values are expressed as mean ± SEM. Data was analyzed
by one-way ANOVA and the Student-Newman-Keuls mul-
tiple comparisons test, using the SPSS statistical software
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(SPSS for Windows, version 17.0). P ≤0.05 were taken
to indicate statistical significance.

Results
Effects of CA on barrier function in the IPEC-1 cell
monolayer
As shown, incubation of cells with 25 μmol/L CA led to
greater (P < 0.05) TEER at 36-48 h (Fig. 1a) when com-
pared with controls. In contrast, no difference was ob-
served between the cells treated with 12.5 μmol/L CA and
the control cells at 12-48 h. Consistent with increased
TEER, cells incubated with 25 μmol/L CA had reduced
(P < 0.05) paracellular permeability, as indicated by FITC-
dextran flux at 12-48 h (Fig. 1b) when compared with con-
trols. Cells treated with 12.5 μmol/L CA had lowered

permeability (P < 0.05), compared with the control cells at
24-48 h. Although both 12.5 and 25 μmol/L CA treatment
led to decreased permeability in enterocytes compared
with the controls, cells treated with 25 μmol/L CA had
lower permeability (P < 0.05) when compared with cells
incubated with 12.5 μmol/L CA at 36-48 h.

Effects of CA on expression of TJ proteins in IPEC-1 cells
Compared with control cells, 25 μmol/L CA enhanced
(P < 0.05) the abundance of proteins for claudin-4 (Fig. 2c)
and ZO family proteins including ZO-1, ZO-2, and ZO-3
(Fig. 3). The protein abundance for ZO-2 (Fig. 3b), instead
of other proteins, was enhanced by 12.5 μmol/L CA
(P < 0.05) compared with that of the control. The protein
abundances for claudin-1(Fig. 2a), claudin-3 (Fig. 2b), and
occludin (Fig. 2d) were not affected (P > 0.05) by 12.5 or
25 μmol/L CA treatment.

Effects of CA on the intracellular distribution of TJ
proteins in IPEC-1 cells
The cellular distributions of TJ proteins were assessed
by an immunofluorescence microscope. Treatment with
25 μmol/L CA promoted the localization of claudin-1
and claudin-3 (Fig. 4a and b) to the plasma membrane
without affecting the localization of other TJ proteins,
including claudin-4, occludin, ZO-1, ZO-2, and ZO-3,
compared to the control cells (Fig. 4). In contrast,
12.5 μmol/L CA had no effect on the localization of TJ
proteins determined in our study, such as claudin-1,
claudin-3, claudin-4, occludin, ZO-1, ZO-2, and ZO-3
(Fig. 4). It should be noted that most of the ZO-3 was
located at the nucleus membrane which was not affected
by CA exposure (Fig. 4g).

Effects of CA on the protein abundance for amino acid
transporters
The active transport of amino acids is the major
mechanism for their uptake into enterocytes [26–28].
We determined the protein abundance for the following
amino acid transporters, EAAT3 (high-affinity glutamate
transporter), LAT2 (arginine and leucine transporter),
rBAT (basic amino acid transporter), and xCT (acidic
amino acid transporter) in IPEC-1 cells by Western blot
analysis. The protein abundance for rBAT (Fig. 5a) and
LAT2 (Fig. 5c) in IPEC-1 cells were enhanced (P < 0.05)
by both 12.5- and 25 μmol/L CA, compared with the
control cells. In contrast, 25 μmol/L CA increased
(P < 0.05) the protein abundance for xCT in the intestinal
epithelial cells, but 12.5 μmol/L CA had no effect
(Fig. 5b). The protein abundance for EAAT3 was not
affected (P > 0.05) by either 12.5 or 25 μmol/L CA
(Fig. 5d), compared with the control cells.

Fig. 1 Effects of CA on intestinal barrier function in IPEC-1 cells. Cells
were cultured for 24 h in the absence or presence of 12.5- or 25 μmol/L
CA. a TEER and b paracellular permeability were then determined. Values
are expressed as means ± SEM, n = 6. Means at a time point without a
common letter differ, P < 0.05. CA, Cinnamicaldehye; IPEC-1, intestinal
porcine epithelial cell line 1; TEER, trans-epithelial electrical resistance
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Discussion
In the present study, we have shown that CA, a key
flavor compound in cinnamon essential oil, promoted
the intestinal mucosal-barrier function as indicated
by increased TEER and decreased paracellular perme-
ability. Western blot analysis revealed that cells
treated with CA had enhanced protein abundances
for TJ proteins, such as claudin-4 and scaffolding pro-
teins. Moreover, the protein abundance for amino
acid transporters, including rBAT, LAT2, and xCT,
which are required for amino acid transport and
absorption in enterocytes, were also enhanced by CA
treatment.

Fig. 3 Protein abundances for ZO-1 (a), ZO-2 (b), and ZO-3 (c) in
IPEC-1 cells. Cells were cultured in the absence or presence of 12.5
or 25 μmol/L CA for 24 h. Cells were collected and protein abun-
dances were analyzed. Values are expressed as means ± SEM, n = 3.
Means without a common letter differ, P < 0.05. CA, Cinnamicaldehye;
IPEC-1, intestinal porcine epithelial cell line 1; ZO, zonula occludens

Fig. 2 Protein abundances for claudin-1 (a), claudin-3 (b), claudin-4
(c), and occludin (d) in IPEC-1 cells. IPEC-1 cells were cultured in the
absence or presence of 12.5 or 25 μmol/L CA for 24 h. Cells were
collected and protein abundances were analyzed. Values are
expressed as means ± SEM, n = 3. Means without a common letter
differ, P < 0.05. CA, Cinnamicaldehyde; IPEC-1, intestinal porcine
epithelial cell line 1
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CA, a natural compound isolated from the stem bark
of Cinnamomum cassia, is widely used in food process-
ing and animal diets due to its antioxidant, anti-
microbial, and anti-diabetic attributes [2–4]. Studies in
pigs, a widely used animal model for various disorders in
humans, have demonstrated that CA supplementation
enhances nutrient digestibility in pigs [10]. It remains
largely unknown whether CA supplementation can have
any effect on intestinal barrier integrity, thereby improv-
ing nutrient transport, absorption, and intracellular
homeostasis.
To test this hypothesis, we first measured TEER, an

indicator of intestinal epithelial integrity and perme-
ability of intestinal epithelium. Incubation of the en-
terocyte with CA led to increased TEER and decreased
FITC-dextran flux in intestinal porcine monolayers,
suggesting a beneficial effect of CA on barrier function.
Epithelial barrier function and paracellular permeability
are primarily determined by epithelial TJ proteins [29,
30]. Transmembrane proteins (e.g., the claudin family
protein, occludin) and peripheral membrane proteins
(e.g., ZO-1, ZO-2 and ZO-3) have been identified as
critical components of TJ proteins [31, 32]. Disruption
of epithelial TJ proteins has been reported to be associated
with multiple intestinal disorders [29, 33]. Consistently,
restoration of TJ proteins by nutrients or prebiotics

can improve mucosal barrier integrity and function in
humans and animals [34]. We have recently found that
dietary supplementation of glutamine prevented weanling
stress-induced intestinal-mucosal barrier breakdown by
augmenting TJ protein abundance [35], suggesting a func-
tional role for amino acids in regulating mucosal barrier
function.
In the present study, we found that CA regulates

the protein abundance and cellular distributions of TJ
proteins in intestinal cells. Specifically, the presence
of 25 μmol/L CA led to enhanced protein abundances
for claudin-4, ZO-1, ZO-2, and ZO-3, which are corre-
lated well with augmented TEER values in IPEC-1
cells (Fig. 1). The claudin family proteins and ZO
family proteins, play a crucial role in establishing
cell–cell contacts and maintaining paracellular perme-
ability [36, 37]. Recent studies have demonstrated that
the reduction of claudin family proteins is strongly
associated with intestinal barrier disruption in rodents
[38, 39]. The regulatory effects of CA on the protein
abundance of TJ suggest that supplementation with
CA might be a preventive strategy to maintain the
appropriate function of the intestinal-mucosal bar-
rier. Another novel finding of our study is that CA
treatment led to the distributions of claudin-1 and
claudin-3 to the cellular plasma membrane (Fig. 4a
and b) without affecting their protein abundances
(Fig. 2a and b). Thus, CA regulates both the abun-
dance and localization of TJ proteins in enterocytes.
Considering that the disruption of TJ is caused by
various stresses and pathogens in pigs [40], supple-
mentation of CA may provide an effective nutritional
strategy to alleviate mucosal barrier dysfunction. At
present, the underlying mechanisms responsible for
this effect remain incompletely understood [31]. More
research involving our IPEC-1 cell model is required
to answer this question.
In addition to providing physical and functional bar-

riers to prevent the entry of bacteria, endotoxins, and
other harmful substances from entering the blood circu-
lation, appropriate amounts of TJ proteins maintains the
integrity of the intestinal epithelium and, therefore,
are also required for the absorption of nutrients
[15]. Amino acids released from the hydrolysis of
dietary proteins and peptides in the lumen of the
small intestine are transported across cell mem-
branes by a complex system of multiple amino acid
transporters [26–28]. A number of transporters have
been identified on the apical surface of the mamma-
lian small intestine that are responsible for the
intestinal absorption of amino acids [26, 41, 42].
The defective intestinal uptake of amino acids leads
to alterations in plasma amino acids, growth
retardation, and the Hartnup disorder [26]. We have

Fig. 4 The distributions of TJ proteins claudin-1 (a), claudin-3 (b),
claudin-4 (c), occludin (d), ZO-1 (e), ZO-2 (f), and ZO-3 (g) in IPEC-1
cells. Cells were treated as in Fig. 3, and immunofluorescence staining
was performed to identify the distributions of the proteins. CA, Cinnami-
caldehyde; IPEC-1, intestinal epithelial porcine cell line 1. Scale
bar, 50 μm
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found that CA increased protein abundances for
amino acid transporters, including LAT2, rBAT, and
xCT in porcine enterocytes. This is the first study
showing that this flavor compound has the ability
to up-regulate the expression of amino acid
transporters in enterocytes. The enhanced protein
abundance for amino acids transporters might
promote the transport and absorption of amino
acids, which, in turn, stimulates protein synthesis
and contributes to the growth performance of pigs
observed in previous studies [43, 44].

Conclusions
In summary, studies with porcine enterocytes have
revealed that CA improved the intestinal epithelial
barrier integrity, as indicated by increased TEER
and decreased paracellular permeability. This bene-
ficial effect of CA is accompanied by enhanced dis-
tribution of specific TJ proteins in intestinal
epithelial cells. Importantly, the protein abundance
for amino acid transporters was enhanced by CA.
Further studies with animal model are needed to
validate this beneficial effect of CA on intestinal
barrier function observed in the present study. Sup-
plementation with CA might be a potential nutri-
tional strategy to improve the intestinal mucosal
barrier function and nutrient absorption in neonatal
piglets.
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