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Abstract

Cathelicidins are a major family of antimicrobial peptides present in vertebrate animals with potent microbicidal and
immunomodulatory activities. Four cathelicidins, namely fowlicidins 1 to 3 and cathelicidin B1, have been identified
in chickens. As a first step to understand their role in early innate host defense of chickens, we examined the tissue
and developmental expression patterns of all four cathelicidins. Real-time PCR revealed an abundant expression of
four cathelicidins throughout the gastrointestinal, respiratory, and urogenital tracts as well as in all primary and
secondary immune organs of chickens. Fowlicidins 1 to 3 exhibited a similar tissue expression pattern with the
highest expression in the bone marrow and lung, while cathelicidin B1 was synthesized most abundantly in the
bursa of Fabricius. Additionally, a tissue-specific regulatory pattern was evident for all four cathelicidins during the
first 28 days after hatching. The expression of fowlicidins 1 to 3 showed an age-dependent increase both in the
cecal tonsil and lung, whereas all four cathelicidins were peaked in the bursa on day 4 after hatching, with a
gradual decline by day 28. An abrupt augmentation in the expression of fowlicidins 1 to 3 was also observed in the
cecum on day 28, while the highest expression of cathelicidin B1 was seen in both the lung and cecal tonsil on day
14. Collectively, the presence of cathelicidins in a broad range of tissues and their largely enhanced expression
during development are suggestive of their potential important role in early host defense and disease resistance of
chickens.
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Background
Antimicrobial peptides (AMPs) are an important compo-
nent of the innate immune system playing a critical role
in host defense and disease resistance in virtually all spe-
cies of life [1-4]. AMPs generally consist of< 100 amino
acid residues, mostly cationic and amphipathic in nature,
which allows them to bind and disrupt negatively
charged microbial membranes leading to cell death. Be-
cause of non-specific physical interactions with mem-
branes, it is extremely difficult for bacteria to develop
resistance. In addition to being antimicrobial, a number
of AMPs were recently found to exert a broad range of
immunomodulatory roles by recruiting and activating all
major types of innate and adaptive immune cells [3,5].
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Therefore, AMPs are being actively developed for the
control and prevention of infectious diseases, particularly
against antibiotic-resistant bacteria [3].
Cathelicidins are a major family of AMPs in vertebrate

animals including chickens. All cathelicidins are synthe-
sized as prepro-peptides, with the prepro-sequence being
highly conserved across species and the carboxyl terminal,
biologically active mature sequence highly diversified [6].
In mammals, besides the mucosal epithelial cells lining the
digestive, respiratory, and reproductive tracts, cathelicidins
are most abundantly expressed in myeloid progenitor cells
and stored in neutrophil granules as pro-peptides, which
are converted into active forms by proteolytic cleavage
upon degranulation. The chicken genome was recently
found to encode four genes for cathelicidins, namely fowli-
cidins 1 to 3 and cathelicidin B1 that span a 7.5-kb
distance on chromosome 2 [7-10]. All four chicken catheli-
cidins are capable of killing a broad range of bacteria
including antibiotic-resistant strains [9,11-14]. Like in mam-
mals, fowlicidin-2/CMAP27 was shown to be localized in
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the granules of chicken heterophils, equivalent to mamma-
lian neutrophils, and processed into a mature form upon
stimulation with bacterial lipopolysaccharide [14].
AMPs including cathelicidins have been detected in the

meconium and feces of human infants [15], and elevated
levels of cathelicidin have been noticed in the infants asso-
ciated with respiratory infections [16], suggestive of the role
of cathelicidins and other AMPs in early host defense of
humans. In chickens, expression of fowlicidins 1 to 3 is
detected as early as day 3 of embryonic development and
then significantly increased as the embryo develops further,
whereas cathelicidin B1 is not expressed until day 9, but sig-
nificantly increased by day 12 in the developing embryo
[17].
In this study, we studied the tissue expression pattern

of four cathelicidins in 28-day-old broiler chickens and
further examined their expression in the first 28 days
after hatching. We observed that chicken cathelicidin
transcripts are synthesized in a wide range of tissues and
differentially expressed during the development, suggest-
ing that cathelicidins may play an important role of early
host defense of chickens.

Materials and methods
Tissue sampling and preparation
Day-old male and female Cornish Rock broiler chickens
were purchased from a commercial hatchery (Ideal
Poultry, Cameron, TX, USA) and reared under standard
care in Laboratory Animal Resource Facility at Oklahoma
State University, Stillwater, OK, USA. Tissues were
collected from chickens of 2, 4, 7, 14, and 28 days, with 3
to 5 animals per age group. The range of tissues that were
harvested included the crop, esophagus, proventriculus, giz-
zard, duodenum, jejunum, ileum, cecal tonsil, cecum, colon,
lung, heart, trachea, liver, spleen, thymus, kidney, skin,
breast muscle, brain, testis, ovary and bursa. All tissues were
snap frozen in liquid nitrogen and stored at −80°C until
used. Animal procedures were approved by the Institutional
Animal Care and Use Committee of Oklahoma State
University under protocol no. AG0610.

Isolation and quantification of total RNA
Tissues were homogenized in Tri Reagent (Sigma-Aldrich,
St Louis, MO, USA), followed by total RNA extraction
according to the manufacturer’s instructions. Air-dried
RNA pellet was suspended in nuclease-free water and
mixed thoroughly until the pellet was completely dis-
solved. RNA concentration and quality were measured
using NanoDrop Spectrophotometer (NanoDrop Products,
Wilmington, DE, USA).

Reverse transcription of total RNA
QuantiTect Reverse Transcription Kit (Qiagen, Valencia,
CA, USA) was used to synthesize the first-strand cDNA
from total RNA following the manufacturer’s recommen-
dations. Briefly, 0.3 μg of total RNA was first eliminated of
genomic DNA contamination in a genomic DNA wipeout
buffer for 5 min at 42°C. Reverse transcription was then
performed in a total volume of 4 μL using Quantiscript
reverse transcriptase and a mixture of random hexamers
and oligo(dT) primers for 30 min at 42°C, followed by
3 min at 95°C to inactivate reverse transcriptase. The cDNA
concentration was then measured using NanoDrop Spec-
trophotometer following a 10-fold dilution in nuclease-free
water.

Real time PCR
QuantiTect SYBR Green PCR Kit (Qiagen) was used for
real-time amplification of the first-strand cDNA using
MyiQ Real Time PCR Detection System (Bio-Rad,
Hercules, CA, USA) as previously described [9]. Briefly,
each PCR reaction was set up in a 96-well PCR plate in a
total volume of 10 μL using 0.1 μg of the first-strand
cDNA and gene-specific primers (Table 1). Real-time PCR
was programmed as follows: initial denaturation at 95°C
for 10 min, followed by 45 cycles of denaturation at 94°C
for 15 s, annealing at 55°C for 20 s, and extension and data
collection at 72°C for 30 s. Melting curve analysis was con-
ducted to confirm the specificity of PCR amplifications.
Comparative ΔΔCt method was used for quantification of
gene expression using the glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) gene as the reference gene for
data normalization [9].

Statistical analysis
All data were analyzed with one-way ANOVA, followed by
Tukey’s test using GraphPad Prism 5 (GraphPad Software,
La Jolla, CA, USA). The results were considered signifi-
cant, if P< 0.05.

Results and discussion
Tissue expression pattern of chicken cathelicidins
To determine the expression pattern of chicken catheli-
cidins, a panel of tissues were collected from three 28-
day-old Cornish Rock broiler chickens. Following RNA
isolation and reverse transcription, real-time PCR was
performed to reveal the gene expression levels of fowlici-
dins 1 to 3 and cathelicidin B1. As shown in Figure 1, all
four cathelicidins were widely expressed in most tissues
examined, except for breast muscle. It is evident that
cathelicidin B1exhibited a distinct expression pattern
from that of fowlicidins 1 to 3. While cathelicidin B1 was
most abundantly expressed in the bursa of Fabricius,
fowlicidins 1 to 3 were expressed highly in the lung and
throughout the digestive tract (Figure 1). A similar
expression profile of fowlicidins 1 to 3 is indicative of
their close phylogenetic relationship, whereas cathelici-
din B1 represents a distant family member. Indeed,



Table 1 Primer sequences of chicken cathelicidins for real time PCR

Gene Forward primer (5' to 3') Reverse primer (5' to 3') Product size, bp

cDNA Gene

Fowlicidin-1 GCTGTGGACTCCTACAACCAAC GGAGTCCACGCAGGTGACATC 261 882

Fowlicidin-2 CAAGGAGAATGGGGTCATCAG CGTGGCCCCATTTATTCATTCA 221 584

Fowlicidin-3 GCTGTGGACTCCTACAACCAAC TGGCTTTGTAGAGGTTGATGC 352 1095

Cathelicidin B1 CCGTGTCCATAGAGCAGCAG AGTGCTGGTGACGTTCAGATG 170 251

GAPDH GCACGCCATCACTATCTTCC CATCCACCGTCTTCTGTGTG 356 876
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fowlicidins 1 to 3 share a higher similarity at the amino
acid sequence level than cathelicidin B1, although they
reside in tandem in the same chromosomal region [9,10].
All four cathelicidin transcripts were found to be

expressed in the testis and ovary (Figure 1). Additionally,
heart showed an abundant expression of all four cathelici-
dins. It is noted that all primary and secondary lymphoid
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Figure 1 Tissue Expression pattern of four chicken cathelicidins. All tis
subjected to RNA isolation and real-time PCR using gene-specific primers. E
esophagus using GAPDH as a reference gene. Each bar represents mean ±
tissues including the bursa, thymus, spleen, and cecal
tonsil express all four cathelicidins at moderate or high
levels (Figure 1). In fact, bursa and bone marrow are the
primary places for synthesis of cathelicidin B1 and fowlici-
dins 1 to 3, respectively (Figure 1) [10]. Cathelicidin B1
was found earlier to be expressed in secretory epithelial
cells surrounding M cells, a major portal of entry for
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sues were collected from three 28-day-old broiler chickens and
xpression levels of all tissues were calculated relative to that of the
standard error of three chickens.
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pathogens in mucosal lymphoid tissues including bursa
[10]. It will be important to identify the cell types that
express other cathelicidins in mucosal lymphoid tissues.
At the same time, it will be interesting to reveal which
cell type synthesizes cathelicidins in the spleen and thy-
mus with no M cells present. Presence of cathelicidins
in lymphoid tissues may be suggestive of a possible
involvement of AMPs in the maturation and develop-
ment of adaptive immunity. In fact, it is known that
many AMPs including cathelicidins are capable of regu-
lating adaptive immunity through activation of dendritic
cells [18].
Expression of cathelicidins in a broad range of tissues in-

cluding many non-immune tissue types also raised the pos-
sibility that these cathelicidins may play a role beyond host
defense. Indeed, several AMPs have been shown to be
involved in sperm maturation [19-21], consistent with the
finding that a majority of defensins are most abundantly
expressed in the male reproductive tracts in mammals [22].
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Figure 2 Developmental regulation of chicken cathelicidins in
the bursa of Fabricius. Bursas were harvested from broiler chickens
of indicated age and subjected to RNA isolation and real-time PCR
analysis of the expression of four cathelicidins. Fold differences in the
cathelicidin expression level among different days after hatching were
calculated relative to the expression level on day 28 using GAPDH as a
reference gene. Each bar represents mean ± standard error of 3 to 5
chickens. The statistical significance was analyzed using one-way
ANOVA followed by Tukey’s Test. **P< 0.01; ***P< 0.001.
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Figure 3 Developmental Regulation of chicken cathelicidins in
the lung. Lungs were harvested from broiler chickens of indicated
age and subjected to RNA isolation and real-time PCR analysis of the
expression of four cathelicidins. Fold differences in the cathelicidin
expression level among different days after hatching were calculated
relative to the expression level on day 2 (for fowlicidins 1 to 3) or
day 7 (for cathelicidin B1) using GAPDH as a reference gene. Each
bar represents mean ± standard error of 3 to 5 chickens. The
statistical significance was analyzed using one-way ANOVA followed
by Tukey’s Test.
As compared with mammalian species, chickens express
a negligible amount of cathelicidins in the skin (Figure 1).
This result could be attributed to the evolution of the skin
in different species. The skin of birds is covered with feath-
ers and many of the diseases in birds are contracted
through oral and nasal routes. Hence, AMP synthesis in
the skin might not be as much needed in birds than in
mammals. In fact, a relatively high level of fowlicidin-2/
CMAP27 expression was found in the uropygial gland [8],
which secretes preen oil and antimicrobial factors that
spread over plumage and provide protection against skin
infections. On the other hand, as skin acts as an important
route of entry for microorganisms in most mammals, it is
not surprising to see a large amount of cathelicidins and
other AMPs synthesized in the skin for protection.

Developmental expression of chicken cathelicidins
In order to study the dynamic expression of four chicken
cathelicidins during early development, we collected the
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Figure 4 Developmental Regulation of chicken cathelicidins in
the cecum. Ceca were harvested from broiler chickens of indicated
age and subjected to RNA isolation and real-time PCR analysis of the
expression of four cathelicidins. Fold differences in the cathelicidin
expression level among different days after hatching were calculated
relative to the expression level on day 7 using GAPDH as a reference
gene. Each bar represents mean ± standard error of 3 to 5 chickens.
The statistical significance was analyzed using one-way ANOVA
followed by Tukey’s Test. *P< 0.05; **P< 0.01; ***P< 0.001.
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Figure 5 Developmental Regulation of chicken cathelicidins in
the cecal tonsil. Cecal tonsils were harvested from broiler chickens
of indicated age and subjected to RNA isolation and real-time PCR
analysis of the expression of four cathelicidins. Fold differences in
the cathelicidin expression level among different days after hatching
were calculated relative to the expression level on day 7 using
GAPDH as a reference gene. Each bar represents mean ± standard
error of 3 to 5 chickens. The statistical significance was analyzed
using one-way ANOVA followed by Tukey’s Test. *P< 0.05.
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bursa, lung, cecum, and cecal tonsil from broiler chickens
of 2, 4, 7, 14, and 28 days and then evaluated the expres-
sion of cathelicidins using real-time PCR. We observed an
obvious differential expression pattern with all four cathe-
licidins. In the bursa, the expression of cathelicidins
peaked 4 days after hatching and was then gradually
decreased, with the lowest expression seen on day 28
(Figure 2). A significant decrease (P< 0.01) of cathelicidins
B1 and fowlicidin-1 were observed in the bursa on day 28
relative to day 4. The expression of fowlicidin-1 was also
significantly reduced by nearly 15-fold between day 4 and
day 28 (Figure 2). The inverse correlation between the
expression of cathelicidins and the maturation of bursa is
perhaps not a coincidence, given that T and B cell devel-
opment is initiated on day 7 in the bursa [23]. It is con-
ceivable that the innate immune mechanism can be
dispensable once the adaptive immunity takes control.
Interestingly, a largely opposite developmental expres-

sion pattern was seen in the lung, where four cathelicidins
showed a tendency to increase the expression level grad-
ually along with the age, with the peak expression occur-
ring on day 14 to 28 (Figure 3). However, none of the
differences is statistically significant (P> 0.05). In the
cecum, a biphasic expression pattern was observed with
cathelicidin B1 and fowlicidin-1, where both genes were
highly expressed initially on day 2 to 4, but gradually
declined to the lowest level on day 7, followed by gradual
increase 2 to 4 weeks after birth (Figure 4). On the other
hand, a largely constant expression of fowlicidins 2 and 3
were observed till 3 weeks after hatching, and an abrupt
increase by 12-to 22-fold was noted on day 28. Cecal ton-
sils showed an increased expression of fowlicidins 1 to 3
proportional to the age during the first four weeks,
whereas the highest expression of cathelicidin B1 occurred
on day 14 after hatching, with day 7 and 28 showing
reduced expression (Figure 5).
Overall, following a gradual increase in the expression of

cathelicidins and many other innate host defense factors in
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a sterile environment during the embryonic development
of chickens [17], we observed a further augmentation of
cathelicidin expression during the first 28 days after hatch-
ing. The results are perhaps not surprising, given that
newly hatched chickens are constantly exposed to various
pathogens in ambient environments, albeit with the pres-
ence of circulating maternal antibodies, which are acquired
through egg yolk, but are insufficient to provide adequate
protection against microbial infections [24]. In addition to
maternal antibodies, the innate immune mechanisms must
be present and develop quickly before the adaptive im-
munity matures. The availability and enhanced expression
of cathelicidins may provide an important protection
mechanism against the invading infections during the early
stages of life in chickens. Consistently, chicken cathelici-
dins and other AMPs were shown recently to possess po-
tent antimicrobial activities against a broad range of
pathogens including many intestinal bacteria [9,11-14].
However, it remains unclear in our study whether an

enhanced expression of chicken cathelicidins during the
early development is triggered by developmental signals or
a consequence of constant exposure to microflora or envir-
onmental pathogens. To dissect it, chickens raised under
germ-free conditions have been to be used. Nevertheless,
many AMPs including a cathelicidin were detected in
human meconium and neonatal fecal extracts, both of
which indeed showed direct antibacterial activities [15]. It
is tempting to speculate that the presence of AMPs in the
neonatal gut not only provides an important host defense
mechanism, but also control initial colonization of intes-
tinal flora. The amount and type of each AMP present in
the gut may dictate the profiles of microbiota, given several
different human AMPs exhibiting overlapping but not
identical antimicrobial spectra [25].
In summary, all four cathelicidins are widely expressed in

a broad range of chicken tissues, suggestive of their import-
ant innate defense role. Moreover, an augmented synthesis
of the cathelicidin transcripts during the development coin-
cides with the maturation of the immune system and a
need for protection of the host in ambient environments.
Our study of tissue and developmental expression of four
chicken cathelicidins has shed new lights on the mechan-
isms of innate host defense and development of the im-
mune system of chickens. Because of an association of
single nucleotide polymorphisms (SNPs) in several chicken
AMPs with animal resistance to Salmonella infection
[26,27], it is possible to genetically select chicken lines with
enhanced disease resistance. Alternatively, dietary modula-
tion of endogenous AMP expression represents another
convenient approach to disease control and prevention in
both humans and animals [28,29].
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