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Abstract

Background: Bacillus spp. seem to be an alternative to antimicrobial growth promoters for improving animals’
health and performance. However, there is little information on the effect of Bacillus spp. in combination with
different dietary crude protein (CP) levels on the ileal digestibility and microbiota composition. Therefore, the
objective of this study was to determine the effect of Bacillus spp. supplementation to low- (LP) and high-protein
diets (HP) on ileal CP and amino acid (AA) digestibility and intestinal microbiota composition.

Methods: Eight ileally cannulated pigs with an initial body weight of 28.5 kg were randomly allocated to a row-
column design with 8 pigs and 3 periods of 16 d each. The assay diets were based on wheat-barley-soybean meal
with two protein levels: LP (14% CP, as-fed) and HP diet (18% CP, as-fed). The LP and HP diets were supplemented with
or without Bacillus spp. at a level of 0.04% (as-fed). The apparent ileal digestibility (AID) and standardized ileal
digestibility (SID) of CP and AA was determined. Bacterial community composition from ileal digesta was analyzed by
llumina amplicon sequencing and quantitative real-time PCR. Data were analyzed as a 2 x 2 factorial design using the
GLIMMIX procedures of SAS.

Results: The supplementation with Bacillus spp. did not affect both AID and SID of CP and AA in growing pigs.
Moreover, there was no difference in AID of CP and AA between HP and LP diets, but SID of cystine, glutamic acid,
glycine, and proline was lower (P < 0.05) in pigs fed the HP diets. The HP diets increased abundance of Bifidobacterium
spp. and Lactobacillus spp., (P < 0.05) and by amplicon sequencing the latter was identified as predominant genus in
microbiota from HP with Bacillus spp., whereas dietary supplementation of Bacillus spp. increased (P < 0.05) abundance
of Roseburia spp..

Conclusions: The HP diet increased abundance of Lactobacillus spp. and Bifidobacterium spp.. The supplementation of
Bacillus spp. resulted in a higher abundance of healthy gut associated bacteria without affecting ileal CP and AA
digestibility, whereas LP diet may reduce the flow of undigested protein to the large intestine of pigs.
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Background
Due to the ban of antimicrobial growth promoters in
livestock feeding by the European Union in 2006 [1],
probiotics are considered as an alternative for improving
animals’ health and performance [2, 3]. Within this re-
gard, Bacillus spp. have the ability to sporulate, thereby
making them stable during thermal treatment of feed,
and resistant to enzymatic digestion along the gastro-
intestinal tract (GIT) [4]. Thus, Bacillus spp. such as Ba-
cillus subtilis (B. subtilis) and Bacillus licheniformis (B.
licheniformis) are frequently supplemented to pig diets
[4-6] as these two species have been listed to be added
as non-toxigenic, biological supplements to livestock di-
ets [7], and additionally, they are widely used for the
large-scale industrial production of proteins including
extracellular enzymes [8]. Positive effects of dietary sup-
plementation of B. subtilis and B. licheniformis on pigs’
growth performance have been reported before [9, 10].
Activity of probiotics is influenced by diet composition
[11] and variations in dietary protein supply, thereby pos-
sibly affecting microbial composition in the gut [12, 13].
Accordingly, reducing the dietary crude protein (CP) level
has been reported to markedly reduce the production of
potentially harmful microbial metabolites such as ammo-
nia and amines due to the lower availability of undigested
protein for microbial fermentation [14]. Thus, excessive
nitrogen (N) excretion by pigs is mitigated, resulting in a
decrease of environmental pollutants [15, 16]. In contrast,
increasing the dietary CP intake may stimulate the prolif-
eration of almost all bacteria groups over the entire GIT
including beneficial bacteria, such as Bifidobacterium spp.,
and potentially pathogenic bacteria, such as Bacteroides
groups [17]. Furthermore, there is increasing evidence that
interactions of supplemental probiotics with dietary CP
level affect the intestinal microbiome at the ileal level [18].
According to the results of previous studies [19, 20]
Bacillus spp. enhanced the development and activities of
digestive enzymes in the GIT, which was associated with a
numerical increase in apparent ileal digestibility (AID) and
standardized ileal digestibility (SID) of some amino acids
(AA) in weaning pigs [21]. However, studies with growing
pigs in which Bacillus spp. were supplemented to diets
varying in CP content are still lacking. Therefore, the ob-
jective of the present study was to test the hypothesis, if B.
subtilis and B. licheniformis supplementation to low- and
high-protein diets will affect ileal CP and AA digestibility
and intestinal microbiota composition in growing pigs.

Methods

The research protocol was reviewed and approved by
the German Ethical Commission for Animal Welfare,
and care of the animals throughout this experiment was
in accordance with guidelines issued by the Council
Directive [22].
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Animals, housing, and surgical procedures

Eight pigs were obtained from the University of Hohen-
heim Research Station. The average initial and final body
weight (BW) of the experimental animals were 28.5 + 0.8
and 64.3 + 1.5 kg, respectively. The pigs were housed indi-
vidually in stainless steel metabolic crates (0.8 m x 1.5 m).
Each metabolic crate was equipped with an infrared heat-
ing lamp and a low pressure drinking nipple which allowed
free access to water. The research unit was equipped with
an automated temperature control system kept at 20 °C.
Until the beginning of the experiment, the pigs were fed a
commercial starter diet at a daily level of 4% (as-fed)/kg of
average BW (Porcigold® SMA 134, Raiffeisen Kraftfutter-
werke Siid GmbH, Wiirzburg, Germany; 17.5% CP and
13.4 MJ metabolizable energy (ME)/kg, as-fed). After ar-
rival at the research unit, the pigs were surgically fitted
with a simple T-cannula at the distal ileum as described by
Li et al. [23]. The pigs were allowed a recovery period of at
least 7 d. During this period, the feed allowance was grad-
ually increased, starting from 50 g/d the day after surgery
until 1000 g/d (as-fed) were consumed.

Experimental design, diets, and procedures

The experiment was arranged as a row-column design
with 8 pigs and 3 experimental periods of 16 d each. Pigs
were fed assay diets twice daily at 0700 and 1900 h at a
level of 4% (as-fed)/kg of their average BW corresponding
to 3 times their energy requirement for maintenance (i.e.
0.44 MJ ME/kg BW°7?) [24]. Pigs’ BW was determined at
the beginning of each experimental period.

The assay diets were based on wheat, barley, and soy-
bean meal with 2 protein levels resulting in a low-
protein (14% CP, as-fed; LP) and a high-protein diet
(18% CP, as-fed; HP). The LP diet was accomplished by
blending the HP diet with 25% of native cornstarch. The
contents of oil, minerals, vitamins, and titanium dioxide
were the same for all diets. The Bacillus spp. product is
comprised of a mixture of spray-dried spores of B. liche-
niformis and B. subtilis. The LP and HP diets were
supplemented with (+) or without (-) Bacillus spp. at a
level of 0.04% (as-fed). All assay diets were formulated
(Table 1) to meet or exceed the dietary threshold levels
for CP and AA according to Fan et al. [25] and NRC
[26] nutrient recommendations for pigs from 25 to
50 kg BW. Vitamins and minerals were supplemented to
all diets to meet or exceed NRC [26] standard, and all
diets contained titanium dioxide at a level of 0.4% (as-fed
basis) as an indigestible marker.

The assay diets were in a mash form mixed with water
(1/1, w/v). During each of the 3 experimental periods,
the pigs were allowed to adapt to their assay diets for
14 d before ileal digesta was collected for a total of 24 h
from 0700 to 1900 h on d 15 and from 1900 on d 16
to 0700 h on d 17. Digesta collection procedure was
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Table 1 Ingredient composition of assay diets, % as-fed basis

[tem High-protein Low-protein
Barley 20.00 15.00
Wheat 51.00 3824
Soybean meal 2151 16.13
Qi 1.50 1.50
Cornstarch® 2.08 25.55
Vitamins and minerals premix” 0.76 0.76
Sodium chloride 0.07 0.07
Monocalcium phosphate 0.66 0.66
Calcium carbonate 0.65 0.65
Vitamin E 003 003
L-Lysine-HCI® 061 046
DL-Methionine® 0.22 0.16
L-Isoleucine® 0.03 0.02
L-Leucine® 0.13 0.10
L-Threonine® 022 0.17
L-Tryptophan® 0.01 0.01
L-Valine® 0.12 0.09
Titanium dioxide 040 040
Bacillus spp.” - -
Calculated chemical composition9
Metabolizable energy, MJ/kg 1343 14.25
Crude protein, % 18.00 14.00
Calcium, % 0.66 063
Available Phosphorus, % 027 0.25
SIDY Lysine, % 1.20 0.92
SIDY Methionine, % 043 033
SIDY Threonine, % 0.73 0.56

“Blend of rapeseed oil (75%) and soybean oil (25%)

bRoquette, Lestrem, France

“Vilomin® 18950, Deutsche VilomixTiererndhrung GmbH, Neuenkirchen-Vérden,
Germany; provided the following quantities of minerals and vitamins per kg of
diet: Ca, 1.86 g; P, 0.38 g; Na, 0.42 g; Mg, 76.00 mg; Fe, 30.40 mg (FeSO4H,0);
Cu, 3.80 mg (CuSO,4-5H,0); Mn, 20.29 mg (MnO); Zn, 25.38 mg (ZnO); |, 0.51 mg
(Ca(103),); Se, 0.10 mg (Na,SeOs); Co, 0.06 mg (2CoCO3:3Co(OH),H,0); vitamin A,
3,040 IU; vitamin D3, 456 IU; vitamin E, 19.00 mg; vitamin B;, 0.38 mg; vitamin B,,
1.18 mg; vitamin Bg, 0.95 mg; vitamin B;,, 7.60 pg; vitamin K3, 0.76 mg; niacin, 4.75 mg;
calcium pantothenate, 2.85 mg; folic acid, 0.19 mg; choline chloride, 57.00 mg
dLutavitE 50, BASF, Ludwigshafen, Germany

€All crystalline amino acids (AA) were supplied by Evonik Industries AG
(Hanau-Wolfgang, Germany). The purity of all crystalline AA was 99%, with the
exception of L-Lysine-HCI (78%)

fHigh- and low-protein diets were supplemented with or without 0.04% (as-fed)
of Bacillus spp. product at the expense of cornstarch

9SID standardized ileal digestibility

adapted from Li et al. [23] using soft plastic bags
attached to the barrel of the cannula by elastic bands.
The bags were changed at least every 20 min. To
minimize further bacterial fermentation 4 mL of
2.5 mol/L formic acid were added to the sampling
bags and then immediately frozen at -18 °C. The
individual digesta samples of each pig were pooled
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for each sampling period, freeze-dried, and ground to
0.5 mm prior to analyses. For analyses of intestinal
microbiota composition, ileal digesta and feces sam-
ples were taken prior to the first experimental period
(starter period) and on d 15 once for each experimental
period. Ileal digesta and feces samples for microbial
community analysis were immediately put on ice before
being stored in a freezer at -80 °C for subsequent treat-
ment and analyses.

Chemical analyses

Official standard methods [27] were used to determine
contents of proximate nutrients, neutral detergent fiber
(NDF), acid detergent fiber (ADF), acid detergent lignin
(ADL), and microbial numbers of B. subtilis and B. licheni-
formis in assay diets. The assay diets and digesta samples
were analyzed for DM (method 3.1). In addition, assay di-
ets were analyzed for ash (method 8.1); ether extract (EE;
method 5.1.1 using petroleum ether), NDF assayed with a
heat-stable amylase and expressed inclusive of residual ash
(method 6.5.1), ADF expressed inclusive of residual ash
(method 6.5.2), and ADL determined by solubilization of
cellulose with sulphuric acid (method 6.5.3). Moreover,
microbial numbers of B. subtilis and B. licheniformis in
assay diets were determined by method 28.2.2 [27].
Nitrogen contents in assay diets and ileal digesta samples
were analyzed using a gas combustion method according
to official method 990.03 of the AOAC International [28]
(FP-2000, Leco Corp., St Joseph, MI, US). Ethylenedi-
aminetetraacetic acid was used as a reference standard
before and after all N analyses. Crude protein contents
were calculated by multiplying the content of N with 6.25.
Amino acid contents in assay diets and ileal digesta sam-
ples were determined by using ion-exchange chromatog-
raphy with postcolumn derivatization with ninhydrin [29].
Tryptophan was determined by HPLC with fluorescence
detection (extinction 280 nm, emission 356 nm), after alka-
line hydrolysis with barium hydroxide octahydrate for 20 h
at 110 °C according to the procedure as outlined by Com-
mission Directive [30]. The titanium dioxide content in the
assay diets and ileal digesta samples was performed accord-
ing to the procedure described by Brandt and Allam [31].

DNA extraction of ileal digesta and feces samples
Genomic DNA was extracted from 250 mg ileal
digesta and feces using Fast DNA Spin Kit for Soil
(MP Biomedicals GmbH, Heidelberg, Germany). Ex-
traction procedure was performed with slight modifi-
cations to manufacturer’s instructions as described by
Burbach et al. [32].

Amplicon sequencing analysis
Ilumina amplicon sequencing libraries of the V1-2
region of the 16S rRNA gene was performed similar to
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procedures described previously [33]. Library prepar-
ation, however, was modified as follows: the V1-2 region
was amplified with a 27 F-modified forward primer
(AGRGTTHGATYMTGGCTCAG) in a 20 pL reaction.
1 pL of this first PCR was used as template in a second
PCR wusing multiplexing and indexing primers as
described previously [33]. Amplicons were verified by
agarose gel electrophoresis and normalized using
SequalPrep™ Normalization Plate Kit (Invitrogen,
Thermo Fisher Scientific, Waltham, USA). Libraries
were pooled by index, purified with MinElute PCR
Purification Kit (Qiagen, Hilden, Germany), quantified
with Qubit 2.0 Fluorometer (Invitrogen) and sequenced
on Illumina MiSeq platform using 250 bp paired end
sequencing chemistry. All analyzed samples comprised
around 2.8 million reads, with an average of 43,646 reads
per sample. Reads were quality filtered, assembled and
aligned using Mothur pipeline [34]. UCHIME was used
to find possible chimeras and reads were clustered at 97%
identity into 2601 operative taxonomic units (OTU). The
closest representative was manually identified with seq-
match from RDP [35]. Sequences classified as Chloro-
plast/Cyanobacteria were removed from OTU dataset as
it was assumed that they represent undigested plant
material. Sequences were submitted to European Nucleo-
tide Archive under the accession number PRJEB14413
(http://www.ebi.ac.uk/ena/data/view/PRJEB14413).

Quantitative real time PCR
Quantitative real-time PCR (qPCR) was used to analyze
the following bacteria groups in the ileal digesta samples:

Table 2 Oligonucleotide primers used for real-time PCR
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Total bacteria, Lactobacillus spp., Bifidobacterium spp.,
Roseburia spp., Enterobacteriaceae, Bacteroides-Prevo-
tella-Porphyromonas group, Clostridium Cluster IV, and
Bacillus spp.. All used primers were selected from
literature and are listed in Table 2. Optimization of
primer conditions was done in order to determine
optimal annealing temperatures and primer concentra-
tions by running a standard PCR with diverse primer
concentrations (200 nmol/L, 400 nmol/L, 600 nmol/L)
and a temperature gradient from 55.0 °C to 65.0 °C.
According to melt curves on standard PCR and the agar-
ose gel electrophoresis results, optimal primer concentra-
tion and annealing temperature was set for each primer.

Standard curves for each primer were designed using
serial dilutions of the purified and quantified PCR prod-
ucts generated by standard PCR and genomic DNA from
pig feces. The PCR products were checked by agarose
gel electrophoresis (2% agarose) to ensure correct primer
specific products. Quantity of purified PCR amplification
products was determined using Qubit 2.0 Fluorometer
(Invitrogen).

Quantification was carried out using the CFX Con-
nect™ Real-Time System (Bio-Rad Laboratories GmbH,
Munich, Germany), associated with the Bio Rad CFX
Manager™ Software 3.1 (Bio-Rad Laboratories GmbH,
Munich, Germany). All samples were determined in
duplicate and all standards were pipetted in triplicate on
each plate. The order of samples and standards on the
plates was randomized. The reaction mixture for each
bacterial group consisted of 10 puL of KAPA SYBR FAST
(PEQLAB Biotechnologie GmbH, Erlangen, Germany),

Target group [tem Oligonucleotide sequence (5'—3")  Primer conc, Annealing Product Reference
nmol/L temp,, °C size, bp

Total bacteria Forward GTGSTGCAYGGYYGTCGTCA 600 52 147 Fuller et al. [80]
Reverse ACGTCRTCCMCNCCTTCCTC

Lactobacillus spp. Forward AGAGGTAGTAACTGGCCTTTA 400 59 391 Malinen et al. [81]
Reverse GCGGAAACCTCCCAACA

Bifidobacterium spp. Forward TCGCGTCYGGTGTGAAAG 400 59 243 Rinttila et al. [82]
Reverse CCACATCCAGCRTCCAC

Roseburia spp. Forward AGGCGGTACGGCAAGTCT 400 59 353 Veiga et al. [83]
Reverse AGTTTYATTCTTGCGAACG Rinttila et al. [82]

Enterobacteriaceae Forward CATTGACGTTACCCGCAGAAGAAGC 200 59 195 Bartosch et al. [84]
Reverse CTCTACGAGACTCAAGCTTGC

Clostridium Cluster IV Rflbr730F GGCGGCYTRCTGGGCTTT 400 65 147 Ramirez-Farias et
Clep866mRs  CCAGGTGGATWACTTATTGTGTTAA igy[gest]al. (6]

Bacteroides-Prevotella- Forward GGTGTCGGCTTAAGTGCCAT 600 58 140 Rinttild et al. [82]

Porphyromonas Reverse CGGAYGTAAGGGCCGTGC

Bacillus spp. Forward CCTACGGGAGGCAGCAGTAG 600 59 78 Ferndndez-No et
Reverse GCGTTGCTCCGTCAGACTTT al. 1871
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1 pL template DNA (ileal digesta samples and stan-
dards), the optimized primer concentrations of forward
and reverse primers (Table 2), and was filled up to a
total volume of 20 puL with PCR grade water (Carl Roth
GmbH, Karlsruhe, Germany). Amplification conditions
were: activation of polymerase at 95.0 °C for 3 min,
followed by 40 cycles consisting of denaturation at 95.0 °C
for 5 s, primer annealing for 20 s (at optimized tempera-
tures, Table 2), and extension at 72.0 °C for 1 s. Subse-
quently, a final elongation step at 72.0 °C for 1 min
followed. The melt curve was obtained by stepwise (0.5 °C)
increase of temperature from 55 °C to 95 °C. Results were
reported as log;o 16S rRNA gene copies/g digesta.

Calculations
The AID of CP and AA in the assay diets was calculated
according to the following equation:

AIDD = [1—(1]) X AI)/(AD X II)] X 100%

where AIDp = AID of CP or AA in the assay diet (%), Ip =
marker content in the assay diet (g/kg DM), A;=CP or
AA content in ileal digesta (g/kg DM), Ap =CP or AA
content in the assay diet (g/kg DM), and I; = marker con-
tent in ileal digesta (g/kg DM).

According to Stein et al. [36] and Jansman et al. [37],
the basal ileal endogenous loss of CP and AA (IAA.,q) is
considered to be constant among groups of pigs, and
therefore, mean values for IAA.,4 [37] can be used for
transformation of AID into their SID values.

The SID of CP and AA in assay diets was estimated
according to the following equation:

SIDp = AIDp + (IAAend/ Ap) x 100 %
where SIDp = SID of CP or AA in the assay diet (%).

Statistical analyses

Homogeneity of variances and normal distribution of
the data were confirmed using the UNIVARIATE pro-
cedure of SAS (SAS Inst., Inc., Cary, NC). Data were an-
alyzed as a 2x2 factorial using the GLIMMIX
procedures of SAS. The model included the protein
level, probiotic supplementation, and the interactive ef-
fects of protein level and probiotic supplementation as
the fixed effects, and pig and period as the random ef-
fects. In case of interaction, the significant differences
between treatments based on a t-test were set at o = 0.05
using the algorithm for letter-based representation of all
pair-wise comparisons according to Piepho [38]. For
microbiota analyses, bacterial 16S rRNA gene copy
numbers in pre-treatment period was considered as co-
variate. Least squares means and standard error of the
means are presented, and a probability level of P<0.05
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was considered to be statistically significant, whereas a
P <0.10 was considered to constitute a tendency.

[lumina amplicon sequencing data were analyzed
using statistic software PRIMER (v.6.1.16, PRIMER-E;
Plymouth Marine Laboratory, Plymouth, UK) [39]. Sam-
ples were standardized by total and resemblance matrix
was calculated using Bray-Curtis coefficient. Overall
community structures were explored by nonmetric
multidimensional scaling (MDS). One way analysis of
similarity (ANOSIM) and permutational multivariate
analysis of variance (PERMANOVA) were used to evalu-
ate similarity between different dietary groups, different
protein levels and probiotic treatments, and a probability
level of P <0.05 was considered to be significant differ-
ent. The ANOSIM R values range from -1 to 1; the farer
from zero the more distinct and the closer to zero the
more similar are the compared groups. Variables
contributing to observed differences were identified by
similarity percentages routine. The bacterial families
contributing to overall 70% of dissimilarities among
treatment groups were considered to be the most import-
ant and their abundance data were graphically plotted ac-
cording to a color key from zero to maximal abundance.
Shannon index was used to measure diversity in bacterial
communities from different sample groups, taking into ac-
count the number of OTUs and the proportion of each
OTU. A Mantel-type test (RELATE) on Bray-Curtis
matrices was used to quantify the correlation between re-
sults from bacterial community analysis. To enable com-
parison between amplicon sequencing and qPCR
approaches, RELATE routine was run on untransformed
datasets, restricted to bacteria groups targeted by qPCR
primers and the generated Spearman Rho was considered
to be significant if P < 0.05.

Results

All pigs remained healthy throughout the experiment
and readily consumed their daily feed allowances. The
analyzed CP and AA contents of the assay diets and mi-
crobial numbers of B. subtilis and B. licheniformis in
assay diets are presented in Table 3. As expected, CP
and AA contents in LP were approximately 76.5 and
76.6% that of HP, respectively. The contents of ash, EE,
NDE, ADF, and ADL in the HP diets were also greater
than in the LP diets. The Bacillus spores determined in
the experimental diets amounted to 1.54 x 10° CFU/kg
feed for HP + and LP + diets, whereas HP - and LP - di-
ets contained 0.02 x 10° and 0.04 x 10° CFU/kg feed,
respectively.

The AID and SID of CP and AA in the assay diets are
shown in Tables 4 and 5, respectively. The supplemen-
tation with Bacillus spp. did not affect both AID and
SID of CP and AA. Furthermore, there was no differ-
ence in AID of CP and AA between HP and LP diets,
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Table 3 Analyzed chemical composition and Bacillus cell numbers in assay diets
High-protein Low-protein
[tem - + - +
Dry matter, % 88.6 88.7 88.3 88.6
Crude protein, % DM 206 20.3 152 16.1
Ash, % DM 6.1 6.0 52 53
Ether extract, % DM 3.7 36 32 33
Neutral detergent fiber, % DM 12.7 13.1 10.1 10.5
Acid detergent fiber, % DM 7.0 6.6 54 5.1
Acid detergent lignin, % DM 1.1 09 0.8 0.8
Indispensable amino acids, % DM
Arginine 1.26 1.25 0.93 0.99
Histidine 0.46 0.46 0.35 0.36
Isoleucine 0.80 0.80 061 0.63
Leucine 1.53 1.53 1.15 1.19
Lysine 148 1.50 1.12 1.12
Methionine 0.50 0.51 0.38 037
Phenylalanine 0.95 0.95 0.69 0.74
Threonine 091 091 0.68 0.70
Tryptophan 0.27 0.27 0.20 0.21
Valine 1.02 1.01 0.76 0.79
Dispensable amino acids, % DM
Alanine 0.80 0.79 0.60 0.63
Aspartic acid 1.73 1.71 1.29 137
Cystine 033 033 0.25 0.26
Glutamic acid 408 403 3.05 320
Glycine 0.81 0.80 0.61 0.64
Proline 1.32 1.31 0.99 1.04
Serine 0.93 091 0.69 0.73
Bacillus cell numbers, CFU/kg feed
Bacillus subtilis 0022% 10° 0.860% 10° 0038x 10° 0970x 10°
Bacillus licheniformis <0002 x 10° 0680 % 10° 0.006 x 10° 0570 10°

but SID of cystine, glutamic acid, glycine, and proline
was lower (P <0.05) in the HP diets than in the LP di-
ets. Moreover, SID of CP, alanine, aspartic acid, and
serine also tended to be lower (P <0.10) in the HP di-
ets. However, no interactions between CP level and Ba-
cillus spp. supplementation could be observed for AID
and SID of CP and AA in the present study.

The overall structure in bacterial communities from
ileal digesta was evaluated by 16S rRNA gene amplicon
sequencing. Analysis of similarity revealed significant
differences in microbiota composition due to different
dietary treatments (P = 0.05), but a statistic R value close
to zero (R=0.176) suggests a weak separation of the
different treatment groups (Fig. 1a).

When compared with the starter period, bacterial
communities were different (P<0.01) between dietary

treatments. Within assay diets, however, there were no
effects (Table 6).

Taxonomical composition of ileal digesta samples
demonstrated some variation among dietary treat-
ments. At phylum level, the bacterial communities were
dominated by Firmicutes and Bacteroidetes. Within the
assay diets from periods 1 to 3, the relative abundance
of Firmicutes was higher than Bacteroidetes when
compared to the starter period. The reduction of
Bacteroidetes was mainly due to lower abundance of
Prevotellaceae, with an average abundance of 27% in
the starter diet compared to 5% in the HP diets, 4% in
LP - and 11% in LP +. Nine bacterial families contrib-
uted to the overall dissimilarities among microbiota
structure in ileal digesta samples of different dietary
treatments (Fig. 1b). Ileal microbiota from dietary
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Table 4 Apparent ileal digestibility of crude protein and amino
acids of the assay diets®
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Table 5 Standardized ileal digestibility of crude protein and
amino acids of the assay diets®

High-protein Low-protein SEM P-value High-protein Low-protein  SEM  P-value
ltem - + - + Pl B°  PxB ltem - + - + Pl B®  PxB’
Crude protein 764 754 800 766 209 0273 0310 0573 Crude protein 821 813 878 839 209 0063 0274 0488
Indispensable amino acids Indispensable amino acids
Arginine 854 848 871 847 135 0563 0286 0534 Arginine 885 879 913 887 135 0210 0254 0474
Histidine 804 792 829 797 170 0398 0211 0557 Histidine 845 834 884 849 170 0128 0.187 0492
Isoleucine 793 786 825 791 196 0356 0313 0513 Isoleucine 840 833 888 852 196 0110 0289 0474
Leucine 81.1 803 838 806 173 0389 0269 0.01 Leucine 843 835 880 847 173 0164 0255 0472
Lysine 848 843 875 842 138 0351 0194 0327 Lysine 875 870 911 878 138 0126 0.192 0333
Methionine 897 893 914 890 103 0492 0200 0349 Methionine 919 915 943 920 1.03 0166 0201 0.363
Phenylalanine 786 781 820 790 199 0295 0386 0.522 Phenylalanine 822 817 869 836 199 0.112 0348 0474
Threonine 766 757 795 753 209 0546 0235 0446 Threonine 833 824 835 841 209 0.114 0212 0410
Tryptophan 751 732 781 738 247 0470 0226 0628 Tryptophan 803 784 850 803 247 0195 0202 0584
Valine 788 789 819 781 193 0403 0232 0471 Valine 842 832 890 850 193 0.106 0218 0436
Dispensable amino acids Dispensable amino acids
Alanine 706 689 755 710 266 0197 0257 0.605 Alanine 769 752 839 790 266 0056 0232 0549
Asparticacid 746 734 786 747 232 0263 0284 0566 Asparticacid 793 782 850 807 232 0094 0259 0509
Cystine 743 726 789 745 233 0176 0200 0568 Cystine 80.7 789 875 825 233 0037 0.166 0499
Glutamic acid 864 857 889 869 122 0.148 0267 0601 Glutamic acid 895 888 931 908 1.22 0034 0242 0539
Glycine 655 634 701 643 291 0352 0188 0.521 Glycine 768 748 853 787 291 0045 0.159 0436
Proline 827 814 853 822 164 0312 0197 0611 Proline 914 901 968 932 164 0018 0.158 0486
Serine 76.7 752 797 763 210 0341 0244 0.665 Serine 841 826 896 856 210 0055 0209 0547

'P-value of protein level

2p-value of probiotic supplementation with Bacillus spp.

3p.value of interaction between protein level and probiotic supplementation
with Bacillus spp.

LS means and standard error of the means, %

treatments without probiotic supplementation con-
sisted mainly of Peptostreptococcaceae, Clostridiaceae
1, Streptococcaceae, Lactobacillaceae and Erysipelotri-
chaceae with even proportions, except for Peptostrepto-
coccaceae and Streptococcaceae being the predominant
family in the HP and LP treatment, respectively.
Streptococcus alactolyticus accounted for 15% of total
microbiota in samples of LP - treatment. Compared to
this, ileal digesta samples from LP + were enhanced in
Clostridiaceae 1, Erysipelotrichaceae and Prevotella-
ceae. In HP +, the bacterial composition was dominated
by Lactobacillaceae, with an average abundance of 40%.
Here, an uncultured Lactobacillus from porcine intes-
tine (relative abundance of 21.5%) and Lactobacillus
amylovorus (14.2%) were the predominant species.
Lactobacillus spp. and other bacteria groups of
interest were quantified in ileal digesta by qPCR
(Table 7). Mantel test showed a significant correlation
between the two approaches, sequencing and qPCR
(Rho=0.852, P<0.01), thus confirming that both
methodological approaches resulted in comparable results.
The HP diets increased abundance of Lactobacillus spp.

"P-value of protein level

2p-value of probiotic supplementation with Bacillus spp.

3p-value of interaction between protein level and probiotic supplementation
with Bacillus spp.

°LS means and standard error of the means, %

and Bifidobacterium spp. (P<0.05). No effects of CP
content on ileal gene copy numbers of total bacteria,
Roseburia spp., Enterobacteriaceae, Bacteroides-Prevotella-
Porphyromonas, Clostridium cluster IV and Bacillus spp.
were found. Likewise, no significant effect of supplementa-
tion of Bacillus spp. was observed for ileal gene copy
numbers of total bacteria, Lactobacillus spp., Bifidobacter-
ium spp., Enterobacteriaceae, Clostridium cluster IV and
Bacillus spp.. However, dietary supplementation of Bacillus
spp. increased (P<0.05) abundance of Roseburia spp.,
while it tended (P<0.10) to promote Bacillus spp. and
total bacteria. Furthermore, there was an interaction
(P<0.05) of protein level and Bacillus spp. supple-
mentation for ileal gene copy numbers of Bacteroides-
Prevotella-Porphyromonas. The LP + resulted in higher
(P<0.05) abundance of Bacteroides-Prevotella-
Porphyromonas than the LP -, but did not differ from
the HP diets.

The analysis of fecal microbiota by 16S rRNA gene
amplicon sequencing showed no statistical effect on
overall community structure. However, feces microbiota
from each assay diet revealed to be significant different
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Fig. 1 Microbiota composition in ileal digesta samples from pigs fed starter diet and assay diets. a Multidimensional scaling plot based on Bray
Curtis similarity matrix of 16S rDNA sequence data from ileal digesta. b Abundance plot of most important bacterial families in overall microbiota
structure of ileal digesta. Phyla: Firmicutes (Fi), Bacteroidetes (Ba), Proteobacteria (Pr)

to that from the starter period (P<0.01; Fig. 2a). At
family level, Prevotellaceae exhibited the strongest
impact on these dissimilarities (Fig. 2b), with Prevotella
being the predominant genus. The average abundances
of Prevotella showed slight variations for treatment
groups with different protein levels; starter (15%), LP
diets (13%), and HP diets (19%).

Comparing sequencing results from porcine ileal
digesta and feces revealed distinct differences in bacterial
communities structure (R=0.924, P<0.01) (Fig. 3a).

Samples from ileal digesta showed a lower diversity
compared to feces (Shannon index in average 2.9 vs. 4.7)
(Fig. 3b and c). Mainly Streptococcus alactolyticus con-
tributed to the dissimilarity with an average abundance
of 9.7% in ileal digesta compared to 2.0% in feces. At
family level differences were mainly due to Lactobacilla-
ceae and Ruminococcaceae. The abundance of Lactoba-
cillaceae was higher in ileal digesta (16%) than in feces
(2%), and contrary the abundance of Ruminococcaceae
was higher in feces (23%) than in ileal digesta (0.5%).

Table 6 Results from PERMANOVA test for dietary effect on 16S rRNA sequencing data from ileal digesta

Source Degrees of freedom Sum of squares Mean square Pseudo-F P(perm) Unique perms
p’ 1 20224 20224 0.770 0638 998

B’ 1 1340.1 1340.1 0511 0901 998

PxB® 1 26919 26919 10.255 0424 999

Res 20 52,497 2624.8

Total 23 58,551

'P(perm)-value of protein level
2P(perm)-value of probiotic supplementation with Bacillus spp.

3p(perm)-value of interaction between protein level and probiotic supplementation with Bacillus spp.
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Table 7 lleal gene copy numbers® in ileal digesta of growing pigs

High-protein Low-protein SEM P-value
Iltem - + - + P! B’ PxB’
Total bacteria 89 9.1 84 9.1 030 0.286 0.070 0.226
Lactobacillus spp. 79 8.8 6.9 7.1 044 0.002 0.109 0.279
Bifidobacterium spp. 6.2 6.4 53 6.0 0.32 0.024 0.179 0.354
Roseburia spp. 7.1 73 6.5 77 033 0.834 0.033 0.111
Enterobacteriaceae 7.7 79 74 8.3 043 0.836 0.139 0.274
Bacteroides-Prevotella-Porphyromonas 81°¢ 82b¢ 76° 86° 026 0.968 0013 0.042
Clostridium cluster IV 56 57 52 59 030 0.735 0.185 0.324
Bacillus spp. 8.0 83 75 8.1 023 0.100 0.054 0.498
'P-value of protein level
2p-value of probiotic supplementation with Bacillus spp.
3p-value of interaction between protein level and probiotic supplementation with Bacillus spp.

?logso 165 rRNA gene copies/g digesta (LS means and standard error of the means)
bWithin a row, LS means with a common superscript are not different at a=0.05

Discussion

According to previous studies, B. subtilis and B. licheni-
formis produce extracellular enzymes including prote-
ases and o-amylase [19, 20], which may enhance
nutrient digestibility resulting in improved feed conver-
sion in finisher pigs [40]. In addition, B. subtilis exceeds
B. licheniformis in production of glycosyl hydrolases [4],
which assist in the hydrolysis of glycosidic bonds in
complex sugars. However concerning antibiotic resist-
ance, which is considered to be an important key re-
quirement for probiotics, a higher concentration of
antibiotics is tolerated by B. licheniformis than by B. sub-
tilis [4]. Recently, probiotic characteristics were de-
scribed for spores of B. subtilis, although interactions
with porcine epithelial cells are not understood so far
[4]. For example, the supplementation of B. subtilis to a
soybean meal diet showed slight improvements in AID
and SID of some AA in weaning pigs as described by
Kim et al. [21]. However, in the present study, there was
no improvement in AID and SID of CP and AA in grow-
ing pigs fed diets supplemented with B. subtilis and B.
licheniformis. Similarly, previous studies [6, 41] failed to
demonstrate that the inclusion of B. subtilis and B. liche-
niformis in diets would affect apparent total tract digest-
ibility of CP in growing-finishing pigs. The lack of
probiotic treatment effects may be due to low quantity
of the supplemented bacterial species in porcine intes-
tine, as in treatments with probiotic supplementation
the Bacillus spp. numbers were not significantly higher
compared to numbers in treatments without probiotic
supplementation. The gene copy numbers of Bacillus
spp. in the treatments without probiotic supplementa-
tion correspond to results of a study by Dowd et al. [42]
on Bacillus spp. in the ileum of piglets using 16S rRNA
gene sequencing. In addition to the qPCR results, fur-
ther Bacillus species (B. pumilus and B. cereus) were
identified by amplicon sequencing. Operative taxonomic

units corresponding to Bacillus genus appeared in very
low abundance (<1%), and were present in samples with
and without Bacillus spp. supplementation. These re-
sults are in accordance with previous studies demon-
strating the ability of germinated Bacillus spores to
proliferate in mammal GIT, even if only at a low rate
[5], and therefore might not be persistent [43].

Positive effects of diets supplemented with B. subtilis
and B. licheniformis on feed conversion in pigs have been
reported before [40, 44], however, the underlying mecha-
nisms of Bacillus’ probiotic activity are little understood,
and may be attributed to competitive adhesion and immu-
nomodulation by Bacillus spores or to enzymes and other
substances produced by the germinated, vegetative cells of
Bacillus [5]. Notably, probiotic supplements may be more
effective under stress such as practical field conditions
[45, 46]. This might be one reason for the missing effect
of Bacillus spp. supplementation on digestibility values in
the present study, as pigs were individually housed and
kept in a clean environment under optimal temperature
and minimal stress conditions. Furthermore, the age of
pigs may be associated with probiotic efficacy [47]. The
use of probiotics tended to be more effective in early age
of pigs rather than the growing period [48, 49]. In the
present study, grower pigs (13- and 20-week old at the
initial and final BW, respectively) fed diets supplemented
with Bacillus spp. did not show any differences in ileal
digestibility of CP and AA. It has been suggested that
increasing age may be a contributing factor in building up
the complexity of the microbial community [50] with
growing pigs being more resistant to intestinal disorders
than young pigs [51].

Dietary content of CP has been reported to be associ-
ated with AID due to the variation in endogenous CP and
AA losses in ileal digesta [52]. Previous research [53] sug-
gests that AID shows segmented quadratic with plateau
relationships as the level of CP and AA in the diet
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Fig. 2 Microbiota composition in fecal samples from pigs fed starter diet and assay diets. a Multidimensional scaling plot based on Bray Curtis
similarity matrix of 16S rDNA sequence data from fecal samples. b Abundance plot of most important bacterial families in overall microbiota
structure of feces. Phyla: Firmicutes (Fi), Bacteroidetes (Ba), Spirochaetes (Sp)

increased from 4 to 24% (as-fed). Alternatively, SID has The higher numbers of Lactobacillus spp. and Bifido-
been widely accepted to overcome this problem by cor-  bacterium spp. in ileal digesta of HP treatments are in
recting AID values for basal endogenous losses of CP and  agreement with a recent study by Rist et al. [17], where
AA [54]. In general, SID values are higher in comparison  piglets fed high dietary CP levels showed an increased
to their corresponding AID values as the basal endogen-  growth and proliferation of lactic-acid bacteria in ileal
ous losses of CP and AA are subtracted from ileal CP and  digesta. As content of soybean meal in the present study
AA outflow [36]. In the present study, SID of some AA  was greater in HP than in LP diets, enhanced availability
was lower in HP diets than in LP diets. Apparently, higher  of fermentable carbohydrates in the small intestine can
fiber contents in HP diets, associated with enhanced se-  be suggested, thereby stimulating ileal growth of lactoba-
cretion of endogenous AA [55, 56], may have contributed cilli and bifidobacteria [17]. Furthermore, HP diets could
to higher rate of digesta passage in the digestive tract of increase the availability of free AA in the small intestine
pigs [57], thereby, decreasing SID values. This is con-  [17], contributing much more preformed AA of dietary
firmed by the results of a recent study [58], where SID of and endogenous origin to bacterial growth in the upper
CP and most AA decreased linearly with increasing diet-  part of the digestive tract than microbial de novo synthesis
ary CP from 6.8 to 21.4% (as-fed) due to the greater NDF  of AA [13]. Furthermore, analysis of overall microbiota
and ADF contents. composition in ileal digesta by amplicon sequencing
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supported an increasing effect on Lactobacillus proportion
upon feeding of HP + diets. The presence of Lactobacillus
spp- and Bifidobacterium spp. in the GIT has been re-
ported to be beneficial for the host animal [17] due to
their ability for bacteriocin production [59]. Moreover,
proliferation of pathogenic bacteria may be inhibited
through the production of short-chain fatty acids (SCFA)
and lactic acid, being associated with a lower pH, causing
a hostile environment for some acid-sensitive bacteria
strains [60]. The presented sequencing results for Lacto-
bacillus spp. are supported by qPCR results, which re-
vealed a higher number of Lactobacillus gene copies in
HP diets. The identified Lactobacillus spp. were domi-
nated by an uncultured bacterium, previously isolated
from porcine intestine [61], and the species L. amylovorus.
L. amylovorus is a synonym expression for Lactobacillus
sobrius, which is characterized by amylolytic activity, and
being previously identified with high prevalence in porcine
intestine [62-65]. Application of an oral probiotic mixture
including a L. amylovorus strain has been shown to pro-
mote growth performance of pigs [66]. In general, the
enhancement of potential beneficial Lactobacillus spp. is
considered to promote gut health. However, the above de-
scribed supporting effect of HP + diet on abundance of
Lactobacillus caused a reduced community diversity com-
pared to microbiota from ileal digesta of other dietary

treatments. A high diversity in intestinal microbiota might
be preferable to cope effectively with potential challenging
conditions [67].

Regardless of dietary protein level, the supplementa-
tion of B. subtilis and B. licheniformis had a stimulating
effect on targeted quantity of Roseburia spp., known as
an important butyrate producer [68]. Butyrate represents
the most preferential energy source of colonocytes [69],
resulting in the stimulation of epithelial cell proliferation
and mucus secretion [70]. Therefore, the supplementa-
tion of B. subtilis and B. licheniformis may contribute to
an improved gut health of pigs.

Assay diets did not significantly impact overall micro-
biota, but influence was demonstrated for bacterial copy
numbers of Bacteroides-Prevotella-Porphyromonas. In
the present study, the dietary CP level and the supple-
mentation of B. subtilis and B. licheniformis showed an
interaction, as supplementation of B. subtilis and B.
licheniformis increased Bacteroides-Prevotella-Porphyro-
monas in the LP diets when compared to HP diets. The
Bacteroides-Prevotella-Porphyromonas group includes
phylogenetic related species from Bacteroidetes phylum
that commonly inhabit GIT. Sequencing results con-
firmed an increased abundance of Prevotella in ileal
digesta from LP +treatment when compared to the
other assay diets. This finding is in agreement with other



Kaewtapee et al. Journal of Animal Science and Biotechnology (2017) 8:37

studies, which showed an enhancing effect of low pro-
tein diets on gene copy numbers of Bacteroides-Prevo-
tella-Porphyromonas group in ileal digesta [17], and a
significant increase in the abundance of Prevotella genus
in cecum [71] when compared to samples of treatments
with a higher protein level [17, 71]. Prevotella dominate
the porcine fecal metagenome [72], play an important
role in intestinal carbohydrate fermentation [73] and
also show proteolytic activity [74]. Sequencing results
also revealed members of Prevotella as main discrimina-
tors of community structure from ileal microbiota of
starter and experimental periods. The observed decrease
over experimental time is in agreement with a longitu-
dinal study of Kim et al. [75]. Thus, the observations on
relative proportion of Prevotella represent the general
impact of diet and age on porcine intestinal microbiota.
Contrary to ileal digesta, where abundance of Prevotella
was highest in LP +, the fecal proportion of Prevotella
was higher in HP than LP treatment and slightly in-
creased over experimental time. This variation along
sampling sites is in agreement with a previous study, in-
vestigating as well ileal digesta and fecal samples from
pigs [17], where abundance patterns of Prevotella species
in the GIT of pigs were different between ileal digesta
and fecal samples.

The results of this study demonstrate an overall lower
bacterial diversity for ileal digesta compared with fecal
samples. Metagenome studies on porcine microbiota
collected from different intestine sites revealed different
contributions of bacterial species and activities along the
GIT [76, 77]. The fecal collection is an easy accessible
sampling site with samples showing high similarity to
microbiota composition from proximal intestine. How-
ever, microbiota composition from fecal samples is not
identical representatives to those from ileal digesta.
Therefore, collecting samples of different sites of the
GIT, where close interactions between the microbiome
and the digestive processes occur, will improve under-
standing of probable functional changes and the effects
of dietary treatments such as the addition of probiotics.

Undigested dietary components passing into the large
intestine are subjected to fermentation by the intestinal
microbiota [17]. As a result, fermentation products such
as SCFA are rapidly absorbed across the gut wall,
contributing up to 30% of growing pigs’ maintenance re-
quirement for energy [78]. On the other hand, increasing
protein fermentation may result in the formation of det-
rimental fermentation products such as ammonia and
amines in the colon [79]. A lower dietary protein level
may reduce ammonia production, as observed by Htoo
et al. [14] in cecal samples of pigs, while supplementa-
tion of diets with B. subtilis and B. licheniformis showed
similar results in slurry samples from pigs due to a
lowering effect on the pH [6]. Therefore, LP diets
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supplemented with B. subtilis and B. licheniformis might
be used to reduce the production of harmful microbial
metabolites in the large intestine of pigs.

Conclusions

Supplementation with Bacillus spp. did not affect both
AID and SID of CP and AA in growing pigs. The higher
SID of some AA in the LP diets when compared to HP
diets hints towards the possibility of reducing N excre-
tion through diet manipulation. Regarding microbiota,
the assay diets had no significant effect on overall com-
munity structure, neither in ileal digesta nor feces.
Nevertheless, dietary protein content and Bacillus spp.
supplementation may enhance various community mem-
bers in ileal digesta. Within this regard, feeding of the
HP diet resulted in a higher abundance of Lactobacillus
spp. and Bifidobacterium spp., whereas LP diet may sup-
port bacteria important for carbohydrate degradation
such as Prevotella. Furthermore, relative proportion of
Prevotella was altered during pig’s age. The supplemen-
tation of Bacillus spp. promoted gene copy numbers of
Roseburia spp., which may be beneficial due to ascribed
health promoting properties of this butyrate producer,
and this phenomenon may be more effective under
stress condition. The LP diet supplemented with B. sub-
tilis and B. licheniformis may be used as an alternative
feeding strategy to support gut health in pigs.
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