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Expression of genes involved in
progesterone receptor paracrine signaling
and their effect on litter size in pigs
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Abstract

Background: Embryonic mortality during the period of implantation strongly affects litter size in pigs. Progesterone
receptor (PGR) paracrine signaling has been recognized to play a significant role in embryonic implantation. /HH,
NR2F2, BMP2, FKBP4 and HAND?2 were proved to involve in PGR paracrine signaling. The objective of this study was
to evaluate the expression of |HH, NR2F2, BMP2, FKBP4 and HAND2 in endometrium of pregnant sows and to further
investigate these genes’ effect on litter size in pigs. Real-time PCR, western blot and immunostaining were used to

polymorphisms (SNPs) of target genes.

sows with genotype CC tend to have higher litter size.

Keywords: Expression, Implantation, Litter size, Pigs, SNPs

study target genes/proteins expression in endometrium in pigs. RFLP-PCR was used to detect single nucleotide

Results: The results showed that the mRNA and protein expression levels of IHH, NR2F2 and BMP2 were up-regulated
during implantation period (P < 0.05 or P < 0.01). All target proteins were mainly observed in luminal epithelium and
glandular epithelium. Interestingly, the staining of NR2F2 and HAND2 was also strong in stroma. SNPs detection
revealed that there was a -204C > A mutation in promoter region of NR2F2 gene. Three genotypes were found in Large
White, Landrace and Duroc sows. A total of 1847 litter records from 625 sows genotyped at NR2F2 gene were used to
analyze the total number born (TNB) and number born alive (NBA). The study of the effect on litter size suggested that

Conclusions: These results showed the expression patterns of genes/proteins involved in PGR paracrine signaling over
implantation time. And the candidate gene for litter size was identified from genes involved in this signaling. This study
could be a resource for further studies to identify the roles of these genes for embryonic implantation in pigs.

Background

Most reproductive traits are complex in terms of their
genetic architecture [1]. Litter size is one of the most
important economical traits in pig production. But as a
quantitative trait, the heritability of litter size is low
(0.1-0.15) [2]. Also litter size cannot be measured until
the age of sexual maturity. However, these biological
constraints can be potentially ameliorated by a better
knowledge of the genetic regulation of litter size, which
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will lead to new tools to implement gene and/or marker
assisted selection [3].

Implantation process is one of the important factors
that affect litter size in pigs, owing to the high embry-
onic mortality during this stage. Due to the significant
role that progesterone receptor (PGR) plays in preg-
nancy [4-7], paracrine signaling initiated by PGR within
the uterine microenvironment during implantation
period promotes implantation of conceptus and also
promotes the development and maintenance of gestation
[8, 9]. It has been proved that during early stage of preg-
nancy the function of PGR can be successfully transmit-
ted through HH-NR2F2 signaling axis. Indian hedgehog
(IHH), which was identified as an acute PGR target gene
[10], is a known member of the hedgehog (HH) signaling
pathway. The HH signaling pathway has been demonstrated
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to be critical for embryonic development, which operates in
an epithelial to mesenchymal manner within the uterus
(reviewed in [11]). NR2F2 (nuclear receptor subfamily 2,
group F, member 2) has been identified to be a critical regu-
lator in cell differentiation and tissue development as well
as angiogenesis and metabolism (reviewed in [12]). IHH
and NR2F2 interaction works as HH-NR2F2 axis, which
plays a role in transducing an epithelial to stromal signal
that initiates embryonic implantation and subsequently
decidualization. BMP2 (bone morphogenetic protein 2) and
FKBP4 (FK506 binding protein 4) worked as down-stream
target genes of HH-NR2F2 axis, which were necessary and
sufficient for implantation and decidualization. BMP2 acts
via a paracrine mechanism to initiate decidualization after
embryonic implantation, and also plays a fundamental role
in preparing the epithelium for implantation through the
regulation of Fkbps and Wnt ligands. HAND?2 is a basic
helix-loop-helix (bHLH) transcription factor and a known
downstream target of PGR. HAND? is a critical mediator
between active paracrine signaling by PGR signaling
and the inhibition of estrogen-induced proliferation
within the epithelium, which is critical for embryonic
implantation.

Therefore, PGR paracrine signaling is critical for em-
bryonic implantation. Porcine embryos begin to attach
to the uterus on pregnancy day 13 and 14, and implant-
ation completes from pregnancy day 18 to day 24 [13].
In this research, we detected the expression level of the
genes/proteins involved in PGR paracrine signaling, in-
cluding IHH, NR2F2, BMP2, FKBP4 and HAND?2, in the
endometrium on d 13, 18 and 24 of gestation in pigs.
SNPs of these genes were detected and the association
between the polymorphism and litter size in Large
White, Landrace and Duroc pigs was analyzed. The re-
sults will provide information towards a better under-
standing of PGR paracrine signaling, which regulates
implantation and subsequently affect litter size in pigs.

Methods

Animal materials

The Animal Care and Use Committee of China Agricul-
tural University reviewed and approved the experimental
protocol used in this study (Code: SYXK (Jing) 2009-
0030). Multiparous Large White sows (5™ parity) were
observed daily for standing heat in the presence of a
boar. The sows of the pregnant groups (three groups,
three sows each group) were inseminated twice, 12 h
and 24 h after heat detection, respectively [14]. The sows
of the non-pregnant group (three sows) were treated
with inactivated sperm from the same boar [14]. Preg-
nant sows were slaughtered by electrocution on d 13, 18
and 24 after insemination. Samples of the endometrium
attachment sites and inter-sites were taken. Samples
were taken from three locations of each uterine horn:
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proximal (the end, close to the ovaries), medial, and dis-
tal (next to the corpus uteri) [14]. Non-pregnant sows
were slaughtered on d 13 after insemination. Samples
were taken from the comparable locations. Endometrial
tissue sampling was carried out according to the proced-
ure of Lord, with minor modifications [15]. The samples
used for real time PCR and western-blot were collected
immediately, snap frozen in liquid nitrogen and stored
at —80 °C. The samples used for immunohistochemistry
were collected and placed in a tube containing pre-
cooling paraformaldehyde solution (4 %, pH=7.4) and
placed on a rocker overnight for fixation of the tissue.
Once the period of fixation was finished, the tissue was
rinsed in PBS, and then processed through a series of
ethanol washes to displace the water. Then the tissue
was infiltrated with and embedded in paraffin. Paraffin-
embedded tissues were sliced at 5 um thickness using a
microtome (Leica2016, Germany).

Animals used to identify candidate genes for litter size
were from Beijing Huadu Swine Breeding Company
LTD. All sows were reared and feed in the same condi-
tion. Ear tissue samples of 625 Large White, Landrace
and Duroc sows were collected in centrifuge tubes
(1.5 mL) with 70 % ethanol and stored at 4 °C until
DNA extraction. DNA was extracted by phenol and
chloroforms (1:1) extraction. There are eight sire fam-
ilies in Large White, eight sire families in Landrace, and
seven sire families in Duroc sows. 1847 litters’ records
were used for statistical analysis. Litter size records such
as total number born (TNB) and number born alive
(NBA) were recorded by parity.

RNA isolation and real time quantitative PCR
Trizol reagent (Invitrogen, Carlsbad, CA, USA) was used
to extract total RNA, according to the manufacturer’s in-
structions. For each animal, total RNA consisted of a
mix of an equal quantity of total RNA from three loca-
tions of each uterine horn: proximal (the end, close to
the ovaries), medial, and distal (next to the corpus uteri).
For each sample, first strand ¢cDNA was synthesized
using 1 pg of total RNA. M-MLV FIRST STRAND KIT
(Invitrogen, Shanghai, China) and oligo (dT)18 primer
were used in a total of 20 pL reverse transcription reaction
following the supplier’s instruction. Transcript specific
primer pairs (see Additional file 1: Table S1) were designed
with Oligo 6.0 software. Standard PCRs on ¢cDNA were
carried out to verify amplification sizes. Transcript quanti-
fication was performed using SYBR Green mix (Roche
Diagnostics GmbH, Roche Applied Science, Mannheim,
Germany) in a Roche LightCylcer 480 (Roche Diagnostics
GmbH, Roche Applied Science, Mannheim, Germany).
The RT-PCR reactions were prepared in a total volume of
20 pL containing 5 puL of ¢cDNA (50 ng, 1:100 dilution),
10 pL of SYBR Green mix, 3 puL water which contained in
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the kit and 0.02 pmol/L of both forward and reverse gene
specific primers. Glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH) served as the internal reference gene. Cyc-
ling conditions were 95 °C for 10 min, followed by
45 cycles of 95 °C (10 s) and 60 °C (10 s) where the fluores-
cence was acquired. Finally, a dissociation curve to test
PCR specificity was generated by one cycle at 95 °C (10s)
followed by 60 °C (1 min) and ramp up to 95 °C with ac-
quired fluorescence during the ramp to 0.2 °C/s. PCR effi-
ciency of each gene was estimated by standard curve
calculation using four points of cDNA serial dilutions. Ct
values were transformed to quantities using the compara-
tive Ct method, setting the relative quantities of non-
pregnant group for each gene to 1 (Qzy = 10-ACt/slope).
Data normalization was carried out using GAPDH as the
reference gene. Comparisons of genes expression levels
were done using a t-test.

Western-blot

Frozen sections of endometrial samples were prepared
and western blotting was performed as previously de-
scribed with minor modification [16]. Tissues protein
was extracted (0.05 mol/L Tris—HCI, NaCl 8.76 mg/mL,
1 % TritonX-100 and 100 pg/mL PMSF) (Sunbio, China)
by vortex meter (Kylinbell, China). Total protein con-
centrations were detected using the BCA Protein Assay
Kit (Sunbio, China) according to the manufacturer’s
recommendations.

Sample 80-120 pg was separated in a 10 % Tris—HCI
polyacrylamide gel in electrophoresis system (Liuyi,
China), and protein from the gel was transferred onto a
single PVDF membrane (BioRad, USA). After rinsed in
TBST for 5 min at room temperature (RT), the membrane
was soaked in 5 % skim milk (in TBST) for 1 h. Next, the
membrane was immerged into specific dilution (IHH,
Santa Cruz Biotechnology, Inc., sc-13088, 1:100; NR2F2,
Abcam (Hong Kong) Ltd., ab50487, 1:100; BMP2, Abcam
(Hong Kong) Ltd., ab14933, 1:100; FKBP4, Abcam
(Hong Kong) Ltd., ab97306, 1:150; HAND?2, Biobyt,
orb36304, 1:100;B-Actin 1:200) of the primary anti-
body at 4 °C overnight. After rinsed in TBST for 5 min
three times at RT, the membrane was immerged into
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1:1000 dilution of the secondary antibody (HRP)
(Santa Cruz, USA) for 1 h, and then rinsed in TBST
for 5 min three times at RT. Finally, the membrane
was colored using the DAB kit (Invitrogen, USA) and
exposed using Chemiluminescence Detection Kit for
HRP (Sunbio, China). Scanned images were quantified
using Image J analysis software.

Immunohistochemistry

Sows endometrial slides were subjected to immunohisto-
chemical analysis with immunostaining kit, Histostain-Plus
Mouse Primary (Invitrogen, USA) according to the manu-
facturer’s recommendations. After being washed in PBS,
the sections were incubated with 10 % horse serum (Invi-
trogen, USA) at RT for 30 min. The washed sections were
then reacted with primary antibodies (rabbit polyclonal to
IHH, Santa Cruz Biotechnology, Inc., sc-13088; rabbit
polyclonal to NR2F2, Abcam (Hong Kong) Ltd., ab50487;
rabbit polyclonal to BMP2, Abcam (Hong Kong) Ltd,
ab14933; rabbit polyclonal to FKBP4, Abcam (Hong Kong)
Ltd., ab97306; rabbit polyclonal to HAND?2, Biobyt,
orb36304; mouse monoclonal tof-Actin, Santa Cruz Bio-
technology, Inc., sc-81178) at 4 °C overnight. Followed by
incubation with biotinylated second antibody (Invitrogen,
USA) at 37 °C for 25 min, and after being washed in PBS
for 15 min three times, the sections were incubated with
streptavidin-peroxidase (HRP) (Invitrogen, USA) at 37 °C
for 25 min. Finally, the slides were washed with PBS and
stained with DAB kit (Invitrogen, USA). After being
washed fully with water for 5 min, the slides were stained
with hematoxylin and eosin, and then examined by micro-
scope (BH2, Olympus). Instead of primary antibodies, PBS
was used as a negative control. Endometrial tissues of non-
pregnant sows were used as positive control [17]. ImagePro
Plus software was used to measure the level of staining.
The gray value of the portion of the picture without tissue
was set as 0 to correct the background. Scoring of staining
was carried out according to the procedure of Constantine
A. Axiotis (1991), with minor modifications [18]. Expres-
sion of target protein was determined by assessing the
staining intensity and the percentage of stained cells. The
staining intensity was rated as follows: weak staining

Table 1 The mRNA level of target genes in the endometrium during implantation (M +S.D.)

Target Non- D 13 of pregnancy D 18 of pregnancy D 24 of pregnancy

pregnant Attachment sites Inter-sites Attachment sites Inter-sites At sites Inter-sites
PGR 101+ 0.25% —-233+001 —~131+0.21 —260+0.21 —212+0.16 -1034+0.16° —3.94 + 0.06°
IHH 1.05 +0.33° 134+034 267+071° 212+071° 3.92 +1.48° 348 +1.58° 260+067°
NR2F2 102+0.18" 3.80+0918 477 +099 8 44240178 532+073 8 6.18+1.75°8 218+ 064
BMP2 1.02+0.18% 24140198 36140508 454+094 8 45740978 361+£152° 390+£1.70®
FKBP4 102+021 4 1794039 150+ 0.52 0.63+0.19 099 +0.15 0.35+008 ® 0.76 +0.21
HAND?2 107+0.14 ° 1.83+033 209+ 050 293+083° 298+087° 108+0.16 1.11+0.16

a, b P<0.05 A BP<0.01
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Fig. 1 The protein relative abundance of target proteins in
endometrium of sows. Note: NP, endometrium of non-pregnant
sows; D13a, endometrial attachment sites on d 13 of gestation;
D13b, the endometrial inter-sites on d 13 of gestation; D18a, endo-
metrial attachment sites on d 18 of gestation; D13b, the endometrial
inter-sites on d 18 of gestation; D24a, endometrial

attachment sites on d 24 of gestation; D24b, the endometrial inter-
sites on d 24 of gestation

(score = 1), moderate staining (score = 2), strong staining
(score =3). The percentages of positive cells was calcu-
lated using ImagePro plus. This formula was used to cal-
culated the final score: Y(percentage of positive cells)*
(score of positive staining). Average of five different areas
per picture was recorded. According to the final score, the
protein expressed as follows: <1.0, weak, 1.0-1.5, moder-
ate; >1.5, strong.

Detection of SNPs and litter size association analysis

DNA was extracted by phenol and chloroforms (1:1) stand-
ard techniques. 18 PCR primer pairs (see Additional file 2:
Table S2) were designed to detect SNPs of target genes.
PCR amplifications were carried out on an Eppendorf
Mastercycler gradient 5331 PCR System (Eppendorf,
Germany). The polymerase chain reaction amplification
was performed using 50-100 ng of genomic DNA, 25 pL
Taq PCR MasterMix (Taqg DNA Polymerase: 0.05 units/pL;
MgCly: 4 mM/pL; dNTPs: 0.4 mM/pL), 10 pM of
each primers in a 50 pL final volume. All reagents
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Fig. 2 Immunhistochemical localization of IHH in pig uterus.

GE = glandular epithelium; LE = luminal epithelium; S = stroma.

a Negative control; b Immunohistochemical staining of non-
pregnanct sows uterus with IHH antibody; ¢ Immunohistochemical
staining of porcine uterus attachment site with IHH antibody on d
13 of pregnancy; d Immunohistochemical staining of porcine uterus
inter-site with IHH antibody on d 13 of pregnancy;
e Immunohistochemical staining of porcine uterus attachment
site with IHH antibody on d 18 of pregnancy; f Immunohistochemical
staining of porcine uterus inter-site with IHH antibody on d 18 of
pregnancy; g Immunohistochemical staining of porcine uterus attachment
site with IHH antibody on d 24 of pregnancy; h Immunohistochemical
staining of porcine uterus inter-site with IHH antibody on d 24

Table 2 The protein relative abundance of target proteins in endometrium of sows

Target Non- D 13 of pregnancy D 18 of pregnancy D 24 of pregnancy

pregnant Attachment sites Inter-sites Attachment sites Inter-sites Attachment sites Inter-sites
IHH 028+0.10™ 033015 048+0.11 048+0.11° 1.00+£002° 1.03+021° 072003
NR2F2 0.89 +0.08 0.71+£0.05 0.99+0.10 1.09+0.02 1.15+0.06 1.16+0.07 1.11+£0.06
BMP2 037+0.14° 0.77+0.13° 058+001° 038+0.10 044 £0.11 033019 040+0.21
FKBP4 0.57+£0.14 066+0.16 1.00+0.20 045+0.19 0.66 +0.21 063+0.18 0.84+0.16
HAND2 061+003" 073+003° 0714001 0574006 078+001° 082+003° 087+005°

a, b P<0.05 A BP<0.01
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Fig. 3 Immunhistochemical localization of NR2F2 in pig uterus.
GE = glandular epithelium; LE = luminal epithelium; S = stroma.

a Negative control; b Immunohistochemical staining of non-pregnanct
sows uterus with NR2F2 antibody; ¢ Immunohistochemical staining of
porcine uterus attachment site with NR2F2 antibody on d 13 of
pregnancy; d Immunohistochemical staining of porcine uterus inter-site
with NR2F2 antibody on d 13 of pregnancy; e Immunohistochemical
staining of porcine uterus attachment site with NR2F2 antibody on
d 18 of pregnancy; f Immunohistochemical staining of porcine
uterus inter-site with NR2F2 antibody on d 18 of pregnancy; g
Immunohistochemical staining of porcine uterus attachment site
with NR2F2 antibody on d 24 of pregnancy; h Immunohistochemical
staining of porcine uterus inter-site with NR2F2 antibody on d 24

of pregnancy

were collected from the National Laboratories for
Agrobiotechnology, China Agricultural University. The
following conditions of PCR amplification were used:
a denaturation step at 95 °C for 4 min, 30 cycles at
95 °C for 30 s, 52 °C~55 °C for 30 s, and 72 °C for
30 s~1 min 30 s, a final extension step of 72 °C for
10 min. Amplified fragments were separated by 1.5 %
agarose gel electrophoresis (AGE).

Using pooled DNA amplification and sequencing,
several mutations were found. Mutation -204C > A in
promoter region of NR2F2 gene caused the deletion of
transcription factor binding sites (TFBS) CREB (cAMP-
response-element-binding protein).

A Control  20x
;g‘.‘v 2

R TTEW ]

Fig. 4 Immunhistochemical localization of BMP2 in pig uterus. GE =
glandular epithelium; LE = luminal epithelium; S = stroma. a Negative
control; b Immunohistochemical staining of non-pregnanct sows
uterus with BMP2 antibody; ¢ Immunohistochemical staining of porcine
uterus attachment site with BMP2 antibody on d 13 of pregnancy;

d Immunohistochemical staining of porcine uterus inter-site with BMP2
antibody on d 13 of pregnancy; e Immunohistochemical staining of
porcine uterus attachment site with BMP2 antibody on d 18 of
pregnancy; f Immunohistochemical staining of porcine uterus inter-site
with BMP2 antibody on d 18 of pregnancy; g Immunohistochemical
staining of porcine uterus attachment site with BMP2 antibody on d 24
of pregnancy; h Immunohistochemical staining of porcine uterus

inter-site with BMP2 antibody on d 24 of pregnancy

NR2F2 was selected to be the candidate gene for
litter size based on its mRNA/protein expression level
during embryonic implantation period and the muta-
tion found in promoter region. PCR- Restriction frag-
ment length polymorphism (PCR-RFLP) was used to
detect different genotypes. Haelll (NEB RO108L,
BioLabs Inc.) was used. The PCR products of three
genotypes were random selected and sequenced to
validate the results.

Alleles and genotypes frequencies of NR2F2 were
calculated from the 625 sows, respectively. GLM proced-
ure of SAS 8.02 software was used to compute the least
square means of TNB and NBA. According to the
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Fig. 5 Immunhistochemical localization of FKBP4 in pig uterus. GE =
glandular epithelium; LE = luminal epithelium; S = stroma. a Negative
control; b Immunohistochemical staining of non-pregnanct sows
uterus with FKBP4 antibody; ¢ Immunohistochemical staining of porcine
uterus attachment site with FKBP4 antibody on d 13 of pregnancy;

d Immunohistochemical staining of porcine uterus inter-site with FKBP4
antibody on d 13 of pregnancy; e Immunohistochemical staining of
porcine uterus attachment site with FKBP4 antibody on d 18 of pregnancy;
f Immunohistochemical staining of porcine uterus inter-site with FKBP4
antibody on d 18 of pregnancy; g Immunohistochemical staining of
porcine uterus attachment site with FKBP4 antibody on d 24 of
pregnancy; h Immunohistochemical staining of porcine uterus
inter-site with FKBP4 antibody on d 24 of pregnancy

analysis, the effect of sire and dam on litter size was not
significant, so the following linear model was used to
analyze the genotype effect of NR2F2.

Yijkl = p + HYSi + Pj + Gk + eijkl

Where Yjq is the traits of TNB and NBA, u is the
overall mean, HYS; is the effect of herd-year-season (i =
1 to 52), P; is the effect of parity (j =1, 2, 23 and all par-
ities), Gy is the effect of genotype (k=1 to 3) and ey is
the random residual. The data was analyzed separately
for the first parity, the second parity, the third and fol-
lowing parities, and all parities. The additive effect and

'd Y 'd
A Control\tiox . B Non- regnantv 20x=
e A “ - A e/

20

B R 1

Fig. 6 Immunhistochemical localization of HAND2 in pig uterus. GE =
glandular epithelium; LE = luminal epithelium; S = stroma. a Negative
control; b Immunohistochemical staining of non-pregnanct sows
uterus with HAND2 antibody; ¢ Immunohistochemical staining of porcine
uterus attachment site with HAND2 antibody on d 13 of pregnancy; d
Immunohistochemical staining of porcine uterus inter-site with
HAND2 antibody on d 13 of pregnancy; e Immunohistochemical
staining of porcine uterus attachment site with HAND2 antibody
on d 18 of pregnancy; f Immunohistochemical staining of porcine
uterus inter-site with HAND2 antibody on d 18 of pregnancy; g
Immunohistochemical staining of porcine uterus attachment site with
HAND?2 antibody on d 24 of pregnancy; h Immunohistochemical
staining of porcine uterus inter-site with HAND2 antibody on d 24

of pregnancy

the dominant effect were calculated according to the
methods of Rothschild et al. [19].

Results

mRNA expression in porcine endometrium

The effect of the day of pregnancy on mRNA expression
of [HH, NR2F2, BMP2, FKBP4 and HAND?2 in sows’
endometrium during implantation period was shown in
Table 1. In pregnant sows, the expression of IHH was
significantly higher than that of non-pregnant sows on d
18 and d 24 of pregnancy (P <0.05) (Table 1). The ex-
pression of IHH in attachment sites showed an uptrend.



Chen et al. Journal of Animal Science and Biotechnology (2016) 7:31 Page 7 of 13
Table 3 The expression of different position of target proteins in endometrium of sows
Target Non-pregnant D 13 of pregnancy D 18 of pregnancy D 24 of pregnancy
Attachment sites Inter-sites Attachment sites Inter-sites Attachment sites Inter-sites

GE LE S GE LE S GE LE S GE LE S GE LE S GE LE S GE LE S
IHH ++ o+ =+ ++ + ++ o+ =+ ++ + =+ o+ o+ ++ ++ + ++ o+ *
NR2F2  ++ ++ £ ++ ++ + ++ o+ + e S T = i A = = = i i = =
BMP2 ++ o+ £+t ++ + ++ o+ £+t ++ + ++  ++ ++ ++ + ++ o+ *
FKBP4 ++ =+ ++ + ++ o+ =+t ++ + ++  ++ * ++ ++ + ++  ++ £
HAND2  ++ ++ + ++ ++ + ++ o+ + ++ o+ ++ 4+ o+ ++ o+ o+ ++ o+ o+

GE glandular epithelium; LE luminal epithelium; S stroma
+ weak; +moderate; ++strong

This was consistent with the expression of NR2F2 which
was significantly up-regulated during implantation time.

The expression of BMP2 was significantly up-regulated
(P<0.05 or P<0.01) during implantation time (Table 1),
which was consistent with I[HH and NR2F2. For FKBP4, at
attachment sites, the expression of FKBP4 was signifi-
cantly down-regulated on d 24 of pregnancy (P<0.01)
(Table 1). The expression of HAND2 was the highest
on d 18 of pregnancy (P <0.05) (Table 1).

Protein expression in porcine endometrium

The protein expressions of IHH, NR2F2, BMP2, FKBP4
and HAND?2 in the porcine endometrium during the em-
bryonic implantation period were shown in Fig. 1 and
Table 2. The protein expression of IHH was significantly
up-regulated on d 18 and d 24 of pregnancy (P < 0.05 or P
<0.01) (Fig. 1 and Table 2), which was similar to its
mRNA expression. The protein expression of BMP2 was
higher on d 13 of pregnancy (P < 0.05) (Fig. 1 and Table 2).
For the protein expression of FKBP4, there was not
significantly difference between pregnant groups and non-
pregnant group (Fig. 1 and Table 2), which was not
consistent with its mRNA expression pattern. The protein
expression of HAND2 was higher in pregnant sows
(P<0.01) (Fig. 1 and Table 2), except at attachment
sites on d 18 of pregnancy.

Table 4 Location and type of nucleotide mutation of target

genes
Target  Location  Exon/Intron  Mutation  Type
NR2F2 =204 bp  5-promoter C>A N
BMP2 9619 bp  Exon3 G>A Synonymous mutation
FKBP4 2198 bp  Intron 1 C>T N
2203 bp  Intron 1 G>A N
2375 bp  Intron 2 A>G N
2949 bp  Exon3 A>T Synonymous mutation
6086 bp  Intron 8 C>T N
6163 bp  Exon 9 C>T Synonymous mutation
6233 bp  Exon 9 T>C Synonymous mutation

Protein localization in porcine endometrium

During implantation period, IHH, NR2F2, BMP2, FKBP4
and HAND2 were observed in luminal epithelium and
glandular epithelium (Figs. 2, 3, 4, 5, 6). In stroma, the
staining of BMP2 and FKBP4 were weak, but the staining
of NR2F2 and HAND2 was strong (Figs. 2, 3, 4, 5, 6). The
result was summarized in Table 3.

Detection of SNPs of target genes and association
analysis

After analysis samples of 625 sows, several mutations
were found (Table 4). Mutation -204C > A in promoter
region of NR2F2 gene was found, and this mutation
caused the deletion of TFBS CREB (Fig. 7). Synonymous
mutation 9619G > A in exon 3 of BMP2 gene was found
(Table 4). Seven mutations in FKBP4 gene were found,
but no one is missense mutation (Table 4).

NR2F2 was selected to be the candidate gene for litter
size based on its mRNA/protein expression level during
embryonic implantation period and the mutation found
in promoter region. PCR-RFLP was used to detect differ-
ent genotypes. The representative SNPs sequencing out-
put for genotypes were shown in Fig. 8. The genotype
frequencies and allele frequencies at each polymorphic
locus in Large White, Landrace and Duroc sows were
shown in Table 5. The genotype frequencies of AA, AC
and CC in large white were 0.388, 0.414, and 0.198. In
Landrace, the genotype frequencies were 0.088, 0.366,
and 0.546. In Duroc, the genotype frequencies were
0.358, 0.433, and 0.208. None of the three breeds was
found to be in Hardy-Weinberg equilibrium (HWE).

The data for TNB and NBA were observed for the first
parity, the second parity, the third and the following par-
ities and all parities. The least square means in Large
White, Landrace and Duroc were shown in Tables 6, 7
and 8. In Large White, in the first parity, the sows with
AA genotype had an advantage of 0.81 (P < 0.05) NBA per
litter over the sows with CC genotype. In the second par-
ity, the sows with CC genotype had an advantage of 1.76
(P<0.01) and 1.56 (P <0.01) TNB per litter over the sows
with AA and AC, respectively. NBA of CC genotype were
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A Transcription Human_IR- B Transcription Human_IR-
factor  sequence. From To Score. Strand tactor Sequence- From To Scores Strand
AML-1 CTGGCGGTC. 8 16.6.196. +. AML-1 CTGGCGGTC. 8 16 6.196 +.
CREB CCGGGTGGCGAC 160 27 T.184- +. Snail CGGGTG. 17 22.6.063 +.
Snail CGGGETG: 17. |22, 6.063. |+ Myf AAGCAGCAGCAG. 28+ 39 14.577 +
Myt AAGCAGCAGCAG: 28+ 39 14.577. +. Myt CAGCAGCAGCAG 31 42 86410 -~
Myt CAGCAGCAGCAG- 31+ 42, 8.641. - Myt CAGCAGCAGCAG. 31- 42, 14.747. +.
Myf CAGCAGCAGCAG. 31+ 42, 14.747. + Myf CAGCAGCAGCAG. 34 45 86410 -
Myf CAGCAGCAGCAG. 34. 45 8641 - Myt CAGCAGCAGCAG. 34 45 14.747 +.
Myf CAGCAGCAGCAG. 34 45 14.747. + Myf CAGCAGCAGCAC. 37 48. 10.659 +.
Myt CAGCAGCAGCAC. 37- 48 10.659 +.
Fig. 7 Change of transcription factor caused by mutation. a C at 204 bp; b A at 204 bp
A

of 0.99 (P<0.05) more piglets per litter than that of the
AA genotype. In the third and following parities, NBA sig-
nificantly increased for the CC genotype with 0.60 (P <
0.05) and 0.85 (P < 0.01) more piglets in comparison with
the AA and AC genotype, respectively. In all parities, the
sows with CC genotype had an advantage (P<0.05) of
0.89 and 0.64 for TNB per litter over the AA and AC
genotype sows, respectively. And NBA of CC genotype
were of 0.97 (P < 0.01) and 0.88 (P < 0.01) more piglets per
litter than that of the AA and AC genotype, respectively.

In Landrace, in the third and following parities, the
sows with CC genotype had an advantage of 0.53 for
TNB and 0.61 for NBA per litter over the sows with
AA genotype, and 0.53 for TNB over the sows with
AC genotype, but not significantly. In all parities,
TNB of genotype CC was 1.05 (P<0.05) piglets
higher than that of the AA genotype. And the sows
with the CC genotype had an advantage of 0.53 and
0.22 for NBA per litter over the sows with AA and
AC, but not significantly.

In Duroc, in the second parity, the sows with the CC
genotype had an advantage of 0.66 piglets (P < 0.05)
for TNB and 1.34 (P <0.05) piglets for NBA per litter
over the sows with AA genotype. In the third and
following parities, the sows with the CC genotype had

an advantage of 1.35 piglets (P<0.01) for TNB and
1.34 (P<0.05) for NBA per litter over the sows with
AA genotype.

Discussion

Expression of genes participated in paracrine signaling in
sows endometrium

The embryonic peri-implantation time of pigs is espe-
cially longer. During the peri-implantation period of
pregnancy, uterine LE and conceptus trophectoderm de-
velop adhesion competency in synchrony to initiate the
adhesion cascade within a restricted period of the uter-
ine cycle termed the “window of receptivity” [20-22]. In
pigs, this window is orchestrated through the actions of
progesterone and estrogen to regulate locally produced
cytokines, growth factors, cell surface glycoproteins, cell
surface adhesion molecules, and extracellular matrix
(ECM) proteins [23]. A fundamental paradox of early
pregnancy is that cessation of expression of PGR and
ESRI1 by uterine epithelia is a prerequisite for uterine re-
ceptivity to implantation, expression of genes by uterine
epithelia and selective transport of molecules into the
uterine lumen that support conceptus development.
Thus, effects of P4 are mediated via PGR expressed in
uterine stromal and myometrial cells by stromal cell

A

1 140 1
GGGGo GCa

AC CC CC AA AC AC AA AA AC AC

Fig. 8 PCR-RFLP results of swine NR2F2 gene and sequence image of the different genotypes. a Genotypes of the RFLP marker of PCR products;
b Sequence image of mutation -204C > A




Chen et al. Journal of Animal Science and Biotechnology (2016) 7:31 Page 9 of 13
Table 5 Number of alleles (n), allele and genotype frequencies of NR2F2, observed heterozygosity (h)
Breed Sows Genotype distribution Genotype frequencies Allele frequencies h

AA AC cC AA AC CcC A C
Large White 232 90 96 46 0.388 0414 0.198 0.595 0405 4.648
Landrace 273 24 100 149 0.088 0.366 0.546 0.271 0.729 1458
Duroc 120 43 52 25 0.358 0433 0.208 0.575 0425 1.542

derived growth factors known as “progestamedins” [24,
25]. As previous indicated, progesterone down regulated
the expression of PGR in the uterine epithelia of pigs
after d 10 of pregnancy, immediately prior to the time
when the endometrium becomes receptive to implant-
ation [26-28]. In pigs, down-regulation of PGR in uter-
ine epithelia is a prerequisite for the expression of genes
for uterine secretions and transport of molecules into
the uterine lumen that support conceptus development.
Down-regulation of PGR is associated with down-
regulation of mucinl (MUCI), as well as up-regulation
of the expression of secreted phosphoprotein 1 (SPPI)
and insulin-like growth factor binding protein 1
(IGFBPI). During conceptus elongation and the early
peri-implantation period, the endometrium increases the
release of a number of growth factors and cytokines
such as epidermal growth factor (EGF), insulin-like
growth factor-1 (IGF-1), fibroblast growth factor 7
(FGF?7), vascular endothelial growth factor (VEGF),
interleukin 6 (/L-6), transforming growth factor beta
(TGEFp), and leukemia inhibitory factor (LIF) [29, 30].
Some of these genes had been reported to have signifi-
cant effect on litter size in pigs, such as SPPI, VEGE
MUCI, LIF et al [1, 31-33].

PGR paracrine signaling has been recognized to play a
significant role in pregnancy in human and mouse,
which have not been studied in pigs [5]. IHH is a proges-
terone receptor target activated within the epithelium
which signals downstream to NR2F2 in the stroma es-
tablishing the HH-NR2F2 axis within the dual uterine
compartments. Strong evidence exists to propose a role
of a HH-NR2F2 axis in the regulation of reproduction
in human and mice [12, 34]. Identification of the signal-
ing pathway from stroma to epithelium would aid in the
understanding of how the stroma contributes to embryo
implantation. Changes in endometrial transcriptome
during early stages of conceptus attachment to uterine
LE in previous study showed that IHH regulated signifi-
cantly during pregnancy period in the pigs. In the
present study, compared with non-pregnant sows, the
mRNA and protein expression of [HH were up-
regulated during implantation. The expression of IHH in
bovine uterus had been studied. The result showed IHH
is modulated by progesterone in bovine uterus, and may
be required to be down-regulated to allow expression of
genes that drive conceptus elongation in cattle [35]. In

pigs, the conceptus elongated rapidly before d 13 of ges-
tation, and the filamentous conceptus continue to elong-
ate but slowly after d 13 of gestation. The expression of
IHH did not show significantly changed at d 13 of preg-
nancy in our result. It may be because the conceptus
elongate slowly after d 13 of pregnancy in pigs [36]. The
expression of NR2F2 was significantly up-regulated dur-
ing implantation time and the expression in attachment
sites showed an upward trend. This was consistent with
previous study, which found NR2F2 up-regulated in d 12
of gestation in Yorkshire pigs [37]. NR2F2 was shown to
activate hypoxia-inducible factor 1 alpha (HIF-1a) and
HIF-1 is an important mediator of estrogen-induced
VEGF expression in the uterus [38, 39]. They thought
that the expression of NR2F2 is associated with greater
activation of angiogenesis at the stage of implantation in
the Yorkshire breed [37]. The expression of IHH and
NR2F2 were consistent with their functional role in em-
bryonic implantation and also consistent with previous
studies [40-44]. It was reported that HH-NR2F2 axis
can transmit the paracrine signaling by PGR from epi-
thelium to stroma [42]. The protein localization of IHH
in porcine endometrium showed that IHH mainly ob-
served strongly in luminal epithelium and glandular epi-
thelium. NR2F2 was especially observed strongly in
stroma. This confirmed that HH-NR2F2 axis was im-
portant in mediating the signal from epithelial to other
effect or genes in the stroma.

BMP2, as a downstream gene of HH-NR2F2 axis, has
demonstrated to be a critical effector for decidualization
and the maintenance of pregnancy during post-
implantation. BMP2 likely acts as a paracrine signaling
factor for the initiation of the proliferative response after
embryonic implantation within the uterine stroma. In
the present study, the mRNA expression of BMP2 was
significantly up-regulated during implantation time,
which was consistent with the expression of I[HH and
NR2F2. In previous study, researchers found that BMP2
and BMP6 can significantly suppress progesterone pro-
duction in pigs in vitro [45]. So this was consistent with
our result, which showed BMP2 up-regulated along with
PGR down-regulated during implantation period. The
protein expression of BMP2 was significantly up-regulated
on d 13 of pregnancy, which demonstrated that BMP2
promotes implantation cooperated with IHH and NR2F2.
But on d 18 and 24, the expression did not regulate



Table 6 Effects of the NR2F2 polymorphism on total number born (TNB) and number born alive (NBA) in Large White (LS means + SE.)

Breed Genotype  First parity Second parity Third to ninth parity All parities
Litters ~ TNB NBA Litters  TNB NBA Litters  TNB NBA Litters  TNB NBA
Large White  AA 90 11.12+0.25 1033 +0.23% 60 11.10 £ 040" 10.21 +0.35° 144 11.078 £ 040 10.09 +0.35° 294 1099 + 032" 1023 +0.28"
AC 96 1143+0.25 10.59+0.24 66 1130+041" 1001 +£0.37 190 10.96 £ 040 984+ 036" 352 1124 +032" 1032+ 029"
cC 46 11724032 11.14+031° 26 128640555  1120+049° 93 1069+046  1069+041%° 165 1188+035°  1120+032°
Values with different superscripts show significant levels within columns: a, b P < 0.05, A, B P < 0.01
Table 7 Effects of the NR2F2 polymorphism on total number born (TNB) and number born alive (NBA) in Landrace (LS means +SEE)
Breed Genotype First parity Second parity Third to ninth parity All parities
Litters TNB NBA Litters TNB NBA Litters TNB NBA Litters TNB NBA
Landrace AA 24 11.02+032 1044 +0.31 1 1033+053 10.06 + 047 15 1068 +0.30 1024 +033 50 1062 +0.19° 10.13+023
AC 100 11.15+£025 1054 £0.25 52 10.85+0.39 10.25+034 78 11.19+£023 10.79+0.30 230 1098 £0.15 1044 £0.20
CcC 149 11.36+027 10.75+027 97 11.26+£045 10.76 £ 040 151 11.21+0.26 10.85+0.30 397 1167 +0.16° 10.66 £0.21
Values with different superscripts show significant levels within columns: a, b P < 0.05, A, B P < 0.01
Table 8 Effects of the NR2F2 polymorphism on total number born (TNB) and number born alive (NBA) in Duroc (LS means + S.E)
Breed Genotype First parity Second parity Third to ninth parity All parities
Litters TNB NBA Litters TNB NBA Litters TNB NBA Litters TNB NBA
Duroc AA 43 1043+£035 953+£0.37 21 10.88 +0.39% 9.87 + 035" 58 9.68 +0.34" 9.26 +0.39° 122 10.02+£0.20 930+0.24
AC 52 10.54 +£0.30 1007 +£032 36 11.12+0.39 9.98 +0.35" 103 1048 +0.25 997 +0.31 161 1021+0.16 9.63+£0.21
CcC 25 10.60+£043 10.10+£ 046 11 11.54+045° 10.81 + 0408 40 11.03 + 046" 1060 +0.4° 76 10.17£0.26 947 +£0.30

Values with different superscripts show significant levels within columns: a, b P < 0.05, A, B P<0.01
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significantly. It may be because decidualization did not
happen in pigs.

HAND?2 was another downstream target of PGR [8]. In
the stroma, HAND?2 plays an important role in the in-
hibition of the FGF pathway, a pathway known to be in-
volved in the promotion of epithelial proliferation by
estrogen signaling [8]. Therefore, HAND?2 is important
to inhibit the estrogen-induced epithelial proliferation in
the uterus [8]. The inhibition of epithelial proliferation
by PGR signaling was possibly via HH-NR2F2 axis. HH-
NR2F2 axis then activated HAND?2, which caused the in-
hibition of estrogen signaling and subsequent allowance
for proper embryonic implantation. In the present study,
the expression of mRNA and protein of HAND2 were
both up-regulated on d 13 of pregnancy. This may re-
lated with its inhibition of estrogen signaling, and fur-
ther more promoted the positive role of PGR in
implantation. In previous studies, HAND2 had been de-
tected up-regulated at implantation period and late ges-
tation period in pigs [31, 46]. The researchers find
HAND? related with receptivity of uterus and vascular
development of placenta [31, 46]. The mRNA of HAND?2
was up-regulated on d 18 of pregnancy, but the protein
expression was not. Maybe there is regulation mechan-
ism at translation level, which needs further research.
The protein localization in porcine endometrium
showed that HAND2 observed strongly in luminal epi-
thelium, glandular epithelium, and stroma. This indi-
cated that HAND?2 played an important role in transmit
the PGR signaling from epithelium to stroma.

The variations of NR2F2 and its association with litter size
Marker-assisted selection (MAS) in conjunction with
traditional selection methods is most effective for the
traits such as litter size, which are either expressed later
in life, are sex-dependent, or are of low heritability [47].
The candidate gene approach has led to notable success
in demonstrating reproduction-related genetic markers
or major genes, such as ESR, PRLR, the erythropoietin
receptor (EPOR) and so on [19, 48—50].

In the present study, we selected NR2F2 as the candidate
gene for litter size in pigs, due to its biological function
and the interesting mutation. Three genotypes were found:
AA, AC and CC. The association with litter size revealed
that CC genotype is the favorable genotype. Through ana-
lysis using Consite database (http://consite.genereg.net/cgi-
bin/consite?rm=t_input_single), the C— A mutation
caused deletion of TFBS CREB (Fig. 7). CREB has been
proved played an important role in activation of transcrip-
tion and regulation of gene transcription [51, 52]. The dele-
tion of CREB may affect the expression of NR2F2 in
porcine endometrium and stroma. The effect of NR2F2 on
litter size possibly associated with its expression in endo-
metrium during embryonic implantation. This certainly
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will affect the signal of PGR from endometrium to stroma,
in consideration of the PGR-IHH-NR2F2 axis. Subse-
quently, the embryonic implantation process and litter size
was affected.

Conclusions

In current research, the expression patterns of genes/
proteins involved in PGR paracrine signaling over im-
plantation time were studied. And candidate gene for
litter size was identified from genes involved in this
signaling. The present study could be a resource for
further studies to identify the roles of these genes for
embryonic implantation in pigs.
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