
JOURNAL OF ANIMAL SCIENCE
AND BIOTECHNOLOGY

Van Eenennaam Journal of Animal Science and Biotechnology 2013, 4:37
http://www.jasbsci.com/content/4/1/37
REVIEW Open Access
GMOs in animal agriculture: time to consider
both costs and benefits in regulatory evaluations
Alison L Van Eenennaam
Abstract

In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over
70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for
the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over
one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety,
between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE
food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that
GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk,
meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence
from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for
more animal feeding studies, including long-term rodent studies and studies in target livestock species for the
approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to
evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies
would sharply increase regulatory compliance costs and prolong the regulatory process associated with the
commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional
characteristics and durability, particularly in the local varieties in small and poor developing countries. More
generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and
benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against
those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a
GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal
hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving
a new GE plant or animal on agricultural production systems.
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Introduction
A high proportion of soybean (81%), cotton (81%), corn
(35%), and canola (30%) crops grown globally are genet-
ically engineered (GE) varieties (Figure 1) [1]. It has been
estimated that over 70-90% of harvested GE biomass is
fed to food producing animals [2], making the world’s
livestock populations the largest consumers of the
current generation of GE crops. Crops that are produced
using GE are likely to become even more important to
animal agriculture as the global livestock population
grows in response to increased demand for animal
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protein products. Prior to commercialization, GE crops
must go through an extensive safety evaluation. The Or-
ganisation for Economic Co-operation and Development
(OECD) has established safety assessment processes
based on the principle of “substantial equivalence” to as-
sure that foods derived from GE crops are as safe and
nutritious as those from plants derived through conven-
tional breeding [3]. The concept is based on the
principle that “if a new food is found to be substantially
equivalent in composition and nutritional characteristics
to an existing food, it can be regarded as being as safe as
the conventional food” [4]. For GE crops, this compari-
son entails an extensive chemical analysis of key macro-
nutrients, micronutrients, antinutrients and toxins. Most
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Figure 1 Global adoption rates (%) for principal GE crops in
2012 [1]. Figure used with permission.
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conventionally-bred crops that are on the market have
not ever been tested for their safety in animals, but they
are known to be safe based on their history of safe use.
Likewise, few foods have been subject to toxicological
testing.
Inclusion in a balanced diet has often been a compo-

nent of the regulatory approval package for a new GE
crop. These studies are typically performed with rodents
for a duration of 90 d. Although this is technically only
required when the composition of the GE plant has been
modified substantially, or there are indications for the
potential occurrence of unintended effects [5], some are
calling for an increase in the number, length, and target
species (i.e. livestock) involved in animal feeding studies
required for the regulatory approval of GE crops.
On June 2013, the European Commission published a

Regulation (EU) No 503/2013 requiring an obligatory 90-d
whole food/feed rodent feeding study for regulatory ap-
proval of each GE crop event [6]. Depending on the out-
come of this study, a 2-year long-term GE feeding study in
rats may also be requested, on a case-by-case basis. This
Regulation passed despite the fact that the European Food
Safety Authority (EFSA) questioned the need to provide
such studies for the risk evaluation of each GE crop appli-
cation as follows: “When ‘molecular, compositional pheno-
typic, agronomic and other analyses have demonstrated
equivalence of the GM food/feed, animal feeding trials do
not add to the safety assessment’” [5]. There are consider-
able costs involved in performing animal feeding studies.
In 2007 it was estimated that the range of costs involved
with animal performance and safety studies (typically a
90-d whole food/feed rodent feeding study) for approval
of a GE crop ranged from $USD 300,000–845,000 [7]. Pre-
sumably costs have increased since that time, and if longer
studies are required costs would likewise be increased. A
recent two-year rat feeding study involving 200 rats was
purported to cost 3.2 million Euro (~ $USD 4 million) [8].
Calls to do long-term or mutigenerational GE feeding
studies on long-lived target species such as cattle would
be orders of magnitude more expensive; assuming suffi-
cient feed from the GE crop and its isogenic comparator
was available to perform such work. Additionally the cost
of rendering the animals would need to be factored into
regulatory evaluations as animals would not be able to
enter the food supply if fed an as yet unapproved GE crop
variety.
The purpose of this paper is to review the rationale

and results of peer-reviewed animal feeding studies
using GE crops. Results from short-term and long-term
studies are evaluated to determine if additional informa-
tion was identified in these long-term studies that would
not have been picked up in the short-term study, and
the details of some highly controversial studies are
reviewed. It is suggested that animal feeding studies
should only be required if there is some reasonable food
safety concern indicated during the regulatory evaluation
of GE crops that has not been adequately addressed by
in silico and in vitro analyses. Further, the need to evalu-
ate both the risks and benefits in regulatory evaluations
is discussed given the weight of scientific evidence on
the safety and performance of GE crops that have been
commercialized to date.

Short-term rodent feeding studies
The protocols for 90-d rodent studies were adapted
from those for in vivo toxicological studies [9] and are
intended to assess feed safety. This protocol recom-
mends 10 animals per sex and per group, with three
doses of the test substance and a control group. It was
developed to test the toxicology of a chemically defined
molecule (e.g. a drug), not complex materials like GE
feed. It becomes somewhat problematic to appropriately
“dose” the GE feed because diets must be balanced to
meet the nutritional requirements of the rodents. Too
much of a single crop or species in the diet may result
in deleterious nutritional effects and associated pheno-
types, independent of the GE status of the crop. GE
feeding studies typically incorporate 33% GE animal feed
in the test diet. Ideally, the GE line is compared to its
near isogenic counterpart grown in the same location
and environment, and possibly also a non-GE line (con-
ventional comparator) considered to be safe. The latter
is included to estimate the natural variability of analytes
seen within the crop species. Several studies have re-
vealed that environmental factors (such as field location,
planting, sampling time, crop management practices),
and genetic factors like line/breed and mutagenesis can
result in more variability in gene expression between
samples than is observed resulting from GE [10-12]. The
failure of many researchers to appropriately match their
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experimental GE diets to appropriate isogenic and nutri-
tionally equivalent control diets has resulted in some of
the most controversial, and highly criticized, GE feed
safety studies.

Long-term and multigenerational animal feeding studies
Ninety-day rodent toxicology feeding studies are not
designed to measure effects on reproduction or develop-
ment. Likewise, they are not designed to detect long
term effects in animals, or the effect that eating a GE-
based diet has on the next generation. This has resulted
in a call for more long term and multigenerational ani-
mal feeding studies. Although, it should be noted that
analyses of available data indicate that, for a wide range
of substances, reproductive and developmental effects
are not potentially more sensitive endpoints than those
examined in subchronic toxicity tests [13]. Several re-
view papers that summarize the results of long-term and
multigenerational feeding studies in a variety of species
have been published recently [2,14-16]. The duration of
published long-term feeding studies using a GE-based
diet ranged from 110 d [17-19] to 728 d [20]. The lon-
gest multigenerational study involved ten generations of
quail fed up to 50% GE corn [21].
In a comprehensive review of the health effects of GE

plants, Snell et al. [15] focused on 12 long-term and 12
multigenerational feeding trials with GE crops that also
had a 90-d rodent study GE feeding study comparator
[22-29]. It is important to note that these studies were
financially supported by public funds. The question they
specifically asked was, “Do long-term and multigener-
ational GE feeding studies provide any new evidence indi-
cative of some adverse effect(s) that were not previously
identified in the 90-d rat study”? The authors concluded
that while none of the long-term or multigenerational
studies they evaluated revealed any new effect that had
not been found in the 90-d rodent toxicology study, there
was a need to develop reproducible and standardized
protocols for conducting and analyzing complementary
fundamental research using different animal models on
long-term and multigenerational studies. Some of the
long-term and multigenerational studies examined did not
use isogenic lines as controls, and the organs and parame-
ters that were measured varied greatly among the studies.
Few studies have been conducted using the same GE line
and species, and even when they were conducted in the
same species, different parameters were measured making
a meta-analysis of the data problematic. The authors sug-
gested that while a more standardized protocol for long-
term and multigenerational studies would be useful for
exploratory fundamental research projects, such studies
should be conducted on a case-by-case basis for GE food
safety only if some reasonable doubt remained after a 90-d
rodent feeding trial.
Another review examined 60 high-throughput “-omics”
comparisons between GE and non-GE crop lines, including
17 long-term and 16 multigenerational animal feeding stud-
ies, to determine if these additional tests raised new safety
concerns [14]. High-throughput “-omics” – transcriptomics,
proteomics, and metabolomics - methods have been sug-
gested as a nontargeted approach to detect unintended
effects in GE plants. Long-term studies included rats
[20,30-32], mice [33-37], salmon [38,39], beef cattle [40],
dairy cows [41], macaques [42], pigs [19], and quail [43].
Multigenerational studies included rats [44-48], mice
[49-53], pigs [54-56], bulls [56], dairy cows [56], goats
[57], sheep [56,58], broilers [56,59], laying hens [56,60],
and quail [21,61]. These powerful studies consistently re-
vealed that GE had fewer unintended effects than conven-
tional breeding techniques. The authors suggested that the
small number of unintended effects observed, including
changes in the level of lactate dehydrogenase enzyme in
goats fed GE soybean [57], and immune responses in mice
fed GE triticale in the fifth generation of mice [49], fell
within the normal range of variation, and did not suggest
that they represented a health hazard. Even when GE
crops were designed to intentionally have altered meta-
bolic traits, “-omics” expression profiling technologies re-
vealed few unintended effects [14]. The authors concluded
that “none of the “-omics” comparisons has raised new
safety concerns about (marketed) GE varieties; neither did
the long-term and multigenerational studies on animals”.
They further proposed that the data collected to date sug-
gest that the risk assessment should actually be lowered
for GE crops.
A highly controversial study by Séralini claimed that

feeding GE glyphosate tolerant corn and a related herbi-
cide formulation over a two year period caused organ
damage, tumors, and early death among Sprague–Dawley
rats [8]. The authors used a 90-d rodent toxicology feeding
study design to study long-term carcinogenicity while fail-
ing to consider that 2-yr old rats of the Sprague–Dawley
strain are known to be highly susceptible to developing
tumors [62]. Independent scientists have noted numerous
design flaws in the Séralini study [63,64] including too few
animals per treatment group, too few controls (20 control
animals (10 male and 10 female) versus 180 “treated” ani-
mals), inappropriate histological and statistical analysis of
mortality and tumor rates, and ignoring the fact that many
other peer-reviewed long-term studies with contradictory
results have been conducted by independent scientists
from around the world. This includes a two-yr rat feeding
study, funded by the Japanese government, which found
no deleterious effects of feeding GE feed in their long-
term feeding trial [20]. In that study the researchers
followed the suggested experimental design for a 104 wk
carcinogenicity study [65,66] which includes the use of 50
animals per treatment group, use of a rat strain that has
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an acceptable survival rate for the long-term study, and
appropriate statistical analysis of their data. The highly-
publicized but poorly-executed Séralini investigation has
since been thoroughly debunked by regulatory agencies
throughout the world [67-75].
Another infamous study conducted by Ewen and

Pusztai [76] in 1999 reported several injurious effects in
the gastrointestinal tract of rats that had been fed GE
potatoes expressing the antinutritive lectin Galanthus
nivalis agglutinin (GNA), a compound with insecticide
activity. It was claimed that the consumption of GE
potatoes had significant effects on the immune system
of rats in the feeding trials, because of some effect of GE
itself rather than because of the particular gene inserted.
However a report by the Royal Society concluded that
the data reviewed “provide no reliable or convincing evi-
dence of adverse (or beneficial) effects, either of lectins
added to unmodified potatoes or of potatoes genetically
modified to contain a lectin gene, on the growth of rats
or on their immunological function” [77]. That report
criticized the rat feeding study for the common trial
design errors of too few animals per diet group and
the lack of controls such as a standard rodent diet
containing about 15% protein (the test diet was severely
protein deficient at ~ 6%) [77]. Irrespective, given that
lectin has been widely documented to be toxic and/or al-
lergenic, GE crops expressing such a substance would be
highly unlikely to ever obtain regulatory approval [78].
A critical review of the other published studies where

change(s) in some parameters are reported to result from
GE feed also reveal deviations from standard protocols
[14,15,79]. These include control feed that was not derived
from near isogenic lines, insufficient animal numbers for
statistical power, over interpretation of differences which
lie within the normal range of variation and hence are not
biologically significant, and/or poor toxicological inter-
pretation of the data. This emphasizes the need to follow
required standard protocols in animal feeding studies.
This lack of compliance with international protocols by
some research groups, and the highly sensational presen-
tation of their results in public settings have led to the
unfortunate situation where companies are reticent to
provide plant material for independent feeding studies
[15]. This is particularly problematic for researchers who
are interested in pursuing feeding trials in livestock species
which typically require larger amounts of GE feed.

Animal reproduction
The reproductive effects of GE crops are another area
that has generated debate [16]. In this regard several
controversial studies are often cited. Some of these stud-
ies were not published in the peer-reviewed literature
but rather were posted only on the internet and publi-
cized at press conferences [80,81]. The Ermakova study
[80] claimed that transgenic soybeans compromised the
fertility of rats and dramatically decreased the survival
and growth of their offspring. However the study was
criticized for numerous design flaws by academic scien-
tists [82]. The other internet study [81] housed male and
female mice as breeding pairs for approximately 20 wk
during which time they were allowed to produce litters
continuously. The authors identified differences in re-
productive parameters between mice fed with GE maize
and the controls. They reported that there were statisti-
cally significantly fewer pups born in the GE group in
the 3rd and 4th litters, and that there were fewer pups
weaned in the 4th litter compared with the control
group. The study was withdrawn from the internet by
Austrian officials because of weaknesses in experimental
design, calculation errors and deficiencies in the statis-
tical analysis [83].
The fact that studies which did not even reach the

accepted standard of peer-review publication can receive
such wide publicity and be uncritically cited as evidence
of the risks of GE crops by some authors [84] is unfortu-
nate given a large number of less controversial, and
hence less famous, carefully controlled peer-review stud-
ies that revealed no negative effects of GE-feed on vari-
ous attributes (e.g. gonad weight, fecundity, fertility,
gonadal histopathology) of female [23-26,46,47,85-96]
and male [23-26,46,47,50,51,85,87,89-96] reproduction
in animal feeding studies.
Another study examined the ultrastructural and im-

munocytochemical features of preimplanation embryos
from 10 two-mo old mice fed a standard diet containing
14% GE soybean or non-GE soybean until weaning [97].
Morphological observations revealed that the embryo
nuclear components were similar in the two experimen-
tal groups, but pre-mRNA maturation seemed to be less
efficient in the embryos from GE-fed mice than controls.
Again, this study did not provide any information on the
source of the GE soy or the control, nutritional compos-
ition of the diet, and the number of female mice per
group (n=5) was small. Non-adherence to standard pro-
cedures makes data interpretation difficult as it is not
clear which of the multiple variables that differed be-
tween the groups were causative of the observed differ-
ences. Research published between 2002 and 2005 by
researchers in Italy indicating ultrastructural changes in
organs in the liver, pancreas and testes of mice fed diets
supplemented with GE and non-GE soya [36,37] has
likewise been criticized by independent scientific groups
[98,99] regarding a lack of information concerning the
source of the GE soybean, the appropriateness of the
control soybean used in the diet, and the nutritional
composition of the diet.
Clearly these repeated experimental design flaws in ani-

mal feeding studies evaluating GE feed are exacerbating
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the continued controversy associated with the safety of GE
food and feed that currently divides not only the general
public but frequently also the scientific community. Ani-
mal scientists have an obligation to ensure that feeding
studies using GE crops are carried out according to stand-
ard protocols [5,13,65,100-102] (Table 1) to ensure data
can be appropriately analyzed and unambiguously inter-
preted in the absence of confounding factors.

Statistical analysis and experimental design
The scientific question being addressed by feeding stud-
ies should be well-established before designing the study
[79]. Designing experiments to test for intended effects
is relatively straightforward. Sample size determinations
are based on the size of the effect that is considered im-
portant and the required power (i.e. probability that the
test will reject the null hypothesis when the alternative
hypothesis is true) for a given significance level. Statis-
tical power increases with the sample size, if all other
parameters of statistical testing are held constant.
Animal feeding trials are sometimes also used to identify

“unintended” effects. These are effects or results that were
not expected nor considered in the experimental design
and sample size calculations. If many independent tests
are performed on the same sample, the probability of
obtaining significant results will increase merely due to
the multiple comparisons being performed. For example,
when many parameters are measured it is likely just by
chance one in 20 will rise to the level of statistical sig-
nificance (assuming P < 0.05) [103]. The correct statistical
methods should be used to analyze for the statisti-
cal significance of multiple comparisons. Two common
methods, Bonferroni adjustment and the False Discovery
Rate, are among approaches used to take multiple com-
parison issues into account. The false discovery rate (FDR)
is a technique specifically developed for controlling the
expected proportion of falsely rejected hypothesis [104].
Table 1 Recommendations for the conduct of animal studies

Animals
(species/categories)

Number of animals
(coefficient of variation 4 to 5%)

Duration of
experiments

Poultry for meat
production

10-12 pens per treatment with
9–12 birds per pen

5 wk or more

Poultry for egg
production

12-15 replications per treatment
with 3–5 layers per pen

18-40 wk of ag
at least three
28-d phases

Swine 6-9 replications per treatment with
4 or more pigs per replication

Piglets (7–12 k
4–6 wk Growe
(15–25 kg) 6–8

Growing and
finishing ruminants

6-10 replications per treatment
with 6 or more cattle per

replication

90-120 d

Lactating dairy cows 12-16 cows per treatment 28 cows
per treatment

Latin square 28
periods Random

block design

Table used with permission [2].
The use of FDR or similar techniques allows this control
and improves the probability of discriminating statistical
differences from those generated by random chance.
It is also important to understand the biological rele-

vance of statistically significant differences that might
occur between treatment groups. The European Food
Safety Authority (EFSA) clarified the difference be-
tween statistical significance and biological relevance
[103]. Statistical significance is a term that has a spe-
cific and distinctive meaning when used in the context
of statistical hypothesis testing. Significant does not ne-
cessarily mean “important” or “meaningful” but rather
is a statistical statement on the property and informa-
tion content of the observed data. Biological relevance,
on the other hand, “implies a biological effect of interest
that is considered important based on expert judgment.
Its use refers to an effect of interest or to the size of an
effect that is considered important and biologically
meaningful and which, in risk assessment, may have
consequences for human health. The objective of carry-
ing out an empirical study is usually to identify the ex-
istence of relevant biological effects at the population
level using statistical tools to detect them. Therefore the
identification of statistical significance is only part of
the evaluation of the biological relevance” [103]. Im-
portantly it is stressed that the “nature and size of bio-
logical changes or differences seen in studies that would
be considered relevant should be defined before studies
are initiated” rather than be derived from a post-hoc
analysis of the data. This enables the design of experi-
ments with sufficient statistical power to be able to
detect such biologically relevant effects of this size if
they truly occurred.
Ignoring this distinction is a frequent criticism of stud-

ies where a statistically significant treatment effect is
found in a post-hoc analysis of a data set with a small
sample size and spurious conclusions regarding the
to evaluate GE crops [101]

Composition
of diets

Measurements/endpoints

Balanced
diets

Feed intake, gain, feed conversion, metabolic
parameters, body composition

e, Balanced
diets

Feed intake, egg production, feed conversion, egg
quality

g)
rs
wk

Balanced
diets

Feed intake, gain, feed conversion, metabolic
parameters, carcass quality

Balanced
diets

Feed intake, grain, feed conversion, carcass data,
metabolic parameters

d
ized

Balanced
diets

Feed intake, milk performance and composition,
body weight, body condition score (BCS), cell

counts in milk, animal health



Table 2 Examples of lifespans for growing/fattening
animals, in days [79]

Animal species/
categories

Conventional/more
intensive

Organic/more
extensive

Chickens for fattening
(broilers)

3-42 56-84

Turkeys for fattening 56-168 70-112

Growing/fattening pigs 150-300 200-400

Veal calves 80-200 -

Growing/fattening bulls 300-500 400-600

Laying hens and dairy cattle are usually used for longer periods:
Laying hens: about 126–140 d for growing (pullets); about 300–360 d (one
year) for the laying period.
Dairy cattle: about 22–36 mo for growing (heifers); one to ten yrs for lactation
(average in Europe two to five lactations).
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biological relevance of the finding to health are inferred.
This distinction is especially relevant in the absence of
knowledge regarding the normal level of biological vari-
ation that may exist between different non-GE cultivars
and varieties. Many constituents in crop plants vary
widely due to environmental factors (such as field loca-
tion, planting, sampling time, crop management prac-
tices), and genotype and this natural variation is not
typically considered to be a food safety concern. For the
purposes of a safety assessment, the question is not
whether a GE line has a statistically different level of
some constituent from its near-isogenic nontransgenic
comparator, but rather whether differences are biologic-
ally relevant to health according to expert judgment.

Feeding trials in target species
Target animal (food producing animals such as ruminants,
pigs, poultry, and fish) feeding studies have not been re-
quired for regulatory approval in part because first gener-
ation GE crops have proven to be substantially equivalent
to their conventional counterpart. Over the past 20 yr,
the U.S. Food and Drug Administration (FDA) has found
that all 148 transgenic events they have evaluated, and
that includes all of the GE crops that have ever been com-
mercialized, were substantially equivalent to their conven-
tional counterparts [105]. These studies have spanned GE
corn, soybean, cotton, canola, wheat, potato, alfalfa, rice,
papaya, tomato, cabbage, pepper, raspberry and mush-
room, and included traits of herbicide, drought and cold
tolerance, insect and virus resistance, nutrient enhance-
ment, and expression of protease inhibitors.
Studies with target animals conducted to date have

typically been conducted to evaluate nutritional and
feed equivalency of GE, rather than to evaluate safety.
Flachowsky et al. [2] summarized the results of well over
100 studies feeding target animals (dairy cattle (12), beef
cattle (14), other ruminants (10), pigs (21), broilers (48),
laying hens (12), other poultry (1), others (fish, rabbits,
etc.) (8)) with GE feed from various review documents
[78,106]. They concluded that there is good agreement
from these studies that feed from GE crops did not
significantly influence feed digestibility, animal health,
biologically relevant effects on animal performance,
composition of animal products, or result in unintended
effects (with the exception that lower mycotoxin con-
centrations have repeatedly been found in Bacillus
thuringiensis toxin-expressing GE crops [107]) when
compared to animals fed isogenic non-GE varieties [2].
An important consideration in target species feeding

trials is the substantial costs involved in large animal
feeding trials. This is especially true when contemplating
long-term or mutigenerational studies on long-lived ani-
mals (Table 2). Therefore, long term studies and multi-
generational experiments with target animals to date are
rather rare [15]. As discussed earlier, many of these
long-term studies have not adhered to standard proto-
cols, underlying the vital need for careful consideration
of experimental design given the length of time needed
and expenses associated with target animal feeding stud-
ies. Increasing the number of animals, the length of the
trial, and the number of generations are all associated
with increased costs. High costs may prevent the public
sector from conducting such studies. Long-term, mul-
tigenerational and/or target animal feeding studies should
be considered and designed to address biologically-
relevant questions of second generation GE crop that can-
not or have not been answered using in silico and in vitro
methods, or a 90-d rodent feeding study. They should
be hypothesis-driven based on the novel traits and/or
phenotype associated with the gene/crop combination.
There are some other practical considerations that

dramatically increase the cost associated with feeding
target livestock with an “as yet unapproved” GE crop.
First researchers would need to obtain sufficient GE
crop material and an isogenic comparator for the feeding
study. Consider a 2-yr feeding study in dairy cattle in-
volving a total of 100 animals; 50 per treatment group.
Milk and meat from the cows eating the unapproved GE
feed would not be able to enter the food chain and as-
suming a double blind study design the opportunity cost
of that alone would likely be (100 cows × [$USD 5,000/
year for milk × 2 yr + $800 cull cow]) in excess of $USD
1,000,000. Housing and bedding for 100 cows at $300/
head/mo would be ~$USD 720,000, and then there
would be the costs of sample analysis, which conserva-
tively might add another $USD 500,000 depending upon
what analytes or endpoints were examined. The cost of
such a study would easily exceed $USD 2,000,000. In the
absence of an unaddressed safety concern, this expense
is not justified given that GE food/feed animal feeding
trials of substantially equivalent GE crops that have been
carried out to date have not been found to add to the
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safety assessment, and this also avoids unnecessary ani-
mal experimentation.
It should also be noted that although comparatively

few feeding trials of commercialized GE crops in target
livestock are in the peer-reviewed literature, large num-
bers of livestock in many countries have been consum-
ing GE feed for over a decade. For example, in 2011
alone approximately 9 billion broiler chickens, weighing
over 22.5 billion kg liveweight were produced in the
United States. During that year 30 million tonnes of
corn and 13.6 million tonnes of soy were used as broiler
and breeder poultry feed of which 88% and 94%, respect-
ively, was likely from GE crops. Production parameters,
mortality and condemnation rates for the more than 105
billion broilers that have been processed in the US since
2000 are shown in Figure 2. In 2000 approximately 25%
of corn and 50% of soy grown in the US was GE and
hence poultry diets have likely contained an ever in-
creasing proportion of GE feed from 2000 to 2011. This
very large field data set does not reveal overt health
problems associated with the consumption of GE feed,
but rather shows a continuation of industry trends that
were observed prior to the introduction of GE crops
(Figure 2).

Second generation crops
The second generation of GE crops, i.e. those with
intentionally changed composition or output traits [102]
is likely to include crops with more nutrients or less un-
desirable substances specifically targeted for animal feed.
Other second generation target traits include plants with
increased resistance to biotic and abiotic stressors such
as drought and saline soils and crops that are more effi-
cient in using limited natural resources to help address
the larger challenge of improving global food security
[2]. Second generation GE crops will by definition not
be “substantially equivalent”. Whether this represents a
safety concern will depend on the trait. One study ex-
plored the use of the current safety evaluation criteria
on a quality-improved GE potato and concluded that the
safety of the second generation crops can be properly
assessed using the existing current comparative safety
assessment methodology [108]. Standard protocols out-
lining best practices for the conduct of animal studies to
evaluate crops genetically modified for output traits have
been developed [102].
Animal feeding studies may be needed to assess the

bioavailability and/or digestibility of nutrients, and the
efficacy of nutrient uptake from second generation GE
crops [79,109]. It should be noted that target animal
feeding studies to measure these parameters are not
required prior to the release of new crop cultivars devel-
oped by traditional breeding, although they may be
voluntarily conducted by developers to gauge animal
performance on the new variety. It is difficult to scientif-
ically justify why the process of GE should be the trigger
for a target species feeding evaluation of such crops, ra-
ther than a product-based approach triggered by the
novel attributes (e.g. increased oil content, decreased lig-
nin) of the modified crop. A high oil crop produced
using other plant breeding approaches (e.g. radiation
mutagenesis which is known to alter gene expression
patterns more than GE [13]), would be logically accom-
panied by the same bioavailability, animal digestibility
and safety questions as a second generation GE crop
with the same phenotype.

Animal preference studies
Some groups have claimed that, given a choice, animals
prefer not to consume GE crops. The data to support
this assertion are typically anecdotal. There are few stud-
ies in the peer-reviewed literature addressing this topic.
One study evaluated beef steers grazing preferences for
GE and non-GE corn residue. Sixteen steers were grazed
on one pasture containing both GE and non-GE corn
residue. Their grazing distribution was recorded for
50 d. There was no significant difference in the grazing
preference of the animals [110]. In another study using a
second generation GE potato, both mice and humans
actually showed a preference for the aroma of a GE
nonbrowning potato as compared to non-GE potatoes
[111]. This effect was not observed when the potatoes
were fresh, it was only seen 24 h after the potatoes had
aged, presumably associated with the fact that the non-
GE potatoes had oxidized and turned brown by that
time. Several other studies have started to look at sen-
sory analysis of second generation GE crops [112-114].
In one study, inclusion of GE tomatoes with improved
antioxidant properties in the diet of cancer-susceptible
mice (p53-knockout mice) significantly extended their
lifespan when compared with mice fed standard diets or
diets supplemented with non-GE tomatoes [115].

Fate of recombinant (rDNA) and protein from GE crops
A number of studies have been conducted to look for
the presence of rDNA or the protein encoded by the
rDNA construct in the milk, meat and eggs from ani-
mals fed GE feed [116-120]. To date GE DNA and ex-
pression protein products have not been detected in
animal protein products derived from food animals fed
GE feed. The reason that scientists are researching this
topic, even though the presence of DNA and protein
from conventional crops in the diet of food animal has
not been considered to be problematic, is that con-
sumers are allegedly concerned that GE DNA could alter
animal health and in turn eventually pose a threat to hu-
man health [121]. The scientific merit of this perception
is dubious given that animals and people eat foreign



Figure 2 Summary statics of United States commercial broiler data. a) Number of chickens processed; b) Average weight of chickens;
c) Percent of chickens condemned by USDA at inspection; d) Average d to market; e) Efficiency of feed utilization (kg of feed required for one kg
of live weight gain; and f) Percent mortality. Data from USDA Economics, Statistics and Market Information System (ESMIS). (http://
usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1497), and the National Chicken Council, Washington DC.
(http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-broiler-performance/).
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DNA from various crop species every day, and DNA is
generally recognized as safe whether it is derived from a
GE or conventionally-bred organism.
Some studies have reported finding traces of high copy

number plant nuclear and chloroplast DNA sequences in
animal organs and tissues [116]. The biological import-
ance of this finding is uncertain. To date there is no evi-
dence that eating DNA and proteins from another species,
GE or conventional, results in incorporation of food-based
DNA into the genome of the consumer. No country to
date has mandated the labeling of products from animals
fed with GE plants [121], although voluntary market-
driven approaches have resulted in some retailers offering
this as a choice for their customers. It is likely to be eco-
nomically if not technically impossible to use analytical
procedures to determine if milk, meat or eggs are derived
from animals fed with GE feed [121], and so such prod-
ucts will have to be sourced by supply chain management
and verified by documentation.

Global adoption of GE crops and use in animal
agriculture
There is a growing demand for meat and milk as the
world population climbs towards 9 billion people and the

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1497
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1497
http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-broiler-performance/
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income of consumers in developing countries rises, and
correspondingly there is a growing demand for animal
feed. Current crop yields will need to approximately
double to meet the feed demands of 2050, and in the ab-
sence of newly arable land this demand will necessitate
higher yielding crop varieties. Since its introduction in the
mid-1990s GE technology has added an additional 110
million tonnes of soybeans and 195 million tonnes of corn,
to the global production of these crops. Net level farm
economic benefits resulting from GE during that 15 year
period were valued at $USD 98.2 billion [122].
In 2012 about 170 million hectares of GE-plant crops

(12% of total arable land) were cultivated worldwide [1].
This is a 100-fold increase from the 1.7 million hectares
that were planted in 1996, making GE the fastest
adopted crop technology in recent history. During the
period 1996–2011 it has been estimated that the cumu-
lative economic benefits from cost savings and added
income derived from planting GE crops was $USD 49.6
billion in developing countries and $USD 48.6 billion in
industrial countries [122]. Of the 17.3 million farmers
who planted GE crops in 2012, 15 million were small
resource-poor farmers in 20 developing countries. Ap-
proximately 14.4 million small farmers in China (4 mil-
lion ha; mostly cotton, although papaya, poplar, tomato
and sweet pepper have all had production approvals),
and India (10.8 million ha cotton) collectively planted a
record 14.8 million hectares of GE crops in 2012 [1].
Animal agriculture is highly dependent upon GE

crops. Table 3 shows the importance of GE crops to the
Table 3 Share of global crop trade accounted for by GE
crops in 2011/12 (million tonnes) [125]

Soybeans Maize
(Corn)

Cotton Canola

Global production 238 883.5 27.0 61.6

Global trade (exports) 90.4 103.4 10.0 13.0

Share of global trade from
GE producers

88.6
(98%)

70.0
(67.7%)

7.15
(71.5%)

9.9
(76%)

Estimated size of market
requiring certified
conventional (in countries
that have import
requirements)

3.0 4.4 Negligible Negligible

Estimated share of global
trade that may contain GE
(i.e., not required to be
segregated)

87.4 70.0 71.5 9.9

Share of global trade that
may be GE

96.7% 67.7% 71.5% 76%

Notes: Estimated size of market requiring certified conventional in countries
with import requirements excludes countries with markets for certified
conventional for which all requirements are satisfied by domestic production
(e.g. maize in the EU). Estimated size of certified conventional market for
soybeans (based primarily on demand for derivatives used mostly in the food
industry): EU 2.0 million tonnes bean equivalents, Japan and South Korea
1 million tonnes.
animal feed export market. This creates a problem when
there are “asynchronous approvals” of GE events, where
an event is fully approved for commercial use in food
and feed in one country, but not in others (Figure 3).
This is particularly true for trade with the European
Union (EU), as it has been estimated that 98% of soy-
bean meal and 80% of all animal feed consumed in the
EU is imported, of which more than half is from GE
crops imported from Brazil, the USA, and Argentina
[123]. The EU imports approximately 70% of the soy-
bean meal used in animal feed and of this 80% is GE
[124]. The proportion of GE in animal feed is likely even
higher in the US where 93% of soy and 88% of all corn
grown were GE varieties in 2012 [1].
The EU does not provide for any tolerance threshold

for the accidental presence of unapproved GE events
that have received regulatory approval in other coun-
tries. A 0.1% “technical solution” threshold was approved
for feed material authorized in a non-EU country and
for which an EU authorization request for the GE event
in question has been lodged with EFSA for at least 3 mo
or for which the authorization has expired. The 0.1%
threshold is considered to be commercially unviable
[124], and as more GE crops are grown in major grain
exporting countries there is a very real possibility of
major trade disruptions resulting from asynchronous
approvals. Livestock production accounts for 40% of the
total value of agricultural production in Europe. It has
been estimated that if the EU were not able to import
soybean protein from outside the EU it would only be
able to replace 10-20% of imports by high protein feed
substitutes, and that this would result in a substantial
reduction in animal protein production, exports and
consumption, and a very significant increase in animal
protein imports into the EU [128].
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Cost:benefit analysis
In the abstract, the best approach for the regulatory evalu-
ation of GE crops is one that allows new GE crops to be
commercialized, while preventing new risks to animal and
human health and the environment [129]. It is almost cer-
tain that animal agriculture globally will continue to rely
on feed from GE crops. To date, commercialization of GE
crop varieties has been associated with disproportionately
high regulatory costs, regulatory delay, and considerable
trade uncertainty. This has made their commercialization
prohibitively expensive for all but the largest, multi-
national corporations.
Given the weight of scientific evidence on the safety of

GE crops and the considerable expense involved, the deci-
sion to conduct an animal feeding study with a GE crop
should be based on the need to answer a scientific ques-
tion that cannot be addressed using in silico and in vitro
methods. A reasonable hypothesis-driven food safety con-
cern should be the driver for the additional expense and
use of experimental animals required for such studies. The
specific objectives and the rationale for choosing to per-
form a long-term chronic toxicity and/or carcinogenicity
study should be clearly documented before conducting
the experiment based on a remaining unanswered safety
question following a 90-d rodent feeding trial.
Mandating long-term or target species animal feeding

studies costing millions of dollars based on the process
used to make a GE crop, rather than the unique traits
and/or phenotype associated with the gene/crop com-
bination is not justified based on the weight of evidence.
Regulations triggered by how products are made are in-
consistent with science-based risk assessment unless
there is something inherently risky about the process, as
compared to existing methods. A substantial body of
evidence shows that GE crops are no more risky than
conventionally bred crops, and mandating costly animal
feeding studies in the absence of a reasonable unad-
dressed food safety concern associated with the novel
trait and/or phenotype cannot be scientifically justified
and overregulation is an indulgence that global food se-
curity can ill afford.
Moreover, the current approach to regulating GE

crops does not evaluate the potential benefits that might
be associated with the introduction of a GE crop. There
have been substantial economic, production, and envir-
onmental benefits associated with the introduction of
the first generation of GE crops [122,129-132]. All tech-
nologies are associated with both risks and benefits, and
few would be adopted in the face of a risk-only analysis.
In some cases GE crops may pose fewer risks than are
implied by the non-GE alternative (e.g. reduced myco-
toxin in Bacillus thuringiensis corn [107]). Perhaps as
importantly, the lives saved or other benefits derived
from risk assessment and management must be large
enough to offset the costs and deferred potential bene-
fits. The poorest and most vulnerable disproportionately
bear the costs and impacts of excess regulation [129].
At the current time there are no international stan-

dards for assessing the potential benefits associated with
the release of a new GE organism, although in many
countries there are increasing calls for a risk-benefit ana-
lysis to form an integral part of GE regulatory frame-
works [133]. Shifting from a risk-only regulatory focus
to one that includes a risk:benefit analysis would enable
a more balanced and harmonized evaluation of the likely
impacts of introducing a new GE organism.

Conclusions
Hundreds of peer-reviewed animal feeding studies have
repeatedly shown that GE plants can safely be used in
feed, and rDNA fragments have never been detected in
products (e.g. milk, meat, eggs) derived from animals that
consumed GE feed. Given the 15 yr history of safe use and
absence of scientific evidence to suggest GE is associated
with unique risks, whole food/feed animal feeding studies
on GE crops should be reserved for GE crops where the
novel phenotype results in a reasonable food safety con-
cern that remains unanswered following all other analyses.
Indiscriminately requiring long-term and target animal
feeding studies based on a GE process-based trigger is not
scientifically justified and will have an inhibitory effect on
the development and commercialization of potentially
beneficial GE feed crops in the future. World-wide GE
regulations have disproportionately focused only on the
potential risks associated with GE technology and com-
mercialization of GE crops has been associated with a high
regulatory compliance expense which has slowed adoption,
particularly in small and poor developing countries. It is
time for regulatory frameworks to consider the benefits in
addition to any unique risks associated with GE technology.
There are many current (increased yields, reduced insecti-
cide use, improved feed quality), and potential future bene-
fits of GE including feed crops with enhanced nutritional
characteristics and durability. Regulatory frameworks
should formally evaluate the reasonable and unique risks
and benefits associated with the use of both GE plants and
animals in agricultural systems, and weigh them against
those associated with existing systems, and the opportunity
costs associated with regulatory inaction.
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