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No effect of exogenous melatonin on
development of cryopreserved metaphase
II oocytes in mouse
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Abstract

Background: This study was conducted to investigate effect of exogenous melatonin on the development of
mouse mature oocytes after cryopreservation.

Results: First, mouse metaphase II (MII) oocytes were vitrified in the open-pulled straws (OPS). After warming, they were
cultured for 1 h in M2 medium containing melatonin at different concentrations (0, 10−9, 10−7, 10−5, 10−3 mol/L). Then the
oocytes were used to detect reactive oxygen species (ROS) and glutathione (GSH) levels (fluorescence microscopy), and
the developmental potential after parthenogenetic activation. The experimental results showed that the ROS level and
cleavage rate in 10−3 mol/L melatonin group was significantly lower than that in melatonin-free group (control). The GSH
levels and blastocyst rates in all melatonin-treated groups were similar to that in control. Based on the above results,
we detected the expression of gene Hsp90aa1, Hsf1, Hspa1b, Nrf2 and Bcl-x1 with qRT-PCR in oocytes treated
with 10−7, or 10−3 mol/L melatonin and untreated control. After warming and culture for 1 h, the oocytes
showed higher Hsp90aa1 expression in 10−7 mol/L melatonin-treated group than in the control (P < 0.05); the
Hsf1, Hsp90aa1 and Bcl-x1 expression were significantly decreased in 10−3 mol/L melatonin-treated group when
compared to the control. Based on the above results and previous research, we detected the development of
vitrified-warmed oocytes treated with either 10−7 or 0 mol/L melatonin by in vitro fertilization. No difference was
observed between them.

Conclusions: Our results indicate that the supplementation of melatonin (10−9 to 10−3 mol/L) in culture
medium and incubation for 1 h did not improve the subsequent developmental potential of vitrified-warmed
mouse MII oocytes, even if there were alteration in gene expression.
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Background
Free radicals and reactive oxygen species (ROS), gener-
ated as a part of normal cellular metabolism and as a
consequence of exogenous administered molecules [1],
play an important role as second messengers in cellular
functions through activation of cell signaling cascades,
such as those involving in mitogen-activated protein
kinases and regulation of transcription factors. Exces-
sive ROS, however, are highly reactive with complex
cellular molecules (proteins, lipids, and DNA) and may
change their functions [2]. This may lead to serious
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consequences, for instance, enzymatic inactivation,
DNA fragmentation, and ultimately cell death [3–6].
Glutathione (GSH) is a major antioxidant acting as a
free radical scavenger that protects the cell from ROS.
The balance between ROS and GSH had been considered
in controlling the oocyte maturation and the normal devel-
opment of zygotes [7, 8]. During cryopreservation, oocytes
are particularly vulnerable to oxidative stress because of the
high level of lipid, generating large amount of ROS [9],
which influence the balance between the oxidation–reduc-
tion reactions and the intracellular antioxidative system. An
imbalance in this system in the favor of oxidation signifi-
cantly reduced cell viability [10].
Transcription factor Nrf2 (nuclear factor-erythroid 2

p45-related factor 2) participates in the transcription
regulation of enzyme which was involved in the GSH
stributed under the terms of the Creative Commons Attribution 4.0 International
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
t to the original author(s) and the source, provide a link to the Creative
re made. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40104-015-0041-0&domain=pdf
mailto:zguangbin@sicau.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Li et al. Journal of Animal Science and Biotechnology  (2015) 6:42 Page 2 of 7
synthesis metabolism [11], consequently regulating the
balance of ROS/GSH [12]. Transcription factor Hsf1
(heat shock factor 1) was involved in both the regulation
of the balance of ROS/GSH and the transcription of
Hsp90 and Hsp70. Heat shock proteins (HSP), a set of
proteins generated under stress, were associated with
RNA processing, RNP assembly, and chromatin remod-
eling [13], and among them, maternal Hsp90 and Hsp70
were required for the embryonic development [14–17].
Transcription factors Hsf1 and Nrf2 engaged in crosstalk
for cytoprotection by sharing overlapping transcriptional
targets, such as HSP70 [11]. After oocytes cryopreservation,
the expression of Hsp70 [18] and Hsp90β [19] was signifi-
cantly decreased, potentially influencing their subsequent
development potential.
Melatonin (N-acetyl-5-methoxytryptamine), a deriva-

tive of tryptophan mainly produced in the pineal gland
of vertebrates [20, 21], is a potent free radical scavenger
and antioxidant [22, 23]. Melatonin and its metabolites
could directly scavenge ROS, stimulate antioxidative en-
zymes, increase the levels of GSH, inhibit the pro-
oxidative enzymes in cells and organs [24–26], and pro-
mote the expression of antiapoptotic gene Bcl-xl [27].
When melatonin was added to semen extender or cul-
ture medium, the sperm viability, oocyte competence
and blastocyst development in vitro were significantly
improved (reviewed by [23]). However, it is still unclear
whether or not the oocyte development could be im-
proved by the addition of melatonin to the medium for
in vitro culture of vitrified-warmed mouse metaphase II
(MII) oocytes.
Therefore, in this study, we investigated the effect of

melatonin on developmental potential of vitrified mouse
oocytes, including detecting ROS and GSH levels, expres-
sions of apoptosis related genes (Hsp90aa1, Hsf1, Hspa1b,
Nrf2 and Bcl-x1), subsequent embryonic development after
parthenogenetic activation and in vitro fertilization.

Materials and methods
Unless otherwise stated, all chemicals were purchased
from Sigma-Aldrich (St. Louis, MO, USA). All animals
were maintained and handled in accordance with the re-
quirements of the Institutional Animal Care and Use
Committee of the China Agricultural University.

Oocyte collection
Outbred female Kun Ming mice (different from the typical
inbred strains [28]) (China Experimental Animal Center of
Military Medical Sciences, China) aged 6 wk were kept in a
room with the temperature controlled at 20–22 °C under a
14:10 light/dark cycle (light on at 06:00 h). After a week of
acclimation, female mice were induced to superovulate by
an intraperitoneal injection of 10 IU equine chorionic go-
nadotropin initially, and 48 h later, 10 IU human chorionic
gonadotropin (hCG) was injected to trigger ovulation, as
described previously [29]. Cumulus–oocyte complexes were
collected from oviducts at 14 h after hCG treatment and re-
covered in M2 medium [30] supplemented with 3 mg/mL
bovine serum albumin. Cumulus cells were dispersed with
300 IU/mL hyaluronidase.

Vitrification and warming of oocytes
The open-pulled straws (OPS) were made according to
the method as described previously [31, 32] with some
modifications. Briefly, the straws (250 mL; IMV, L’Aigle,
France) were heat-softened and pulled manually to get a
straw of approximately 2 to 3 cm in length, 0.10 mm in
inner diameter, and 0.15 mm in outer diameter.
Oocytes were vitrified using an OPS method. Oocytes

were first equilibrated in 10 % ethylene glycol (EG) + 10 %
dimethyl sulfoxide (DMSO) in Dulbecco phosphate-
buffered saline (DPBS) containing 20 % fetal bovine serum
(FBS; Hyclone; Gibco BRL, Paisley, Scotland, UK) for 30 s,
then loaded into the narrow end of OPS with EDFS30 solu-
tion which consisted of DPBS medium containing 300 g/L
Ficoll, 0.5 mol/L sucrose, and 20 % FBS, 15 % (v/v) EG and
15 % (v/v) DMSO, for 25 s. Finally, the straws containing
oocytes (10 oocytes per OPS) were plunged into liquid ni-
trogen. When warming, oocytes were rinsed in 0.5 mol/L
sucrose for 5 min, then washed 3 times in M2 medium
and incubated in a CO2 incubator for 1 h in M2 medium
with different concentration of melatonin. All manipula-
tions were performed at 37 °C on a warming stage fixed on
the stereomicroscope, and the ambient atmosphere was air-
conditioned at a temperature of 25 ± 0.5 °C. Oocytes were
pooled and randomly distributed to each group.

Measurement of intracellular reactive oxygen species and
glutathione levels
Mouse MII oocytes were sampled to determine the intra-
cellular ROS and GSH levels according to the method de-
scribed in previous study [33]. To measure intracellular
ROS level, more than 15 oocytes from each treatment
group were incubated (in the dark) in M2 supplemented
with 1 mmol/L 20,70-dichlorodihydrofluorescein diacetate
(H2DCFDA) for 20 min at 37 °C, washed three times with
DPBS containing 0.1 % (w/v) polyvinyl alcohol, and then
placed into 50 mL droplets. The fluorescence was mea-
sured under an epifluorescence microscope with a filter at
460-nm excitation, and fluorescence images were recorded
as TIFF files using a cooled CCD camera (DP72, Olympus,
Tokyo, Japan). The recorded fluorescence intensities were
quantified by EZ-C1 Free Viewer software (Nikon, Tokyo,
Japan). The level of GSH in each oocyte was measured with
10 μmol/L 4-chloromethyl-6.8-difluoro-7-hydroxycoumarin
(Cell-Tracker Blue) with a filter at 370-nm excitation. The
experimental procedure was the same as the ROS measure-
ment described above.
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Oocyte activation and embryo culture
All treated oocytes were allowed to recover in a CO2 in-
cubator for 1 h before activation. The activation medium
used was Ca2+-free human tubal fluid (HTF) [34] sup-
plemented with 10 mmol/L SrCl2 [35]. After being
washed thrice in activation medium, oocytes were incu-
bated first in activation medium for 2.5 h and then in
regular HTF without SrCl2 for 3.5 h at 37.5 °C in a hu-
midified atmosphere with 5 % CO2 in air. Both the acti-
vation medium and HTF for subsequent short culture of
oocytes were supplemented with 2 μg/mL cytochalasin D.
Six h after the onset of activation, oocytes were re-
moved from the medium and cultured in KSOM-AA
(simplex optimized medium contained K ions supple-
mented with amino acids) medium [36] (Millipore) for
4 d. Embryos at the two cell and blastocyst stages were
examined and recorded at 24, and 96 h after start of
culture in KSOM-AA medium, respectively.
Quantitative Polymerase Chain Reaction(Q-PCR)
Total RNA was isolated from 50 mouse oocytes for each
group by using Trizol reagent (Invitrogen, Carlsbad, CA).
The RNA was reverse transcribed into complementary
DNA(cDNA) using the High Capacity cDNA Reverse Tran-
scription (RT) kit (Applied Biosystems, CA, USA); then, the
cDNA was quantified by Q-PCR using a SYBR PrimeScript
RT-PCR Kit (TaKaRa, Dalian, China) on a CFX96 Real-
Time PCR Detection System (Bio-Rad, CA, USA) under
standard conditions. The cycle threshold (Ct) value used to
calculate the relative expression was the average of three
replicates and was normalized against that of the reference
gene (GAPDH). The primer information was summarized
in Table 1. The mRNA expression levels were calculated
using the 2-△△Ct method [37].
Table 1 PCR primers used for SYBR green Q-PCR analysis

Gene name Assay ID Primer Seq (5

Hsp70 (Hspa1b) NM_010478 F:TGTTCCAGT

R:CCACAAAAC

Hsp90 (Hsp90aa1) NM_010480 F:AAGGCAGA

R:AGGGGAGG

Nrf2 (Nfe2l2) NM_010902.3 F:CAGTGCTCC

R:GCGGCTTGA

Hsf1 NM_008296N.2 F:GCTCTGGAC

R:CTCTTGCTTG

Bcl-xl NM_001289716.1 F:GACAAGGA

R:TCCCGTAGA

GAPDH NM_008084.3 F:CATGGCCTT

R:GCCTGCTTA
In vitro fertilization (IVF)
The fresh and vitrified-warmed oocytes were first individu-
ally placed into 70 μL drops of human tubal fluid (HTF)
medium (Millipore) under mineral oil, then 10 μL of capac-
itated sperm, which had been incubated for 1–1.5 h in HTF
medium in a CO2 incubator, was added to the oocytes.
The final concentration was 2.0-6.0 × 106 sperm/mL. Five h
after IVF, the oocytes were removed from the fertilization
drops, washed in KSOM-AA medium (Millipore) 3 times,
and cultured in 70 μL drops of KSOM-AA medium. Em-
bryos at the two-cell and blastocyst stages were examined
and recorded at 24, and 96 h after start of culture in
KSOM-AA medium, respectively.
Statistical analysis
Statistical analysis was conducted by one-way ANOVA
followed by Duncan’s test using SPSS statistical software
(IBM, IL, USA). Data were expressed as the mean ±
standard error, and P < 0.05 was considered significant.
Results
Effect of melatonin on redox state in vitrified-warmed
mouse mature oocytes
After warming, mouse MII oocytes were cultured for
1 h in M2 medium containing different concentrations
(0, 10−9, 10−7, 10−5, 10−3 mol/L) of melatonin, respect-
ively. Then the oocytes were used for detection of ROS
and GSH levels. As shown in Fig. 1, the ROS level was
lower (P < 0.05) in 10−3 mol/L melatonin-treated group
than in melatonin-free group (control), and the GSH
level in melatonin-treated groups showed no signifi-
cant difference (P > 0.05) when compared with control
group.
'→3') Product length, bp Tm, °C

AGCCTGGGAAG 165 58

CTTAACATGGACA

GGCTGACAAGA 212 58

CATTTCTTCAGT

TATGCGTGAA 109 58

ATGTTTGTC

CCATAATCTC 122 58

ACACGGAC

GATGCAGGTATTGG 124 58

GATCCACAAAAGT

CCGTGTTCCTA 104 58

CCACCTTCTT



Fig. 1 Effects of melatonin on intracellular levels of reactive oxygen species (ROS) and glutathione (GSH) in vitrified-warmed mouse oocytes.
Fluorescence intensities were correlated with intracellular levels of ROS and GSH. Number of Oocytes in each group (n). a and b denote
significant differences (P < 0.05)
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Effect of melatonin on parthenogenetic development of
vitrified-warmed mouse metaphase II oocytes
As shown in Table 2, when vitrified-warmed mouse MII
oocytes were cultured for 1 h in M2 medium with different
concentrations (0, 10−9, 10−7, 10−5, 10−3 mol/L) of mela-
tonin, respectively, followed by parthenogenetic activation,
the cleavage rate decreased significantly in 10−3 mol/L
melatonin-treated group when compared with control
group, but the blastocyst rate in all melatonin-treated
groups was similar to (P > 0.05) that in control group.

Effect of melatonin on genes expression in vitrified-
warmed mouse metaphase II oocytes
As shown in Fig. 2, when vitrified-warmed mouse MII
oocytes were cultured for 1 h in M2 medium with differ-
ent concentrations (0, 10−7, 10−3 mol/L) of melatonin,
Table 2 Parthenogenetic development of vitrified-warmed
mouse MII oocytes after melatonin treatment

Group
(melatonin
treatment)

Total No.
of
oocytes
examined

No. of
oocytes
survived

No. of oocytes developed to

2-cell (%)a Blastocyst (%)a

0 mol/L 60 51 41(80.39 ± 5.19)b 27(52.94 ± 5.88)b

10−9 mol/L 120 97 73(81.31 ± 3.60)b 47(55.04 ± 3.80)b

10−7 mol/L 100 88 67(79.95 ± 4.05)b 40(42.36 ± 6.08)b

10−5 mol/L 100 84 57(74.24 ± 6.73)b 41(54.58 ± 6.11)b

10−3 mol/L 100 88 50(54.84 ± 7.92)c 29(47.22 ± 2.78)b

1,.a Number of 2-cell or blastocyst/Number of oocytes survived
2, Percentage data are presented as mean ± SEM from at least 3 replicates
b and c, denote significant differences (P < 0.05)
3, Melatonin treatment: the vitrified-warmed mouse MII oocytes were cultured for
1 h in M2 medium with different concentrations (0, 10−9, 10−7, 10−5, 10−3mol/L) of
melatonin, respectively, then they were used for parthenogenetic activation
respectively, the expressions of Hsp90aa1, Hsf1, Hspa1b,
Nrf2 and Bcl-x1 were decreased in the 10−3 mol/L
melatonin-treated group when compared with the other
two groups. But the expressions of Hsf1, Hsp90aa1 and
Bcl-x1 in the 10−3mol/L melatonin-treated group were
lower than those in the melatonin-free group (P < 0.05).
Compared with the melatonin-free group, the 10−7 mol/L
melatonin-treated group showed decreased expressions in
genes Hsf1 and Hspa1b, increased expression in genes
Hsp90aa1, Nrf2 and Bcl-x1, and significantly increased
(P < 0.05) expression in gene Hsp90aa1 .

Effect of melatonin on subsequent embryonic
development after IVF
As shown in Table 3, when vitrified-warmed mouse MII
oocytes were cultured for 1 h in M2 medium with differ-
ent concentrations (0 and 10−7 mol/L) of melatonin, re-
spectively, followed by IVF. The fresh mouse MII
oocytes were used as control. Either the cleavage or the
blastocyst rates in both the melatonin-treated and
melatonin-free groups were similar, but they were sig-
nificantly lower (P < 0.05) when compared with the fresh
control group.

Discussion
Mammalian oocytes with complicated subcellular struc-
ture are sensitive to the temperature and osmotic pres-
sure changes [38]. During cryopreservation, changes
could occur in the microenvironment of the oocytes,
such as the formation and release of large amounts of
ROS [9], consequently influencing the quality of oocytes
[39]. The excessive ROS production due to oocyte cryo-
preservation could disturb the balance between the



Fig. 2 Effect of melatonin on genes expression of mRNA in vitrified-warmed mouse oocytes. The relative expression level of mRNA were determined by
the 2-ΔΔCT method and normalized against GAPDH. All data are mean ± SEM from 3 replicates. a, b and c, denote significant differences (P< 0.05)
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oxidation-reduction reaction and the antioxidant system,
and would lead to reduced cell viability [10]. Nakano
and his coworkers found that overproduction of ROS
can be removed by adding melatonin into oocytes cul-
ture medium [40], and the development of oocytes could
be improved [41, 42]. In the present study, the excessive
ROS production in mouse oocytes due to cryopreservation
could also be decreased by addition of melatonin to the cul-
ture medium. The mechanism of melatonin scavenging
ROS is consistent with that of other antioxidants [43, 44].
Only when the melatonin concentration was within

proper limits can it promote the development of oocyte
and embryo either by scavenging the excessive ROS as
described above, or by regulating gene expression
through transcriptional factor Nrf2 [45]. Glutamate cyst-
eine ligase modifier subunit (Gclm) could be regulated
Table 3 The subsequent embryonic development of vitrified-
warmed mouse MII oocytes treated with melatonin followed by
IVF

Group Melatonin
concentration

No of
oocytes
used for
IVF

No. of oocytes developed to

2-cell(%)a Blastocyst(%)a

Fresh 0 mol/L 60 57(93.55 ± 2.54)b 51(84.78 ± 0.36)b

Vitrified 0 mol/L 58 35(60.53 ± 5.48)c 25(43.51 ± 12.61)c

Vitrified 10−7 mol/L 59 33(55.39 ± 8.02)c 23(36.93 ± 6.15)c

1,a Number of 2-cell or blastocyst/Number of oocytes used for in vitro
fertilization (IVF)
2, Percentage data are presented as mean ± SEM from at least 3 replicates.b

andc, denote significant differences (P < 0.05)
3, Melatonin treatment: the vitrified-warmed mouse MII oocytes were cultured for
1 h in M2 medium with different concentrations (0, 10−7 mol/L) of melatonin,
respectively, then they were used for IVF. The fresh mouse MII oocytes were used
as control
by Nrf2, and when expression of gene Gclm changes in
oocytes, the GSH synthesis will be influenced. The de-
creased GSH level in oocytes [8] as well as the deficiency
of the Nrf2 and Nrf1 transcription factors could result in
early embryonic lethality [46]. In the present study, no
significant change was observed in either the Nrf2 ex-
pression or the GSH level after melatonin addition into
the culture medium. Similarly the blastocyst rate of
vitrified-warmed mouse oocytes after parthenogenetic
activation was not affected by melatonin treatment.
However, when the melatonin concentration in the cul-

ture medium was beyond the proper limits, it may not
show positive effect on the development of oocyte and em-
bryo. In mouse, melatonin increased the IVF rate signifi-
cantly at a concentration between 10−6 and 10−4 mol/L
[47]; while at 10−3 mol/L, it significantly retarded the
blastocyst rate [48]. In bovine, most effective melatonin
concentrations ranged from 10−9 to 10−7 mol/L; while
at 10−5 mol/L, it showed similar rates of cleavage and
blastocyst to the control [49]. Similar results have been
obtained in this study; when 10−3 mol/L melatonin was
added into the culture medium, the cleavage rate of
vitrified-warmed mouse mature oocytes after par-
thenogenetic activation, the expression of Hsf1, Hsp90
and Bcl-x1 was significantly decreased, but the blasto-
cyst rate was similar to the control. In a word, it
seemed that the melatonin has different effects on the
development of embryos, depending on the concentra-
tions [42, 50] and culture conditions [40, 51]. The
length of time that oocytes were exposed to exogenous
melatonin could also influence the development of em-
bryos [27, 51]. Addition of melatonin into the medium
in the whole process of culture, for instance, showed a
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positive effect on embryonic development in mice [47],
sheep and goat [52, 53], pigs [27] and buffalo [54]. In the
present study, the incubation time for culture of vitrified-
warmed mouse oocytes in M2 medium with melatonin was
only 1 h. In such a short period of time, the melatonin at
the concentration range of 10−5-10−9 mol/L could not im-
prove the rates of cleavage and blastocyst. It seemed that
the culture time in M2 medium with melatonin should be
prolonged.

Conclusion
To sum up, ROS level was significantly decreased in
10−3 mol/L melatonin-treated group compared with
the other concentration and groups, and the expression of
Hsp90aa1 increased significantly in 10−7 mol/L melatonin-
treated group. GSH level, rates of cleavage and blastocyst
development of oocytes after parthenogenetic activation
and IVF were similar between the melatonin-treated and
melatonin-free groups. Therefore, the addition of melatonin
into the culture medium in the present study showed no
positive effect on the subsequent development of vitrified-
warmed mouse MII oocytes, even if there were alteration
in gene expression.
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