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Abstract

High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil
and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel
expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The
protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys
ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the
digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying.
Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel
expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The
digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of
copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing
pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and
finishing pigs.

Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced.
Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater
concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of
microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but
it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible
energy (DE) and metabolizable energy (ME) are slightly less in full fat rice bran than in corn, but defatted rice bran
contains less than 75 % of the DE and ME in corn. The concentration of crude protein is 15 to 18 % in rice bran
and the protein has a high biological value and most amino acids are well digested by pigs. Inclusion of rice bran
in diets fed to pigs has yielded variable results and based on current research it is recommended that inclusion
levels are less than 25 to 30 % in diets for growing-finishing pigs, and less than 20 % in diets for weanling pigs.
However, there is a need for additional research to determine the inclusion rates that may be used for both full fat
and defatted rice bran.
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Background

With the increased global production of livestock, dairy,
and poultry, the demand for feed is also increasing and
co-products from the tropical food industries are in-
creasingly used in diets fed to pigs. These co-products
include copra meal and copra expellers, palm kernel
meal and palm kernel expellers, and rice bran. Global
production of palm kernel and copra products is rela-
tively modest compared with the production of soybean
meal and canola meal [1] and availability of these ingre-
dients is often geographically dependent. However, in
some areas, these ingredients are the most abundant and
least expensive sources of energy and amino acids (AA)
that are available to the local swine industry [2] and it is,
therefore, important that information about the nutri-
tional value of each ingredient is available. It is also rec-
ognized that copra-, palm kernel-, and rice co-products
have certain specific attributes including AA profile,
fatty acid profile, and composition of fiber that are
unique to these ingredients and special attention to
these attributes is needed. The objective of this review,
therefore, is to provide information about the compos-
ition and recommended use of copra- and palm kernel
products and of defatted and full fat rice bran when fed
to pigs. The review is primarily based on literature pub-
lished in peer-reviewed journals and feed composition
tables. Although attempts were made to mainly include
data that have been published since 1990, on a few occa-
sions, it was necessary to include older data because of a
lack of newer data for some of these ingredients. With
the exception of ingredient tables, non-peer-reviewed lit-
erature was not used because of the uncertainty of the
quality of this information.

Copra meal and copra expellers

The coconut palm (Cocos nucifera) is widely distributed
throughout the tropics with major production in
Indonesia, The Philippines, India, and in some African
and Central American and South American countries.
World production of copra meal and copra expellers is
approximately 2,000,000 metric tons [1].

Copra meal is produced by expeller extracting or solv-
ent extracting the oil from dried coconut kernels. Copra
meal is sometimes referred to as coconut meal or coco-
nut oil meal. Although its protein content is less than
that of conventional ingredients commonly used as pro-
tein sources, copra meal represents the largest quantity
of locally available feed protein in many tropical areas,
such as countries in Central America, some African
countries, and some countries in South East Asia. Varia-
tions in the nutrient composition of copra meal are
mainly a function of the differences in residual oil
concentration.
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The residual oil in copra meal and copra expellers
contains 50 to 70 % medium-chain, saturated fatty acids
(lauric acid and myristic acid), which can lead to firmer
carcass fat when high levels of copra meal are used in
the diet [3, 4]. Thus, the deposition of lauric acid and
myristic acid is three to five times greater in the backfat
of pigs fed 30 % copra meal compared with pigs fed
10 % copra meal [3]. Quality problems such as rancidity
and aflatoxin contamination may be an issue in copra
meal, which may cause reduced feed intake and in some
cases reduced feed efficiency of pigs [5]. Quality prob-
lems may be attributed to the high moisture content of
copra during drying and storage [6].

Copra meal and copra expellers contain between 10
and 16 % crude fiber and approximately 47 % total diet-
ary fiber [7]. Concentrations of B-mannans, galactoman-
nans, arabinoxylogalactans, and cellulose are relatively
high [8, 9] and the water binding capacity of copra meal
is much greater than that of palm kernel meal or palm
kernel expellers [7]. Water binding capacity is an esti-
mate of the amount of water that a fiber can absorb and
hold after an external force has been applied to it via
centrifugation. High water binding capacity will usually
result in reduced feed intake of animals because of swell-
ing in the intestinal tract. The relatively high concentra-
tions of fermentable fiber in copra- and palm kernel
ingredients may result in increased needs for dietary Thr
because dietary fiber increases the endogenous losses of
AA, and therefore increases the loss of Thr [9]. Protein
levels of copra meal and copra expellers typically range
from 20 to 26 % (Table 1). The concentration of gross
energy in copra meal is greater than in corn, but be-
cause of the high concentration of fiber in copra meal
and copra expellers, concentrations of digestible en-
ergy (DE) and metabolizable energy (ME) are less
than in corn [10, 11].

Copra meal and copra expellers contain between 0.50
and 0.58 % total P [10, 12, 13], but less than one third of
the P is bound to phytate. The standardized total tract
digestibility (STTD) of P, therefore, is relatively high in
copra meal and copra expellers (Table 2; [12, 13]). How-
ever, if microbial phytase is included in the diets, the
STTD of P will increase [13].

The quality of the protein in copra meal is less than
that of soybean meal and palm kernel products with Lys
only being 1.91 % of total crude protein (CP) and total
indispensable AA being 33.92 % of total CP. However,
one specific characteristic of copra protein is that it is
high in Arg and Arg is almost 10 % of total CP and the
Arg:Lys ratio is almost 5:1 (Table 3).

The standardized ileal digestibility (SID) of AA in
copra meal and copra expellers fed to pigs ranges be-
tween 43 and 81 % [11, 14—-16]. The SID of Lys in copra
meal is also variable, ranging from 51 [15, 17] to 73 %
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Table 1 Energy and nutrient composition and physical characteristics of copra and palm kernel ingredients (as-fed basis)’

Ingredient
ltem? Copra meal Copra expellers Palm kernel expellers Palm kernel meal Soybean meal
Dry matter, % 929 89.9 919 919 90.0
Bulk density, g/L 5024 - 634.1 401.0 -
Water binding capacity, g/g 418 - 1.83 217 -
Gross energy, MJ/kg 186 18.0 188 17.8 178
DE, MJ/kg 144 15.8 121 1.3 15.2
ME, MJ/kg 136 15.1 M7 10.6 138
NE, MJ/kg 7.3 - 8.1 6.9 8.7
Crude protein, % 220 20.2 143 136 477
Acid hydrolyzed ether extract, % 19 7.1 6.9 13 29
Neutral detergent fiber, % 548 544 70.6 779 82
Acid detergent fiber, % 269 296 430 494 53
Insoluble dietary fiber, % 414 - 60.9 68.7 16.7
Soluble dietary fiber, % 55 - 26 2.2 -
Total dietary fiber, % 469 - 63.5 709 -

'References [6, 9, 10, 15]

Table 2 Concentrations of minerals, phytate, and apparent total tract digestibility (ATTD) and standardized total tract digestibility
(STTD) of phosphorus in copra and palm kernel ingredients (as-fed basis)'

ltem Copra meal Copra expellers Palm kernel meal Palm kernel expellers Soybean meal
Ca, % 0.04 0.11 0.20 025 033
Cl, % 0.37 - - 0.15 0.05
K % 1.83 1.75 - 0.64 2.1
Mg, % 0.31 023 - 0.29 0.28
Na, % 0.04 - - 0.03 0.05
P, % 0.52 0.53 0.54 0.52 0.67
S, % 0.31 - - 0.22 04
Cu, ppm 25 40 - 21 16.5
Fe, ppm 486 - - 534 190.5
Mn, ppm 69 75 - 131 36.7
Zn, ppm 49 53 - 32 479
Phytate, % 0.79 0.78 112 1.29 1.55
Phytate P, % 0.22 022 032 0.35 044
Non-phytate P, % 030 031 022 0.16 023

P digestibility without phytase
ATTD, % 60.8 46.0 489 30.0 411
STTD, % 706 56.5 579 39.8 496

P digestibility with phytase
ATTD, % 80.8 - 64.1 58.2 72.2
STID, % 90.3 - 735 68.1 81.1
'References [2, 9, 11, 12, 46]
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Table 3 Amino acid (AA) composition in copra and palm kernel ingredients (as-fed basis)’

[tem Copra meal Copra expellers Palm kernel meal Palm kernel expellers Soybean meal
% % of CP % % of CP % % of CP % % of CP % % of CP
Crude protein 22.00 - 20.20 - 13.60 - 14.30 - 4773 -
Indispensable AA
Arg 2.08 945 1.70 842 1.36 10.00 152 1063 345 723
His 035 1.59 029 144 0.17 1.25 020 140 1.28 268
lle 0.66 3.00 0.06 0.30 041 3.01 047 3.29 214 448
Leu 120 545 1.19 5.89 0.71 522 0.82 573 362 758
Lys 042 191 0.39 1.93 0.36 265 0.36 2.52 2.96 6.20
Met 0.27 123 0.24 1.19 0.22 1.62 0.25 1.75 0.66 1.38
Phe 0.79 359 0.79 391 047 346 053 371 240 5.03
Thr 0.55 2.50 0.57 2.82 0.33 243 0.37 2.59 1.86 3.90
Trp 0.15 0.68 0.15 0.74 0.05 0.37 0.12 0.84 0.66 1.38
Val 0.97 441 091 4.50 0.57 4.19 0.65 455 2.23 467
Total 744 33.81 6.29 31.14 4.65 34.20 529 37.01 21.26 4453
Dispensable AA
Ala 0.85 3.86 0.79 391 046 338 053 371 2.06 432
Asp 150 6.82 149 7.38 0.89 6.54 0.99 6.92 541 1133
Cys 0.28 127 0.26 1.29 0.17 1.25 0.17 1.19 0.70 147
Glu 334 15.18 343 16.98 202 14.85 229 16.01 854 17.89
Gly 0.82 373 0.82 4.06 053 390 0.58 4.06 1.99 417
Pro 0.60 2.73 0.63 3.12 0.36 2.65 040 2.80 2.53 5.30
Ser 0.71 323 0.77 3.81 044 324 0.50 350 236 4.94
Tyr 041 1.86 0.54 267 029 213 029 203 159 333
Total 851 38.68 8.73 43.22 5.16 37.94 5.75 40.22 2518 52.75
All AA
ArgiLys, % 495 - 4.36 - 3.78 - 422 - 1.17 -

"References [9, 10, 15]

[10], but the SID of all other indispensable AA is greater
than that of Lys indicating that the sources of copra
meal used in these experiments may have been heat
damaged because heat damage will reduce the digestibil-
ity of Lys more than that of other AA [18-20]. The SID
of Lys in copra expellers was reported at only 40 % [16],
which was much less than for other indispensable AA
indicating that this source was also heat damaged. The
differences in AA digestibility among experiments may
also be due to differences in nutrient composition, dry-
ing procedures, oil extraction procedures, and the degree
and duration of heat processing that is used during oil
extraction [21]. Overall, the SID of protein and indis-
pensable AA in copra expellers is less than in soybean
meal, but similar to those in palm kernel meal (Table 4;
(11]).

Copra meal and copra expellers may be included in di-
ets fed to growing and finishing pigs by up to 30 % with-
out affecting growth performance [22], but negative
effects of increasing levels of copra meal in the diet have

been reported [4, 14, 23]. However, Thorne et al. [3]
demonstrated that copra meal can be used by up to
50 % in growing-finishing diets if diets are supplemented
with synthetic AA or proteins with higher quality. Re-
sults with copra meal have been improved if diets either
were semi-purified diets or if they were formulated
based on digestible AA rather than based on crude pro-
tein [3].

In diets fed to weanling pigs from 2 wk post-weaning,
performance was linearly reduced if copra meal was in-
cluded in the diet and pigs fed diets containing 15 %
copra meal gained approximately 1 kg less over a 3-wk
period than pigs fed a control diet without copra meal
[7]. This result was obtained even though diets were bal-
anced for digestible AA and ME. It is possible that it is
the high fiber concentration and the high water binding
capacity of the fiber in copra meal that resulted in the
pigs eating less and therefore gaining less weight because
of the increased gut fill that is associated with consum-
ing diets with high water binding capacity. However,
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Table 4 Standardized ileal digestibility (%) of amino acids (AA) in copra and palm kernel products and in soybean meal’
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[tem Copra meal Copra expellers Palm kernel meal Palm kernel expellers Soybean meal
Crude protein 799 67.6 71.3 818 870
Indispensable AA
Arg 91.2 90.0 883 904 94.0
His 82.5 73.2 80.8 83.6 90.0
lle 816 76.7 804 835 89.0
Leu 816 785 79.7 824 880
Lys 72.8 403 71.1 76.5 89.0
Met 85.5 82.1 822 850 90.0
Phe 84.5 814 822 846 880
Thr 76.7 64.4 739 77.2 85.0
Trp 884 66.3 87.5 894 91.0
Val 79.0 778 77.2 81.0 87.0
Mean 82.6 731 80.3 834 89.1
Dispensable AA
Ala 782 79.0 725 79.0 85.0
Asp 789 60.5 758 77.5 87.0
Cys 68.0 53.1 7.7 764 84.0
Glu 79.9 67.3 812 820 89.0
Gly 76.2 60.6 65.1 779 84.0
Pro 128.8 125.0 549 1215 113.0
Ser 820 70.5 80.0 83.7 89.0
Tyr 82.8 580 80.1 82.7 88.0
Mean 83.7 725 752 83.7 89.9
Mean all AA 832 728 776 835 89.5

'Refereces [9, 10, 15]

gain to feed ratio was also reduced over the 3-wk feeding
period if copra meal was used. It is, therefore, recom-
mended that less than 15 % copra meal is used in diets
fed to weanling pigs.

Palm kernel meal and palm kernel expellers

Global production of palm kernel meal and palm kernel
expellers has increased from approximately 5 million
metric tons in 2005 to almost 7 million metric tons in
2012 [1]. The reason for this increase is the increased
demand for palm oil, which is often used in the biodiesel
industry. Produced mainly in Southeast Asia and Africa,
the oil palm fruit (Elaeis guineensis) yields palm oil ex-
tracted from the fleshy, outer mesocarp that surrounds
the nut and palm kernel oil extracted from the kernel
within the inner, hard shelled nut [24]. Prior to oil ex-
traction, the outer shell of the kernel is cracked open,
separated, and subjected to steam conditioning. Mech-
anical extraction by screw pressing is the most common
process in oil extraction from palm kernels, which re-
sults in production of palm kernel expellers. However,

sometimes oil is removed via solvent extraction, and the
resultant co-product is called palm kernel meal.

The nutrient concentration of palm kernel meal and
palm kernel expellers depends on the method of oil ex-
traction, the species of the palm nut, and the amount of
shell remaining in the meal [25]. Palm kernel expellers
have a residual oil concentration of 6 to 8 %, whereas
solvent-extracted meals contain 1 to 2 % residual oil
(Table 1; [26, 27]). The concentration of crude fiber in
palm kernel meal ranges between 7 and 20 % [28], de-
pending on the amount of shells and fruit removed from
the palm kernel. More than 81 % of the total carbohy-
drates in palm kernel meal are in the form of non-starch
polysaccharides [29], mainly as p-(1,4)-D-mannans [30,
31]. Palm kernel meal also contains high amounts of lig-
nin, which may be a result of contamination of nut
shells [32], which contributes to its grittiness and fibrous
texture. However, water binding capacity in palm kernel
meal and palm kernel expellers is less than in copra
meal [7]. Because of the high concentration of insoluble
dietary fiber, the energy in palm kernel meal and palm
kernel expellers is poorly digested by pigs and
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concentrations of DE and ME in palm kernel meal and
palm kernel expellers is less than 75 % of that in soybean
meal and corn (Table 1; [10, 11]). However, energy di-
gestibility in diets containing palm kernel expellers may
be increased by 2 to 3 percentage units if beta-
mannanase is added to the diet [32] because beta-
mannanase may help digesting some of the D-mannans
in palm kernel expellers.

The concentration of P in palm kernel meal and
palm kernel expellers is between 0.5 and 0.65 % [10,
12, 13]. However, between 60 and 75 % of total P is
bound to phytate and the STTD of P in palm kernel
meal and palm kernel expellers is, therefore, between
35 and 50 % (Table 2; [10, 12, 13]). Because of the
relatively high concentration of phytate in palm ker-
nel products, the STTD of P can be increased to be-
tween 60 and 75 % if microbial phytase is added to
the diets[13]. As a consequence, the supply of digest-
ible P from palm kernel meal and palm kernel expel-
lers is similar to that of soybean meal if microbial
phytase is added to the diet [13].

Relative to other oilseed meals, palm kernel meal has
the lowest protein concentration ranging from 14 to
21 % [11, 26]. Palm kernel protein has a low concentra-
tion of Trp and a relatively high concentration of Arg,
which is approximately 10 % of the CP (Table 3; [11, 33]).
However, the Arg:Lys ratio is around 4:1 (Table 3) and as
is the case with copra co-products, the supply of Arg is
much greater than if other feed ingredients are used. The
high concentration of Arg may suppress the digestibility
of Lys because Arg and Lys compete for the same trans-
porter in the enterocytes [34, 35]. However, making sure
that diets are sufficient in digestible Lys may minimize the
negative effect of high concentration of Arg. In general,
the standardized ileal digestibility of AA in both palm
kernel meal and palm kernel expellers is less than in
soybean meal, but not different from copra meal
(Table 44 [11, 36, 37]).

Palm kernel meal and palm kernel expellers are not al-
ways well-accepted by pigs [38, 39] and if included by
more than 20 % in the diet, palm kernel meal negatively
affects growth performance and carcass quality of grow-
ing finishing pigs [40, 41]. It is, however, possible that if
diets are formulated to be equal in standardized ileal di-
gestible indispensable AA, pigs will be able to perform
better on diets containing palm kernel meal and palm
kernel expellers. Finishing pigs have greater tolerance for
palm kernel meal than nursery pigs [28]. In experiments
with weanling pigs, it was observed that if diets are for-
mulated to contain similar concentrations of digestible
AA and ME, feed conversion rates may be maintained if
up to 15 % palm kernel meal or palm kernel expellers
are included in the diets [7]. However, average daily gain
may be slightly reduced if palm kernel products are
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used, which may be a result of reduced bulk density of
the diet and increased water binding capacity [7].

Full fat rice bran and defatted rice bran

The global production of rice (Oryza sativa) exceeds
700 million metric tons per year and rice is the most
produced cereal grain in the world after maize and
wheat [42]. Rice is produced primarily for human con-
sumption and is the main carbohydrate source in human
diets in many countries in the world. The largest rice
producing countries are China and India followed by
Indonesia, Vietnam, and Thailand [42]. Annual produc-
tion of rice in the United States is around 9 million
metric tons, but the United States is the 5™ largest ex-
porter of rice after Thailand, India, Vietnam, and
Pakistan.

The main objective of producing rice is to produce
polished white rice that is used for human consumption.
However, paddy rice contains approximately 20 % hulls
that mainly consist of lignin and silica, and therefore,
has very low nutritional value [43]. As a consequence,
rice has to be de-hulled before consumption. Removal of
the hulls results in production of brown rice that con-
tains the bran layers, the germ, and the endosperm. Fur-
ther processing is needed to remove the bran layers and
endosperm and this results in production of rice bran,
which may be used for animal feeding. After the bran
has been removed, rice goes through several polishing
steps before the final product, polished rice, is produced
[44]. On a quantitative basis, rice bran is approximately
10 % of the total weight of paddy rice, which means that
approximately 70 million metric tons of rice bran is pro-
duced annually and is available for animal feeding. There
are other co-products produced from rice including
brewers rice and rice mill feed, but these products are
produced in much smaller quantities.

Rice bran includes the pericarp, the aleurone, and the
subaleurone layers of rice, but depending on the type of
milling, fractions of the endosperm may make up 20 to
25 % of the bran product [45]. Rice bran, therefore, may
contain up to 30 % starch [10, 46]. The concentration of
ether extract in rice bran varies between 14 and 24 % de-
pending on the variety of rice that was grown and the
type of milling used [10, 46, 47]. However, because of
the high concentration of lipase in rice bran, the fat may
quickly peroxidize and become rancid [45, 48]. As a con-
sequence, rice bran needs to be stabilized by use of heat
treatment such as extrusion to deactivate the lipase and
thus reduce the risk of oxidation [49]. Alternatively, the
fat may be removed from rice bran using solvent extrac-
tion to produce defatted rice bran with a concentration
of fat of 2 to 4 %. Therefore, both full fat rice bran and
defatted rice bran are available for animal feeding.
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Table 5 Energy and nutrient composition of full fat rice bran
and defatted rice bran (as-fed basis)’

Ingredient
[tem Full fat rice bran  Defatted rice bran
Dry matter, % 91.60 91.35
Ash, % 14.80 11.51
Gross energy, MJ/kg 19.98 16.98
Digestible energy, MJ/kg 12.98 9.21
Metabolizable energy, MJ/kg 12.55 8.71
Net energy, MJ/kg 9.54 6.50
Crude protein, % 15.11 17.30
Acid hydrolyzed ether extract, % 13.77 352
Starch, % 27.00 26.25
Neutral detergent fiber, % 26.28 23.56
Acid detergent fiber, % 11.87 11.31
Minerals
Ca, % 022 0.17
cl, % 0.08 0.10
K % 1.45 1.11
Mg, % 0.72 0.81
Na, % 0.04 0.02
P, % 2.16 1.89
Phytate-P, % 1.74 1.61
Non-phytate P, % 042 0.28
S, % 0.18 0.15
Cu, ppm 8.00 14.00
Fe, ppm 113.00 268.00
Mn, ppm 219.50 267.00
Zn, ppm 45.70 73.00
ATTD? of P without phytase, % 24.00 12.00
ATTD of P with phytase, % 62.00 -
STTD?® of P witout phytase, % 36.50 28.00
STTD of P with phytase, % 64.00 -

'References [9, 42, 46, 59]
2ATTD, apparent total tract digestibility
3STTD, standardized total tract digestibility

Full fat rice bran contains 20 to 30 % neutral deter-
gent fiber and the concentration of CP is approxi-
mately 15 % [10, 46, 47]. Values for DE in full fat
rice bran have been reported between 3,000 and
3,100 kcal per kg and values for ME are approxi-
mately 100 kcal less than the DE values (Table 5; [10,
46]). Concentrations of neutral detergent fiber and CP
in defatted rice bran are 10 to 15 % greater than in
full fat rice bran because removal of the fat concen-
trates other nutrients in the bran. However, DE and
ME values in defatted rice bran are much less than in
full fat rice bran and values between 2,100 and
2,200 kcal per kg have been reported [10, 46].
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The concentration of P is greater in rice bran than in
most other plant ingredients and values between 1.6 and
2.2 % have been reported [10, 46, 50]. Between 70
and 90% of the P is bound in phytate, and the STTD
of P in rice bran, therefore, is relatively low (Table 5;
[50, 51]). However, addition of 1,000 units/kg of microbial
phytase will increase the STTD of P in rice bran by
15 to 50 % [51].

The biological value of rice protein is high and the
standardized ileal digestibility of most AA in polished
rice is greater than in most other cereal grains except
wheat [52]. The protein in rice bran also has a relatively
high concentration of Lys, Met, Trp, and Thr (Table 6).
However, the SID of AA in both full fat and defatted rice
bran is considerably less than in polished rice and for
most indispensable AA, values between 70 and 85 %
have been reported (Table 6; [10, 47]).

There are relatively few reports on effects of including
rice bran in diets fed to weanling, growing, or finishing
pigs. However, inclusion of 10 % rice bran in diets fed to
weanling pigs improved feed conversion rate by almost
10 % because of increased colonic concentrations of bifi-
dobacteria [53]. A balanced microbial community with a
large presence of the beneficial bacteria is critical for
weanling pigs to maintain their intestinal health. The
prebiotic effect of rice bran was likely related to arabi-
noxylan oligosaccharides in this ingredient [54, 55].
However, it is not known what the maximum inclusion
rate is. For growing and finishing pigs, reduced growth
performance has been reported for inclusion of 30 % full
fat rice bran [56]. Inclusion of 10 % full fat rice bran in

Table 6 Amino acid (AA) composition and standardized ileal
digestibility (SID) of AA in full fat rice bran and defatted rice
bran (as-fed basis)’

[tem Full fat rice bran Defatted rice bran
% %of CP SID,% % % of CP SID, %

Crude protein 1480 - - 1627 - -

Indispensable AA
Arg 115 779 93.0 131 807 90.5
His 038 259 87.8 045 274 82.7
lle 049 334 832 068 354 784
Leu 098 6.66 829 115 7.06 77.7
Lys 064 435 85.8 075 459 823
Met 029 195 873 033 205 78.7
Phe 062 4.18 81.1 072 440 780
Thr 052 351 80.6 062 379 77.0
Trp 018 1.19 83.0 021 127 79.7
Val 075 504 839 087 535 79.0
Total 6.00 4054 - 709 4358 -

"Reference [9, 46, 60]
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diets fed to growing pigs had no influence on the growth
performance compared with pigs fed a corn-soybean
meal control diet [50]. In finishing diets, inclusion of
20 % full fat rice bran improved performance compared
with pigs fed defatted rice bran [57], and it has been sug-
gested that the maximum inclusion rate of defatted rice
bran in diets fed to growing-finishing pigs is 20 % [58].
It is, however, possible, that the reduced performance of
pigs fed the defatted rice bran simply is an effect of the
reduced metabolizable energy in the defatted rice bran.
If that is the case then it is expected that the reduction
in growth performance observed for pigs fed defatted
rice bran can be avoided if diets are formulated to be
isocaloric. However, to our knowledge, research to test
this hypothesis has not been reported.

Abbreviations

AA: Amino acids; ATTD: Apparent total tract digestibility; CP: Crude protein;
DM: Dry matter; DE: Digestible energy; ME: Metabolizable energy;

SID: Standardized ileal digestibility; STTD: Standardized total tract digestibility.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
All authors equally contributed to this review. All authors read and approved
the final manuscript.

Acknowledgement

This manuscript is based on papers presented at the 3" Chinese Swine
Industry Symposium, Shanghai, China, Oct. 30 and 31, 2014; and the 28™
Annual PHILSAN Convention, Manila, Philippines, October 8, 2015.

Author details

'Department of Animal Science, University of lllinois, Urbana 61801, USA.
2Departamemo de Producciéon Animal, Facultad de Medicina Veterinaria y de
Zootecnia, Universidad Nacional de Colombia, Bogota, Colombia. *University
of California, Davis 95616, USA. 4Ur\iversity of the Philippines, Los Bafos,
Philippines.

Received: 4 December 2015 Accepted: 8 December 2015
Published online: 23 December 2015

References

1. Soyatech. Soya and oilseed bluebook. Southwest Harbor: Soyatech LLC;
2012.

2. Creswell DC, Brooks CC. Compositions, apparent digestibility and energy
evaluation of coconut oil and coconut meal. J Anim Sci. 1971;33:366-9.

3. Thorne PJ, Wiseman J, Cole DJA, Machin DH. Use of diets containing high
levels of copra meal for growing/finishing pigs and their supplementation
to improve animal performance. Trop Agric. 1988,65:197-201.

4. Thorne PJ, Wiseman J, Cole DJA, Machin D. Effects of level of inclusion of
copra meal in balanced diets supplemented with synthetic amino acids on
growth and fat deposition and composition in growing pigs fed ad libitum
at a constant temperature of 25°C. Anim Feed Sci Technol. 1992;40:31-40.

5. Schell TC, Lindemann MD, Kornegay ET, Blodgett DJ. Effects of feeding
aflatoxin-contaminated diets with and without clay to weanling and
growing pigs on performance, liver function, and mineral metabolism.

J Anim Sci. 1993;71:1209-18.

6. Head SW, Swetman TA, Nagler MJ. Studies on deterioration and aflatoxin
contamination in copra during storage. Oleagineux Corps Gras Lipides.
1999;6:349-59.

7. Jaworski NW, Shoulders J, Gonzalez-Vega JC, Stein HH. Effects of using
copra meal, palm kernel expellers, or palm kernel meal in diets for weanling
pigs. Prof Anim Sci. 2014;30:243-51.

8. Balasubramaniam K. Polysaccharides of the kernel of maturing and matured
coconuts. J Food Sci. 1976;41:1370-3.

20.

22.

23.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Page 8 of 9

Saittagaroon S, Kawakishi S, Namiki M. Characterisation of polysaccharides
of copra meal. J Sci Food Agric. 1983;34:855-60.

NRC. Nutrient requirements of swine. 11th edition. Washington, DC: Natl
Acad Press; 2012.

Sulabo RC, Ju WS, Stein HH. Amino acid digestibility and concentration of
digestible and metabolizable energy in copra meal, palm kernel expellers,
and palm kernel meal fed to growing pigs. J Anim Sci. 2013,91:1391-9.
Son AR, Shin SY, Kim BG. Standardized total tract digestibility of phosphorus
in copra expellers, palm kernel expellers, and cassava root fed to growing
pigs. Asian-Australas J Anim Sci. 2013;26:1609-13.

Almaguer BL, Sulabo RC, Liu Y, Stein HH. Standardized total tract
digestibility of phosphorus in copra meal, palm kernel expellers, palm kernel
meal, and soybean meal fed to growing pigs. J Anim Sci. 2014,92:2473-80.
Lekule FP, Homb T, Kategile JA. Digestibility and effect of copra cake on
rate of gain, feed efficiency and protein retention of fattening pigs. Trop
Anim Health Prod. 1986;18:243-7.

Thorne PJ, Wiseman J, Cole DJA, Machin DH. Amino acid composition and
aspects of protein quality in expeller copra meals for pig feeding. Trop Sci.
1992;32:145-51.

Son AR, Hyun Y, Htoo JK, Kim BG. Amino acid digestibility in copra expellers
and palm kernel expellers by growing pigs. Anim Feed Sci Technol.
2014;187:91-7.

Thorne PJ, Wiseman J, Cole DJA, Machin DH. The digestible and
metabolizable energy value of copra meals and their prediction from
chemical composition. Anim Prod. 1989;49:459-66.

Gonzalez-Vega JC, Kim BG, Htoo JK, Lemme A, Stein HH. Amino acid
digestibility in heated soybean meal fed to growing pigs. J Anim Sci.
2011;89:3617-25.

Almeida FN, Htoo JK, Thomson J, Stein HH. Amino acid digestibility in heat
damaged distillers dried grains with solubles fed to pigs. J Anim Sci Biotech.
2013;4:44-54.

Almeida FN, Htoo JK, Thomson J, Stein HH. Effects of balancing crystalline
amino acids in diets containing heat-damaged soybean meal or distillers
dried grains with solubles fed to weanling pigs. Animal. 2014;8:1594-602.
Samson AS. Heat treatment of coconut meats and coconut meal. J Sci Food
Agric. 1971;22:312-6.

Grieve GC, Osbourn DF, Gonzales FO. Coconut oil meal in growing and
finishing rations for swine. Trop Agri Trinidad. 1966;43:257-61.

O'Doherty JV, McKeon MP. The use of expeller copra meal in grower and
finisher pig diets. Livest Prod Sci. 2000;,67:55-65.

Ravindran V, Blair R. Feed resources for poultry production in Asia and the
Pacific. Il. Plant protein sources. Worlds Poult Sci J. 1992;48:205-31.

O'Mara FP, Muligan FJ, Cronin EJ, Rath M, Caffrey PJ. The nutritive value of
palm kernel meal measured in vivo and using rumen fluid and enzymatic
techniques. Livest Prod Sci. 1999;60:305-16.

Nwokolo EN, Bragg DB, Saben HS. A nutritive evaluation of palm kernel
meal for use in poultry rations. Trop Sci. 1977;19:147-54.

Onwudike OC. Palm kernel meal as a feed for poultry. 3. Replacement of
groundnut cake by palm kernel meal in broiler diets. Anim Feed Sci
Technol. 1986;16:195-202.

Babatunde GM, Fetuga BL, Odumosu O, Oyenuga VA. Palm kernel meal as
the major protein concentrate in the diets of pigs in the tropics. J Sci Food
Agric. 1975;26:1279-91.

Knudsen KEB. Carbohydrate and lignin contents of plant materials used in
animal feeding. Anim Feed Sci Technol. 1997,67:319-38.

Daud MJ, Jarvis MC. Mannan of oil palm kernel. Phytochemistry.
1992;31:463-4.

Dusterhoft EM, Posthumus MA, Voragen AGJ. Non-starch polysaccharides
from sunflower (Helianthus annuus) meal and palm kernel (Elaeis guineensis)
meal preparation of cell wall material and extraction of polysaccharide
fractions. J Sci Food Agric. 1992,59:151-60.

Mok CH, Lee JH, Kim BG. Effects of exogenous phytase and beta-
mannanase on ileal and total tract digestibility of energy and nutrient in
palm kernel expeller-containing diets fed to growing pigs. Anim Feed Sci
Technol. 2013;186:209-13.

Owusu-Domfeh K, Christensen DA, Owen BD. Nutritive value of some
Ghanaian feedstuffs. Can J Anim Sci. 1970,50:1-14.

Closs El, Simon A, Vékony N, Rotmann A. Plasma membrane transporters for
arginine. J Nutr. 2004;134:27525-9S.

Verrey F, Closs El, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATS:
the SLC7 family of amino acid transporters. Pflugers Arch. 2004;447:532-42.



Stein et al. Journal of Animal Science and Biotechnology (2015) 6:56

36.  Nwokolo EN, Bragg DB, Saben HS. The availability of amino acids from palm
kernel, soybean, cotton seed and rape seed meal for the growing chick.
Poult Sci. 1976;55:2300-4.

37. Février C, Lechevestrier Y, Lebreton Y, Jaguelin-Peyraud. Prediction of the
standardized ileal true digestibility of amino acids from the chemical
composition of oilseed meals in the growing pig. Anim Feed Sci Technol.
2001;90:103-15.

38.  Gohl B. Tropical feeds: feed information summaries and nutritive values,
FAO Animal Production and Health Series No. 12. Rome: Food and
Agriculture Organization of the United Nations; 1981.

39. Kim BG, Lee JH, Jung HJ, Han YK, Park KM, Han IK. Effect of partial
replacement of soybean meal with palm kernel meal and copra meal with
growth performance, nutrient digestibility and carcass characteristics of
finishing pigs. Asian-Aust J Anim Sci. 2001;14:821-30.

40.  McDonald P, Edwards RA, Greenhalgh JFG. Palm kernel meal in animal
nutrition. 4th ed. Harlow, United Kingdom: Longman; 1988:462-63.

41. Rhule SWA. Growth rate and carcass characteristics of pigs fed on diets
containing palm kernel cake. Anim Feed Sci Technol. 1996,61:167-72.

42. FAOSTATS. 2012. http//faostat3.fao.org/download/Q/QC/E Accessed 14 Aug 2013.

43, Delcuour JA, Hoseney RC. Principles of cereal science and technology. 3rd
ed. St. Paul, MN, USA: AACC International, Inc; 2010:12.

44. Singh A, Das M, Bal S, Boinejee R. Rice Processing. In R. P. Ferreira-Guine Pm,
Reis-Correa M. editors. Engineering aspects of cereals and cereal based
products. Boca Raton, FL, USA: CRC Press; 2013:71-97.

45.  Prakash J, Ramaswamy HS. Rice bran proteins: properties and food uses. Crit
Rev Food Sci Nutr. 1996;36:537-52.

46.  Sauvant D, Perez JM, Tran G. Tables of composition and nutritional value of
feed materials: pig, poultry, sheep, goats, rabbits, horses, and fish.
Wageningen, the Netherlands: Wageningen Academic Publishers; 2004.

47.  Kaufmann C, Sauer WC, Cervantes M, Zhang Y, Rademacher JHM, Htoo JK.
Amino acid and energy digestibility in different sources of rice bran for
growing pigs. Can J Anim Sci. 2005,85:355-63.

48.  McCaskill DR, Orthoefer FT. Storage stability of extrusion stabilized and
parboiled rice bran. In: Marshall WE, JI Wadsworth, editors. Rice, science and
technology. New York, NY, USA: Marcel Dekker, Inc; 1994:37-47.

49. Hargrove KL Jr. Processing and utilization of rice bran in the United States.
In Marshall WE, JI Wadsworth, editors. Rice, science and technology. New
York, NY, USA: Marcel Dekker, Inc; 1994:381-404.

50. Abelilla JJ. Standardized total tract digestibility of phosphorus in rice bran
with and without phytase supplementation in swine diets, M. S Thesis. Los
Bafos: University of the Philippines; 2014.

51. Casas GA, Stein HH. Effects of microbial phytase on the apparent and
standardized total tract digestibility of phosphorus in rice coproducts fed to
growing pigs. J Anim Sci. 2015,93:3441-8.

52. Cervantes-Pahm SK, Liu Y, Stein HH. Digestible indispensable amino acid
score (DIAAS) and digestible amino acids in eight cereal grains. Br J Nutr.
2014;111:1663-72.

53. Herfel T, Jacobi S, Lin X, Van Heugten E, Fellner V, Odle J. Stabilized rice
bran improves weaning performance via a prebiotic mechanism. J Anim Sci.
2013;91:907-13.

54. Annison G, Moughan PJ, Thomas DV. Nutritive activity of soluble rice bran
arabinoxylans in broiler diets. Br Poult Sci. 1995;36:479-88.

55.  Grieshop CM, Flickinger EA, Fahey Jr GC. Oral administration of
arabinogalactan affects immune status and fecal microbial populations in
dogs. J Nutr. 2002;132:478-82.

56. De Campos RML, Hierro E, Ordoriez JA, Bertol TM, De la Hoz L. A note on
partial replacement of maize with rice bran in the pig diet on meat and
backfat fatty acids. J Anim Feed Sci. 2006;15:427-33.

57. Chae BJ, Lee SD. Rancid rice bran affects growth performance and pork
quality in finishing pigs. Asian-Aust J Anim Sci. 2002;15:94-101.

58.  Warren BE, Farrell DJ. The nutritive value of full-fat and defatted Australian
rice bran. Il. Growth studies with chickens, rats and pigs. Anim Feed Sci
Technol. 1990,27:229-46.

59.  Warren BE, Farrell DJ. The nutritive value of full-fat and defatted Australian
rice bran. I. Chemical composition. Anim Feed Sci Technol. 1990,27:219-28.

60. Casas GA, Stein HH. Amino acid digestibility in rice co-products fed to
growing pigs. Anim Feed Sci Technol. 2015;207:150-8.

Page 9 of 9

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolMed Central



http://faostat3.fao.org/download/Q/QC/E

	Abstract
	Background
	Copra meal and copra expellers
	Palm kernel meal and palm kernel expellers
	Full fat rice bran and defatted rice bran
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgement
	Author details
	References



