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Abstract

Background: In farm animals, mitochondrial DNA (mtDNA) effect on economic performance remains hot-topic for
breeding and genetic selection. Here, 53 maternal lineages of Small-tailed Han sheep were used to investigate the
association of mitochondrial DNA variations and the lambing litter size.

Results: Sequence sweeping of the mitochondrial coding regions discovered 31 non-synonymous mutations, and
the association study revealed that T7719G in mtDNA tRNA-Lys gene was associated with litter size (P < 0.05),
manifesting 0.29 lambs per litter between the G and T carriers. Furthermore, using the mixed linear model, we
assayed the potential association of the ovine litter size and haplogroups and multiple-level mtDNA haplotypes,
including general haplotypes, assembled haplotypes of electron transport chain contained sequences (H-ETC),
mitochondrial respiratory complex contained sequences (H-MRC) and mitochondrial genes (H-gene, including
polypeptide-coding genes, rRNA genes and tRNA genes). The strategy for assembled mitochondrial haplotypes was
proposed for the first time in mtDNA association analyses on economic traits, although none of the significant
relations could be concluded (P > 0.05). In addition, the nuclear major gene BMPR1B was significantly correlated
with litter size in the flock (P < 0.05), however, did not interact with mtDNA T7719G mutation (P > 0.05).

Conclusions: Our results highlight mutations of ovine mitochondrial coding genes, suggesting T7719G in tRNA-Lys
gene be a potentially useful marker for selection of sheep litter size.
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Background
Mitochondria are responsible for ATP production in the
electron transport chain (ETC) in cells. The ETC
consists of five mitochondrial respiratory complexes
(MRCs), of which complex I, complex III, complex IV
and complex V are constructed by both mitochondrial
and nuclear encoded proteins, and complex II is entirely
encoded by nuclear genes. Mitochondrial genome codes
13 polypeptides, 2 rRNAs and 22 tRNAs [1]. Since the
first report of mitochondrial DNA (mtDNA) effect on
milk production traits in dairy cattle [2], mtDNA effects
on various economic traits have been widely studied in
livestock, including pigs [3, 4], dairy cattle [5, 6], beef

cattle [7, 8], sheep [9, 10] and chickens [11, 12]. Litter
size is one of the vital economic traits for animal breed-
ing and production, which has been studied for decades.
For sheep, the nuclear gene, BMPR1B was identified as
one of causative genes for sheep prolificacy [13], and has
been widely used in sheep breeding. For the mtDNA ef-
fect on litter size, researchers reported the association
with ewe litter size among haplogroups in an Afec-Assaf
flock, but did not found the interaction with BMPR1B
effect [10]. However, previous studies reported poor
mtDNA effects [14–17], which made it necessary to un-
cover the genetic contribution of mtDNA for ewe litter
size. In this study, Small-tailed Han sheep, a prolific
breed of China, were used to investigate the association
of litter size with mtDNA coding genes, in which non-
synonymous mutations were considered as possible
functional SNPs. Besides the non-synonymous mutation
and haplogroup, assembled haplotypes of ETC-
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contained mtDNA sequences, MRC-contained mtDNA
sequences, and mitochondrial genes were analyzed, re-
spectively. The strategy for assembled mitochondrial
haplotypes was proposed for the first time in association
analyses. In addition, BMPR1B effect and interaction
with mtDNA mutations were analyzed.

Methods
Animals
In total, 117 lambing Small-tailed Han sheep from 53
maternal lineages (families divided by female ancestors)
of the same flock were performed blood sample collec-
tion, and recorded one or more times of litter size
(Additional file 1: Table S1). All sheep were kept indoors
year-round, and fed with mixed silage and hay to meet
their nutritional requirements. Litter size (number of
lambs born) was recorded, and full pedigree information
was collected for all animals as reproductive manage-
ment of the flock where ewes were mated with the se-
lected rams after spontaneous estrus. All the ewes were
genotyped for the BMPR1B at >2-month age.

Genotyping of BMPR1B and sequencing of mitochondrial
coding genes
Genomic DNA was extracted using the standard phenol/
chloroform method [18]. The BMPR1B was genotyped
using PCR-RFLP assay with the Ava II restriction en-
zyme [19]. Mitochondrial complete coding sequences
were amplified by 17 primer pairs [20], and PCR prod-
ucts were sequenced in the Sanger method.

Haplotype and haplogroup constitution
All non-synonymous mutations were used to constitute
the haplotype and haplogroup. Considering the possible
action for mitochondrial function, haplotypes were fur-
thermore assembled by mtDNA sequence of ETC,
MRCs and genes respectively. Haplotypes were deter-
mined by the online software FaBox [21], and hap-
logroups were constituted based on network analysis by
Network 4.6.1.4 [22].

Association analysis
Association analyses were carried out in the following
mixed model by MIXED procedure in SAS software ver-
sion 9.2 (SAS Institute Inc., Cary, North Carolina, USA).

ls ¼ ysþ parityþ ramþ BMPR1Bþmutations
þ BMPR1B�mutationsþIDþ EP þ e

In the model, the effects of lambing year-season (ys),
parity number (parity), service ram (ram), BMPR1B
genotype (BMPR1B), mtDNA mutations (mutations, in-
cluding the effects of mtDNA non-synonymous muta-
tions, haplotypes and haplogroups), the interaction

between BMPR1B and mtDNA mutations (BMPR1B ×
mutations), the polygenic effect (ID), the permanent en-
vironmental effect (EP), and the random residual (e)
were included. The response variable was the ewe litter
size (ls). Each cell of these effects contained observa-
tions. The polygenic effect corrected the genetic back-
ground by the additive genetic relationship matrix, i.e.
the pedigree information. The permanent environmental
effect dealed with the repeated measurement data.

Table 1 Non-synonymous mutations in mitochondrial coding
genes and corresponding effects on litter size

Gene Nucleotidea Codon
mutation

Amid acid
substitution

Significanceb

ND1 T3543A UCA→ ACA S→ T ns

ND2 T4208C AUA→ ACA M→ T ns

COII C7500A CCC→ CAC P→ H ns

ATP6 A8039G AAC→ AGC N→ S ns

G8264C GGA→ GCA G→ A ns

COIII A9375G AUA→ GUA M→ V ns

ND4L C9974T CCU→ UCU P→ S ns

G10118A GGU→ AGU G→ S ns

ND4 G10937A GAC→ AAC D→ N ns

G11045A GUU→ AUU V→ I ns

ND5 G12571C GGC→ GCC G→ A ns

G13041A GCA→ ACA A→ T ns

ND6 C13576T CUC→ UUC L→ F ns

T13588C UAC→ CAC Y→ H ns

C13777T CAU→ UAU H→ Y ns

C13789T CAU→ UAU H→ Y ns

T13837C UCA→ CCA S→ P ns

T13855C UUC→ CUC F→ L ns

A13876G AUA→ GUA M→ V ns

12SrRNA T281C - - ns

C291T - - ns

A538G - - ns

16SrRNA A1099T - - ns

T1112C - - ns

T2199A - - ns

C2443T - - ns

T2634C - - ns

tRNA-Tyr G5295A - - ns

tRNA-Lys T7719G - - *

tRNA-His C11606T - - ns

tRNA-Ser G11668A - - ns
aMutation positions were defined according to the ovine mitochondrial
sequence (GenBank Accession nos.: AF010406)
bWhen a set of statistical inferences were simultaneously considered, multiple
comparisons were conducted by the FDR using the R project. “ns” represents
“not significant”, and “*” represents “significant” at the significant level of 0.05
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Inference about the interaction effect was made. If
non-significant, that effect was dropped from the model
and inference was made about the main effects. If sig-
nificant, the cell means for the interaction became of
interest.
When a set of statistical inferences were simultan-

eously considered, multiple comparisons were con-
ducted by the false discovery rate (FDR) in the R project
(R version 3.2.5) [23].

Results
Mutations in mitochondrial coding genes
In total, 95 mutations in mitochondrial coding genes
were discovered (Additional file 1: Table S2), including
64 synonymous and 31 non-synonymous mutations (19
missense mutations in protein coding genes, 8 mutations
in rRNAs, and 4 mutations in tRNAs respectively),
which were illustrated in Table 1.

BMPR1B genotypes
For BMPR1B gene, 117 ewes were genotyped, including
++ genotype of 18 ewes, B+ genotype of 87 ewes and BB
genotype of 12 ewes.

Effects of mitochondrial haplotype and haplogroup on
ovine litter size
The 31 mitochondrial non-synonymous mutations
assigned the Small-tailed Han sheep flock to 44 haplotypes
(Additional file 1: Table S3), which were clustered into 4
haplogroups (Fig. 1). Using the mixed linear model, no
significant effect on any haplotype or haplogroup was as-
sociated with litter size of Small-tailed Han sheep (P >
0.05), and the interaction between BMPR1B and haplotype
or haplogroup also did not significantly affect litter size

(P > 0.05), while the BMPR1B was positively associated
with litter size (P < 0.05).

Effects of missense mutations and haplotypes in
mitochondrial protein coding genes on ovine litter size
Totally 35 H-ETCs were constituted by 19 missense muta-
tions in protein coding sequences, while 15 missense mu-
tations in MRCI assembled 33 H-MRCIs, and both 2
mutations in MRCIV and MRCV constituted 3 H-MRCIVs
and 3 H-MRCVs respectively. Intensively, H-genes were
assembled by mutations of individual genes (Table 2 and
Additional file 1: Table S4, S5 and S6). With mixed linear
model analyses, no significant association was detected be-
tween litter size and the 19 non-synonymous mutations
(P > 0.05) (Table 1), nor was any haplotype (P > 0.05)
(Table 2). BMPR1B was strongly associated with litter size
(P < 0.05) (Table 3), but the interaction of BMPR1B and
mtDNA mutations was not remarkable (P > 0.05).

Effects of mutations and haplotypes in mitochondrial
rRNA genes on ovine litter size
The 3 mutations in 12SrRNA sorted the sheep flock into 4
haplotypes (H-12SrRNA), and the 5 mutations in 16SrRNA
constituted 15 haplotypes (H-16SrRNA) (Table 2 and Add-
itional file 1: Table S7). Association analyses revealed that
neither mutation nor haplotype in rRNA genes affected lit-
ter size (P > 0.05) (Tables 1 and 2). The BMPR1B genotype
was remarkably associated with litter size (P < 0.05)
(Table 3), however, was inconspicuously correlated to
rRNA mutations (P > 0.05).

Effects of mutations in mitochondrial tRNA genes on
ovine litter size
There were 4 mutations in tRNA genes, and only one
variation was observed in each of them (Table 1),

Fig. 1 Neighbor-joining tree of different maternal pedigrees for haplogroup assignments by the 31 non-synonymous mutations
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therefore no haplotype was constituted. Notably,
T7719G in tRNA-Lys affected litter size by 0.29 lambs
per litter between the G (1.79) and T (1.50) carriers (P <
0.05). Even though the BMPR1B was in prominent cor-
relation with litter size (P < 0.05) (Table 3), there was no
interaction with T7719G (P > 0.05) (Additional file 1:
Table S8).

Discussion
In human diseases, mutations in mitochondrial coding
genes led to changes of oxidative phosphorylation en-
zyme complexes [24]. It is rational to image the possible
effects of mtDNA on livestock traits. In this study, the
Small-tailed Han sheep were used to explore the correl-
ation of mtDNA and ewe litter size.
In order to investigate the overall mtDNA effects, a

novel strategy of assembling mitochondrial haplotypes
based on biology functions is proposed. Extensively,
there are four levels of mitochondrial haplotypes for
mitochondrial biological functions. The general haplo-
type is assembled by all non-synonymous mutations to
reflect the integrated characteristics of mtDNA coding

regions. Subsequently, the ETC based haplotype (H-ETC)
represents the general feature of all ETC-contained
mtDNA sequences. The MRC based haplotype infers the
integrated signal of particular MRC-contained mtDNA se-
quences. H-MRC includes four types, i.e. MRC-I, MRC-
III, MRC-IV and MRC-V. The last is the gene level, which
indicates the information of a particular gene-contained
mtDNA sequence.
In the mixed linear model, unnecessary factors

interfere with the estimation of interested factors, as
the degree of freedom is wasted. Therefore, based on
the thoughts of multiple models [10] and variable se-
lection in a mixed linear model [25], a two-step
method of environmental variable selection was put
forward in the association analyses, in which non-
significant environmental factors were ignored to im-
prove accuracy of genetic estimation. In this study,
the environmental factors included lambing month,
parity of dam, and service ram, and the genetic fac-
tors, which we were interested in, included BMPR1B
genotype, mtDNA mutations and their interaction.
We started a full model (Model I) with all the envir-
onmental and genetic factors to test if environmental
factors were noises. Results revealed that the effects
of parity of dam and service ram were not significant
on litter size. Subsequently, these two factors were
excluded in the aims to construct an optimized model
(Model II), which was used to test the significance of
genetic factors, especially the effects of mtDNA muta-
tions on litter size.
Many mitochondrial tRNA mutations in human were

reported to be associated with wide range of pathological

Table 2 Haplotypes constituted by mitochondrial non-synonymous mutations in multiple levels and significant effects on litter size

Functional haplotypea Contained gene Contained mutation number Haplotype number Significanceb

H ND1, ND2, ND4L, ND4, ND5, ND6, COII, COIII, ATP6,
12SrRNA, 16SrRNA, tRNA-Tyr, tRNA-Lys, tRNA-His, tRNA-Ser

31 44 ns

H-ETC ND1, ND2, ND4L, ND4, ND5, ND6, COII, COIII, ATP6 19 35 ns

H-MRCI ND1, ND2, ND4L, ND4, ND5, ND6 15 33 ns

H-MRCIV COII, COIII 2 3 ns

H-MRCV ATP6 2 3 ns

H-ND4L ND4L 2 4 ns

H-ND4 ND4 2 4 ns

H-ND5 ND5 2 3 ns

H-ND6 ND6 7 10 ns

H-ATP6 ATP6 2 3 ns

H-12SrRNA 12SrRNA 3 4 ns

H-16SrRNA 16SrRNA 5 15 ns
aThe general haplotype (H) was assembled by all non-synonymous mutations to reflect the integrated characteristics of mtDNA coding regions. Subsequently, the
ETC based haplotype (H-ETC) represented the general feature of all ETC-contained mtDNA sequences. The MRC based haplotype (H-MRC) inferred the integrated
signal of particular MRC-contained mtDNA sequences. Here, H-MRC included three types, i.e. MRC-I, MRC-IV and MRC-V. The last was the gene-level haplotype
(H-gene), which indicated the information of a particular gene-contained mtDNA sequence
bWhen a set of statistical inferences were simultaneously considered, multiple comparisons were conducted by the FDR using the R project. “ns” represents “not
significant”, and “*” represents “significant” at the significant level of 0.05

Table 3 Effects of BMPR1B on litter size

Genotype Ewe number Parity number Litter size (Means)1

++ 18 69 1.4638a

B+ 87 285 1.7474b

BB 12 47 2.1915c

1“Means” represents the arithmetic average on litter size of sheep with the
genotype. The FDR method was used to conduct multiple comparisons, and
means with different lowercase letters are different at the significant level
of 0.05
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conditions [26], for example, deafness was correlated
with mitochondrial tRNA-Asp A7551G mutation [27],
hypertension was associated with mitochondrial tRNA-
Ile A4263G mutation [28], and mitochondrial tRNA mu-
tations might decrease in carcinoma hepatocyte [29]. In
sheep, A7755G in tRNA-Lys was reported to affect litter
size in an Afec-Assaf flock [10], while our study revealed
that T7719G in tRNA-Lys was significantly associated
with ewe litter size in Small-tailed Han sheep, with the
means of 1.79 and 1.50 for the G and T carriers, mani-
festing a difference of 0.29 lambs per litter. Furthermore,
the mutation was predicted to produce a transversion of
U to G at DHU loop on 2D cloverleaf of the tRNA-Lys
structure (Fig. 2).

Conclusions
As a conclusion, we summarize the research proce-
dures for mtDNA effects. Firstly, sweeping mitochon-
drial variations on maternal lineages; secondly,
constituting the haplotype, haplogroup and assembled
haplotypes; lastly, analyzing the association between
mtDNA mutations (individual mutations, haplotypes
and haplogroups) and interested traits. The present
study discovered the mtDNA T7719G was linked with
ewe litter size. For traits of low heritability, the
marker assisted selection could increase the accuracy
of breeding and selection. For the further study, the
mtDNA T7719G should be put into post-association
validation, and may become a genetic marker in the
sheep breeding programs.
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Table S3. The haplotype constituted by the 31 mitochondrial non-
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respiratory complex contained sequences (H-MRCI, H-MRCIV, and H-MRCV).
Table S6. Assembled haplotypes of protein coding genes (H-ND4L, H-ND4,
H-ND5, H-ND6, H-ATP6). Table S7. Assembled haplotypes of rRNA coding
genes (H-12SrRNA, H-16SrRNA). Table S8. Statistics for the number of
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tRNA-Lys and corresponding effects on litter size. (XLSX 33 kb)
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