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Abstract

Establishment of embryonic stem cell (ESC) lines has been successful in mouse and human, but not in farm
animals. Development of direct reprogramming technology offers an alternative approach for generation of
pluripotent stem cells, applicable also in farm animals. Induced pluripotent stem cells (iPSCs) represent practically
limitless, ethically acceptable, individuum-specific source of pluripotent cells that can be generated from different
types of somatic cells. iPSCs can differentiate to all cell types of an organism’s body and have a tremendous
potential for numerous applications in medicine, agriculture, and biotechnology. However, molecular mechanisms
behind the reprogramming process remain largely unknown and hamper generation of bona fide iPSCs and their
use in human clinical practice. Large animal models are essential to expand the knowledge obtained on rodents
and facilitate development and validation of transplantation therapies in preclinical studies. Additionally, transgenic

animals with special traits could be generated from genetically modified pluripotent cells, using advanced
reproduction techniques. Despite their applicative potential, it seems that iPSCs in farm animals haven't received
the deserved attention. The aim of this review was to provide a systematic overview on iPSC generation in the
most important mammalian farm animal species (cattle, pig, horse, sheep, goat, and rabbit), compare protein
sequence similarity of pluripotency-related transcription factors in different species, and discuss potential uses

of farm animal iPSCs. Literature mining revealed 32 studies, describing iPSC generation in pig (13 studies), cattle (5),
horse (5), sheep (4), goat (3), and rabbit (2) that are summarized in a concise, tabular format.
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Background

Pluripotent stem cells are unspecialized cells that can
evolve to all cell types of an adult organism. Until 2006
they could be isolated only from inner cell mass of early
stage embryos. Embryonic stem cell (ESC) lines were
first established in mouse [1], and subsequently in
human from in vitro-derived embryos [2]. In contrast,
derivation of ESCs from embryos of farm animal spe-
cies was inefficient, probably due to limited knowledge
about the biology of the different species ESCs (e.g.
timing and isolation of primary cultures, recognition of
authentic ESC, and sustaining pluripotency and propa-
gation in culture) [3]. Germline transmission, as the
most stringent criteria of pluripotency, has been proved
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only for murine (mouse and rat) inner cell mas (ICM)-
derived ESCs, which are considered true (“naive”) pluri-
potent ESCs, whereas most human ICM-derived ESC
lines share more common characteristics with mouse
epiblast-derived stem cells (mEpiSCs), and are consid-
ered “primed” pluripotent stem cells (for a detailed
explanation see [4]).

For a long time it was believed that differentiation is a
one-way process and that fate of somatic cells is irre-
versible. The discovery that specialised somatic cells can
be reversed back to a non-differentiated state came sev-
eral decades ago when Gurdon [5] injected frog intes-
tinal epithelium cell nuclei into enucleated frog oocytes
and showed that normal feeding tadpoles can be devel-
oped from transferred somatic cell nuclei. Proof that re-
programming of mammalian cells is possible was
obtained with reproductive cloning of several species
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(e.g. sheep [6]; cattle [7]; goat [8]; pig [9]) via somatic
cell nuclear transfer (SCNT). Interestingly, generation of
nuclear transfer ESCs (NT-ESC) in human was not
possible for a long time; finally, human somatic cells
were successfully reprogrammed by SCNT, first resulting
in triploid pluripotent cells [10] and latter in normal
(diploid) NT-ESCs [11].

The use of embryos (especially human) for ESC
derivation faces ethical concerns and is subjected to
rigorous legal restrictions. Reprogramming somatic
cells by SCNT is technically challenging, laborious,
inefficient (especially in human), and requires the use
of oocytes. Reproductive cloning / nuclear transfer ex-
periments showed that oocytes obviously contain fac-
tors, which are able to reprogram committed cells.
Takahashi and Yamanaka identified these factors and
developed a method of direct reprogramming of som-
atic cells that was simple in principle and circum-
vented the need for embryo or oocyte manipulations
[12]. The so called induced pluripotent stem cells
(iPSCs) were generated from mouse embryonic fibro-
blasts by ectopic expression of only four (Yamanaka
set — OSKM: Oct4, Sox2, Klf4, and c-Myc) transduced
nuclear transcription factors [12]. Human iPSCs were
generated soon after, using a set of slightly different
(Thomson set - OSNL: OCT4, SOX2, NANOG, and
LIN28) transcription factors [13]. After introduction of
the direct reprogramming technology in mouse and
human iPSCs were established in various animal spe-
cies, using the same principle. Different combinations
of exogenous reprogramming factors and culture con-
ditions were used, dependent on donor cell type and/
or species. Insights from such cell reprogramming
experiments could provide missing biological informa-
tion about pluripotent cells in different species (e.g.
optimal conditions for propagation), which might even-
tually enable derivation and propagation of ICM-
derived ESC lines in farm animals.

Transcription factor-directed reprogramming en-
abled generation of ethically acceptable, individuum-
specific, pluripotent stem cells that can be derived
from different types of somatic cells, including in spe-
cies where ESC lines aren’t available. iPSCs closely re-
semble ESCs in their characteristics and represent
practically limitless source of pluripotent stem cells,
potentially available for autologous cellular therapies,
individuum-specific disease modelling and/or drug
screening, and research/testing purposes in medicine
and developmental biology. However, there are still
many obstacles to overcome. For example, researchers
found that numerous subtle but substantial genetic
and epigenetic differences exist between iPSCs and
ESCs [14], which delay the use of iPSCs for trans-
plantation therapies in human. First, it is necessary to
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assess survival potential, capability of functional inte-
gration into tissues, genetic stability, and absence of
tumorigenic potential in reprogrammed cells. Devel-
opment of animal models, which can be used for
preclinical research, is therefore of vast importance
[15]. Because of more similar body size, physiology,
and characteristics of pluripotent cells to human,
development of livestock and non-human primate
models seems essential to bridge the gap and enable
transfer of iPSCs-based therapy procedures, from ro-
dents (e.g. [16]) to the field of human medicine. For
example, preclinical demonstration studies were suc-
cessfully performed in non-human primates in heart
[17] and Parkinson’s disease treatment [18], and in
heart disease treatment in post-infarcted swine models
[19]. In addition to cell transplantation therapies,
interspecies chimeras (farm animals with genetically
engineered “organ niches”) could be used in the
future to make organs from human pluripotent stem
cells, using blastocyst or in utero conceptus comple-
mentation in organogenesis-disabled animals, for
treating patients that require whole organ replace-
ment [20]. However, interspecies complementation
has been shown only between mouse and rat [21,
22], whether chimera generation is possible between
more distantly related species, due to interspecies
boundaries, remained to be determined. Additionally,
existing non-rodent ESCs/iPSCs are mostly consid-
ered “primed” state pluripotent stem cells and thus
not capable of forming chimeras after blastocyst
injection.

Pluripotent stem cells are not promising only for
medical applications, but could found numerous uses in
biotechnology and agriculture. Advanced reproduction
techniques in farm animals could enable development
of genetically modified animals from engineered
pluripotent stem cells; SCNT is a method of choice
when producing transgenic farm animals [23] and
use of genetically engineered pluripotent stem cells
(i.e. ESCs or iPSCs capable of generating offspring
through nuclear transfer) as donor cells could simplify
and improve efficiency of the procedure, as already
shown in mice [24]. Transgenic animals could improve
agricultural production or be used as bioreactors for
production of recombinant proteins. For example,
anticoagulant antithrombin, the first marketed recom-
binant protein produced in transgenic animals [25], is
expressed in mammary tissue of genetically engi-
neered goats and isolated from their milk. In agricul-
ture, transgenic animals could improve human health
by enhanced nutrition value, help protect the environ-
ment, decrease livestock diseases, and increase animal
welfare [26]. Potential uses of iPSCs are depicted in
Fig. 1.
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Fig. 1 The most promising applicative uses of iPSCs include regenerative cell therapy, personalised disease modelling and drug screening, and
generation of transgenic animals from genetically engineered iPSCs that yet needs to be demonstrated in large farm animals. Some of the
symbols used in the figure are a courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science

(ian.umces.edu/symbols/)

Reviews on mechanisms and methods of cell repro-
graming in domestic animals have been published in
several articles (e.g. [27, 28]). In the follow up of this art-
icle we provide the most recent overview on achieve-
ments in iPSC generation in pig, cattle, horse, rabbit,
sheep, and goat. Additionally, we provide a compre-
hensive protein sequence similarity analysis of the
most important pluripotency transcription factors
(OSKM) between different farm animals, human, and
mice, and briefly discuss current trends in reprogram-
ming methodology.

Comparison of pluripotency-related transcription factors
between human, mouse, and farm animal species
Research has shown that human and murine tran-
scription factors can reprogram cells of different

mammalian species, as well as of non-mammalian
vertebrate and even invertebrate species, pointing to
high conservation of pluripotency-related signalling
network across a wide phylogenetic range [29]. The
cross-species reactivity of pluripotency-related tran-
scription factors, also between distantly related spe-
cies, indicates fundamentality of the reprogramming
principle in biological aspect. To determine conserva-
tion of transcription factors across the species of
interest we aligned GenBank protein (reference — if
available) sequences of the most widely used repro-
gramming factors (OSKM set) for human, mouse, and
the selected farm animal species (cattle, goat, sheep,
rabbit, horse, and pig) in ClustalW2 multiple se-
quence alignment tool (EMBL-EBIL: http://www.ebi.
ac.uk/Tools/msa/clustalo/). The identity matrices (data
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not shown) showed that OCT4 protein sequence is
the least conserved across the compared species, but
still exhibits high sequence similarity; i.e. over 89 %
between the farm animals and human and over 84 %
when mouse is included to the comparison. SOX2
protein sequence is the most conserved (over 95 %
identity in all the compared species), while KLF4
and MYC both exhibited over 90 % identity between
all the species. Sequence identity between the large
farm animals was around 95 % for all the transcrip-
tion factors, and reached 98-100 % identity between
closely related species (e.g. ruminants).

Human or mouse transcription factors are often used
for reprogramming animal cells, either because tran-
scription factor sequences are not available for animal
species with un/poorly- annotated genomes and/or
because vectors containing human or murine factors are
already (commercially) available. Based on the sequence
similarities, we suggest that human transcription factors
should be used over murine when reprogramming
cells of the farm animals (Table 1). However, empir-
ical evidences prove that murine transcription factors
can as well be successfully used for reprogramming
farm animal cells (e.g. in pig, horse, sheep — data
available in Table 2).

Current trends in reprogamming methodology

iPSCs were first generated using viral-based (mostly
lentiviruses and retroviruses) transduction of tran-
scription factors into the genome of donor cells. The
use of genome-integrating methods using viral trans-
duction remains a gold standard in iPSC generation.
However, new methods, which surmount genome in-
terventions (so-called “non-integrating techniques”)
are being extensively developed and evaluated. Several
articles describing reprogramming methods were pub-
lished in the last years and we recommend them
for further reading to readers interested in a more
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detailed review of the reprogramming methodology
(e.g. [30, 31]).

Current trends in reprogramming technology are
directed to integration- and feeder-free procedures;
the former preventing occurrence of insertional muta-
genesis and the latter contamination of donor cells
with murine feeders (xeno-free conditions). Inactivated
mouse embryonic fibroblast feeders are being replaced
by defined components of extracellular matrix, circum-
venting the need for co-culture. Non-integrating vec-
tors (e.g. adenoviruses, episomes), integrating vectors
exhibiting subsequent excision (e.g. piggyBac transpo-
sons), or direct input of small molecules, mRNA or
proteins into donor cells are being used to bypass
genome insertions. Alternatively, studies report that
(partial) dedifferentiation of mammalian somatic cells
is also possible by cell fusion [32] or addition of
extracts to the medium [33-37], however these
methods are highly inefficient and usually don’t result
in stable iPSC lines.

Recent reprogramming methods are focusing on
improving mRNA-based procedures [38], for example
by employing synthetic self-replicative RNA that cir-
cumvents the need for repetitive transfections [39].
With growing knowledge on reprogramming the re-
duction in number of ectopically expressed transcrip-
tion factors was achieved that largely depends on
donor cell type. In some cases cells were successfully
reprogrammed using ectopic expression of only one
transcription factor — for example, only OCT4 “mas-
ter gene” was sufficient to reprogram neural stem
cells [40]. Furthermore, it was shown that cells could
be reprogrammed without exogenous transcription
factors delivery, by using certain chemical compounds
that can substitute for transcription factors. At first,
such compounds were used in combination with
ectopic expression of transcription factors in order to
improve reprogramming efficiency or substitute for
some of the transcription factors, but usually at least

Table 1 Similarity (%) of OSKM protein sequences of different species to human and mouse (human/mouse)

Species OoCT4 SOX2 KLF4 c-MYC

Pig 93 /86 [NP_001106531] 99 /97 [NP_001116669] 96 /92 [NP_001026952] 93 /91 [NP_001005154]
Horse 947 / 86 [XP_001490158] 987 / 96" [ACJ12602] 947 / 91% [XP_005605741] 927 /917 [XP_001498041]
Rabbit 90 / 85 [NP_001093427] 987 / 99° [AJC97786] 96% / 927 [AJC97787) 947 / 927 [XP_008254124]
Sheep 91% / 847 [XP_004019017] 1007 / 987 [CAA65725] 96 / 93 [NP_001157691] 93 /92 [NP_001009426]
Cattle 91 / 84 [NP_777005] 100 / 98 [NP_001098933] 96 / 93 [NP_001098855] 92 /91 [NP_001039539]
Goat 91/ 84 [NP_001272498] 97 /96 [NP_001272601] 96" / 92° [XP_005684447] 92° / 92° [XP_005689000]
Human 100 / 86 [NP_002692] 100 / 98 [NP_003097] 100 / 92 [NP_004226] 90 / 100 [NP_002458]
Mouse 86 / 100 [NP_038661] 98 / 100 [NP_035573] 92 /100 [NP_034767] 100 / 90 [NP_034979]

The GenBank accession numbers are available in square brackets
“similarity is based on predicted or non-curated sequences
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Table 2 Summary of studies describing iPSC generation in the selected farm animal species
Species  Donor cell type Insertion method  Transcription  Culture conditions (growth surface; serum or serum replacements, Reference
factors® factors/inhibitors)®
Pig embryonic retroviral hOSKM and  iMEFs; defined FBS + bFGF [51]
fibroblast transduction mOSKM
fetal fibroblasts lentiviral hOSKM iMEFs; KOSR + bFGF [52]
transduction
ear fibroblasts and Tet-on-inducible hOSKMNL iMEFs; KOSR [53]
bone marrow lentiviral
cells transduction
mesenchymal lentiviral hOSKMNL iMEFs; KOSR + bFGF [45]
stem cells transduction
ear fibroblasts retroviral hOSKM iMEFs or gelatin; FBS and KOSR (1:1) + bFGF + LIF [54]
transduction
ear fibroblasts retroviral mSKM iMEFs or gelatin; FBS and KOSR (1:1) + bFGF + LIF [55]
transduction
embryonic Tet-on-inducible hOSKMN iMEFs; KOSR + bFGF [56]
fibroblasts lentiviral
transduction
fetal fibroblasts lentiviral hOSKM iMEFs; KOSR + bFGF [57]
transduction
fetal fibroblasts sleeping beauty mOSKM iMEFs or iSNLs or gelatin; KOSR + bFGF [58]
transposon system
embryonic retroviral hOSKM iMEFs; FBS and KOSR (1:1) + bFGF + LIF [59]
fibroblasts transduction
embryonic retroviral mMOSKM iMEFs; KOSR + bFGF or FBS + bFGF + LIF or FBS + bFGF + LIF + VPA [60]
fibroblasts transduction
mesenchymal retroviral pOK+small  iMEFs; KOSR or FBS + LIF [61]
stem cells transduction molecules
fetal fibroblasts episomal plasmid  hOSKMNL iMEFs; N-2 suppl. + B-27 suppl. + LIF + GSKi + MEKi [44]
Horse  fetal fibroblasts piggyBac mOSKM 50 % iMEFs and 50 % iEFFs; FBS + bFGF + LIF + GSKi + TGFi + TZV + ALK [49]
transposon system
fibroblasts retroviral hOSK iMEFs; FBS + ITS + EGF + bFGF + LIF [62]
transduction
skin fibroblasts retroviral mOSKM iSNLs; FBS or KOSR + bFGF and/or LIF [63]
transduction
keratinocytes retroviral mOSKM iSNLs; FBS + bFGF + LIF [64]
transduction
skin fibroblasts lentiviral hOSKM - reprogramming: Matrigel; ES-FCS + bFGF + LIF + GSKi + MEKi + TGFi + [65]
transduction ALKi
- putative iPSCs: iIMEFs; ES-FCS + LIF or ES-FCS + LIF + bFGF or ES-FCS +
LIF + bFGF + MEKi or ES-FCS + LIF + bFGF + PI3K/AKTi or ES-FCS + LIF +
bFGF + MEKi + PI3K/AKTi
Rabbit  liver and stomach lentiviral hOSKM iMEFs; KOSR + bFGF + LIF [66]
cells transduction
ear fibroblasts retroviral hOSKM iMEFs; KOSR + bFGF [67]
transduction
Sheep  embryonic retroviral hOSKM iMEFs; FBS + TS + bFGF + LIF [68]
fibroblasts transduction
ear fibroblasts Tet-on-inducible hOSKMNL +  iMEFs; KOSR [69]
lentiviral SV40 T+
transduction hTERT
fetal fibroblasts Tet-on-inducible mMOSKM iMEFs; KOSR or FBS + bFGF [70]
lentiviral
transduction
embryonic retroviral mOSKM iSNLs; KOSR + bFGF [71]

fibroblasts

transduction
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Table 2 Summary of studies describing iPSC generation in the selected farm animal species (Continued)
Cattle  fetal fibroblasts retroviral bOSKMNL iMEFs; KOSR + bFGF [72]
transduction
fetal fibroblasts lentiviral hOpSMK iMEFs; FBS + bFGF + LIF [73]
transduction
embryonic poly-promoter bOSKM iMEFs; LIF + MEKi 4+ GSKi [74]
fibroblasts plasmid
ear fibroblasts retroviral hOSKMN iMEFs; FBS + ITS + bFGF + LIF [75]
transduction
fetal fibroblasts piggyBac hOSKMNL iMEFs; KOSR + bFGF + LIF [76]
transposon
systems
Goat ear fibroblasts Tet-on-inducible hOSKMNL+  ND [771
lentiviral SV40 T+
transduction hTERT
fetal ear lentiviral hOSKM iMEFs; KOSR + bFGF [78]
fibroblasts transduction
fetal fibroblasts lentiviral bOSKMNL + - iMEFs; KOSR + LIF + MEKi + GSKi + VPA or KOSR + bFGF + VPA- iSNLs; [79]
transduction miR- 302/367 KOSR + bFGF + VPA

%0 OCT4, S SOX2, K KLF4, M MYC, L LIN28, N NANOG, SV40 T Simian vacuolating virus 40 large T antigen, TERT telomerase reverse transcriptase, miR-302/367

microRNA cluster 302/367, h human, m mouse, p pig, b bovine

Bfor a detailed medium composition and culture conditions see reference — only growth surface/feeder layer and the selected growth medium supplements
(serum/serum replacements, growth factors, and signalling pathway inhibitors) are presented in the table. iMEFs inactivated (mitomycin C) or irradiated mouse
embryonic fibroblasts, FBS fetal bovine serum, bFGF basic fibroblast growth factor, KOSR knockout serum replacement, LIF leukemia inhibitory factor, iSNLs
inactivated transformed mouse fibroblasts with expression of leukemia inhibitory factor, VPA valproic acid, iEFFs inactivated equine fetal fibroblasts, GSKi glycogen
synthase kinase inhibitor, MEKi mitogen-activated protein kinase kinase 1 inhibitor, TGFi transforming growth factor-beta inhibitor, TZV thiazovivin, ALKi anaplastic
lymphoma kinase inhibitor, ITS insulin/transferrin/selenium supplement, EGF epidermal growth factor, ES-FCS embryonic stem cells-qualified fetal calf serum, PI3K/

AKTi phosphatidylinositol 3-kinase/protein B kinase (AKT) inhibitor, ND no data

expression of exogenous OCT4 was required (e.g. [41,
42]). However, in 2013 a group of Deng and col-
leagues succeeded to reprogram mouse somatic cells,
by using only a cocktail of seven chemical compounds
and called the reprogrammed cells CiPSC — chem-
ically induced pluripotent stem cells [43].

iPSCs in the farm animals

Literature mining revealed 32 studies describing iPSC
generation in the farm animals included in the search
(13 in pig, 5 in horse, 5 in cattle, 4 in sheep, 3 in goat,
and 2 in rabbit) (Table 2). Different insertion methods
and sets of transcription factors were employed in
iPSC generation of the selected farm animal species.
Table 2 represent a concise overview of publications
(until 9/2015) regarding iPSC generation in mamma-
lian farm animal species (cattle, pig, goat, sheep, horse,
and rabbit).

The studies show that species-specific, human, mouse
or combinations of transcription factors from different
species can be used for reprogramming farm animal cells.
In most cases OSKM set was sufficient to reprogram
donor cells of interest. In several cases NANOG and
LIN28 factors were added to the reprogramming cocktail
and/or expression of nuclear transcription factors was
combined with either addition of small chemical

compounds or expression of Simian virus 40 large T anti-
gen (SV40 T), catalytic subunit of human telomerase re-
verse transcriptase (hTERT), or micro RNA cluster
302/367 (miR-302/367) to achieve higher reprogram-
ming efficiency and stability of iPSC lines. It seems that
especially cells originating from ruminant species re-
quire expression of additional factors — e.g. NANOG,
LIN28, and/or SV40 T and hTERT. Additionally,
growth surface and reprogramming medium with its
supplements (e.g. growth factors, inhibitors) play an
important role in reprogramming efficiency.

Mostly integrating (viral transduction- or piggyback
transposons-based) methods were used for reprogram-
ming farm animal cells, except for episome-based, non-
integrating method, used for reprogramming pig
fibroblasts [44]. There are no reports of the more up-to-
date methods (e.g. non-integrating virus- or mRNA-
based) being used for reprogramming cells in farm
animal species. The expression of the delivered exogen-
ous factors was in most cases controlled by a constitu-
tive promoter (e.g. CMV, EFla) or in some cases by
inducible tetracycline controlled transcriptional activa-
tion. Fibroblasts were commonly used as a starting cell
type, probably because they are easily accessible and
maintained in the culture, and previously validated in
reprogramming experiments in human and mouse. In
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the future, different somatic cell types should be used to
reveal, which cell type is optimal for production of bona
fide iPSCs.

Pluripotent character of the reprogrammed cells in the
collected publications was in most cases assessed by
determining expression of specific markers, in vitro dif-
ferentiation, and teratoma formation in immunodeficient
mice. Germline contribution potential was not tested or
the tested cells were not germline competent, therefore
the majority of the iPSCs do not meet pluripotency
criteria in the most stringent sense and should be con-
sidered iPSC-like cells; except for a pig iPSC line [45],
where chimeric pigs, demonstrating germline transmis-
sion were reported to be produced from the iPSCs [46].
However, proof was based only on a PCR test that
showed high blastocyst complementation (indicating
successful incorporation of iPSCs), but germline trans-
mission of chimeric pigs to progeny was very low (only
two piglets out of 43 were transgenic). At the moment
there are no large animal iPSCs that could reliably pro-
duce viable and fertile offspring, possibly because of
inability to produce stable transgene-free iPSCs, without
sustained expression of exogeneous transcription factors
[44]. The reliable assessment of pluripotency is one of
the main issues in the field, especially when dealing with
human iPSCs, where in vivo tests cannot be performed
for obvious ethical reasons. The situation calls for re-
valuation and standardisation of minimal pluripotency
criteria in different species, which should be indisputably
proven, prior a study claiming generation of iPSCs could
be published.

Regarding number of publications pig has been the
most intensively studied farm animal. Pig with its organ
size and physiology represents the best available approxi-
mation to human [47] and is a valuable model for testing
new therapeutic approaches before they can be intro-
duced into clinics. Stem cell research has been exten-
sively focusing on rodent models, which didn’t prove
optimal for testing human therapeutic applications,
therefore utilization of large animal models has a great
potential to expand our knowledge and is expected to
increase [48]. For example, equine iPSCs could be used
as a model for pre-clinical validation of stem cell therap-
ies for muscles, joints, tendons, ligaments, and bone
injuries, which were extensively studied and treated in
sport horses, using mesenchymal stem cells [49].

Transgenic mammals (especially those used for milk
production), generated by blastocyst complementation
or nuclear transfer from genetically modified stem cells,
could be used for large scale production of recombinant
proteins of biomedical/biotechnological interest. Expres-
sion of transgenic proteins in mammary gland is cur-
rently the most optimal production systems, because it
allows recombinant proteins to be relatively easy isolated
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from milk [50]. On the other hand, developed transgenic
technology, small size, and short gestation period makes
rabbits a lower-cost alternative to ruminants in trans-
genic milk expression systems, especially suitable for
molecular pharming on a smaller scale [50].

Conclusions

This review focuses on iPSC generation in farm animals
and summarizes the research in the field done so far.
Based on the literature review we conclude that al-
though their indisputable potential in biotechnology and
agriculture or as models for preclinical research iPSCs in
farm animals haven’t received the deserved attention.
For example, there are thousands of studies focusing on
cell reprogramming in human and murine, but we found
only 32 studies describing cell reprogramming in the
most important mammalian farm animal species. The
promise of cell therapies in human medicine seems by
far the most appealing application of iPSCs. However,
many obstacles will have to be overcome before iPSC-
based treatments could be introduced into the clinical
practice. Farm animals represent a valuable model for
development and testing of such transplantation proce-
dures. Additional attention should be directed to other
uses of iPSCs in farm animals — e.g. biopharming and
agricultural applications that seem to be (unjustifiably)
outshined by the potential of regenerative medicine ap-
plications. With this review we wanted to summarise
the achievements of cell reprogramming in the farm
animals and encourage further studies in this promising
field of science.
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