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Abstract 

Background MicroRNAs (miRNAs) are presented in the uterine lumen of many mammals, and in vitro experiments 
have determined that several miRNAs are important for the regulation of endometrial and trophoblast functions. Our 
aim was to identify and contrast the miRNAs present in extracellular vesicles (EVs) in the uterine lumen fluid (ULF) 
at the onset of attachment in cattle pregnancies (gestation d 18) initiated by artificial insemination (AI) or by the trans-
fer of an in vitro-produced blastocyst (IVP-ET). A third group had no conceptus after the transfer of an IVP embryo.

Results The abundance of 263 annotated miRNAs was quantified in the EVs collected from ULF. There 
was an increase in the transcript abundance of 20 miRNAs in the ULF EVs from the AI pregnant group, while 4 miRNAs 
had a lower abundance relative to the group not containing a conceptus. Additionally, 4 miRNAs were more abun-
dant in ULF EVs in the AI pregnant group relative to IVP-ET group (bta-mir-17, bta-mir-7-3, MIR7-1, MIR18A). Specific 
miRNAs in the ULF EVs were co-expressed with messenger RNAs expressed in extra-embryonic tissues and endome-
trium, including genes that are known to be their targets.

Conclusions The results provide biological insights into the participation of miRNAs in the regulation of trophoblast 
proliferation and differentiation, as well as in endometrium receptivity. The knowledge that in vitro cultured embryos 
can contribute to the altered abundance of specific miRNAs in the uterine lumen can lead to the development of cor-
rective approaches to reduce conceptus losses during the first month of pregnancy in cattle.
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Background
In cattle, the embryo enters the uterus by gestation d 
4–5 and hatches from the zona pellucida by d 8 post-
fertilization [1, 2]. At this time, the outer monolayer of 
trophectoderm cells and the uterine luminal epithelium 
(LE) have direct contact. The hatched blastocyst begins 
to produce interferon tau (IFNT) [3], which is the major 
pregnancy recognition signal that inhibits the develop-
ment of the endometrial luteolytic mechanism [4, 5]. On 
gestation d 12–14, the blastocyst is ovoid in shape (~ 2–5 
mm in length) and transitions into a tubular shape by d 
14–15, at which time it can be termed a conceptus [6]. In 
cattle, elongation is also coincident with a greater release 
of IFNT [7]. The conceptus elongates via the proliferation 
of the trophectoderm and parietal endoderm cells [8] and 
reaches 20 cm or more in length by d 19–20 [8, 9]. Then, 
the trophectoderm begins to attach to the endometrial 
lining [8, 10] thereby initiating cell-to-cell communica-
tion mediated by adhesion [10]. By gestation d 25, a small 
proportion of trophectoderm cells have differentiated 
into binuclear cells [11], and the formation of the chorion 
marks the onset of the epitheliochorial placentation [1, 9, 
12]. Ruminants have an epitheliochorial nature of placen-
tation [1, 13, 14] with an extended time of non-invasive 
implantation followed by a limited invasion of the endo-
metrium [10, 13].

After the primary signals or hormonal controllers exert 
their roles to progress endometrial and conceptus func-
tionality, a myriad of cellular signals, mediated by bioac-
tive molecules named embryotrophins [15], is triggered. 
The embryo can modulate the regulation of gene expres-
sion in the endometrium as early as on d 7 of gestation 
[16], when it can also promote alterations in the metabo-
lite composition of the uterine lumen fluid (ULF) [17]. By 
gestation d 15–16, global alterations in endometrial gene 
expression occur in response to the elongating concep-
tus [18–20]. Thereafter, a synchrony of gene regulation 
between the extra-embryonic tissue (EET) and the endo-
metrium is established [21] and contributes to a carefully 
orchestrated cell-to-cell communication between the 
conceptus and endometrium.

As the trophoblast and endometrium lining have direct 
contact, cell-to-cell interactions [10, 22, 23] can be estab-
lished through ligand-receptor mediated signaling [20, 
24, 25]. The transfer of RNAs from cell to cell is another 
concept [26], supporting the possible exchange of signals 
between trophoblast and endometrium [27]. These RNAs 
can be transported between cells in extracellular vesicles 
(EVs), which may also contain proteins and other macro-
molecules such as lipids [26, 28, 29]. EVs present in the 
ULF carrying microRNAs (miRNAs) have gained much 
attention in the past decade due to their importance in 
modulating trophoblast function and health [30] and 

endometrial remodeling [31]. Alterations in the miRNA 
content of EVs in the ULF have been associated with 
embryo implantation failure in women (reviewed in [32, 
33]).

Cattle blastocysts [34–36], d 16 conceptuses [37] and 
endometrial cells [38, 39] produce EVs containing miR-
NAs. Alterations in miRNA profiles of EVs present in 
the ULF have been detected as early as pregnancy d 7 of 
gestation in cattle [40]. Also on d 7, blastocysts produced 
in  vitro may produce and export miRNAs in EVs that 
are different from their in  vivo generated counterparts 
[41]. EVs are present in the ULF during the attachment 
period [42–45] containing miRNAs among other mol-
ecules in their cargo [42, 43]. In vitro experiments have 
determined that the cargo in EVs present in the uterine 
lumen of pregnant cows can modulate gene transcription 
in cattle endometrial [42, 43, 45] and trophoblast [46] cell 
lines. However, the extent to which miRNAs present in 
the ULF contribute to the conceptus-maternal communi-
cation in cattle remains unclear. In the present study, our 
aims were to determine differences in the miRNA profiles 
in the ULF EVs of d 18 pregnancies harboring an in vivo 
derived conceptus versus ULF EVs when there is not con-
ceptus present, and also to determine differences in the 
miRNA profiles in the ULF EVs of d 18 pregnancies har-
boring an in  vivo or in  vitro derived conceptus. Herein 
we tested two hypotheses: (a) that the miRNA profile in 
the ULF of d 18 pregnant uteri harboring in  vivo con-
ceptus is different than those of uteri harboring in vitro 
derived conceptus, and (b) that miRNAs can form co-
expression regulatory networks with genes expressed in 
the conceptus and endometrium.

Methods
All animal procedures for live handling were approved 
by the Institutional Animal Care and Use Committee, 
Auburn University, under protocol 2016-2874.

In vitro production of embryos and cryopreservation
All chemicals were obtained from Sigma-Aldrich (St. 
Louis, MO, USA) or Fisher (Pittsburgh, PA, USA), 
unless otherwise stated. Embryo production proce-
dures utilized in this study to produce embryos were 
consistent with procedures detailed previously [47–49]. 
Cumulus-oocyte complexes were aspirated from follicles 
(3–8 mm in diameter) of abattoir-derived ovaries. The 
cumulus-oocyte complexes were washed in Tissue Cul-
ture Medium-199 with Hanks salts supplemented with 
25 mmol/L HEPES followed by in vitro maturation in Tis-
sue Culture Medium-199 with Earle salts (Gibco, Grand 
Island, NY, USA) supplemented with 10% fetal bovine 
serum, 100 IU/mL penicillin, 100 μg/mL streptomycin, 
0.2 mmol/L sodium pyruvate, 2 mmol/L L-glutamine, 
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50 ng/mL recombinant human epidermal growth factor 
(Invitrogen, Waltham, MA, USA), and 5 μg/mL of folli-
cle-stimulating hormone (Bioniche Animal Health, Ath-
ens, GA, USA). In  vitro maturation was carried out for 
22–24 h at 38.5 °C in a humidified atmosphere containing 
5%  CO2.

In vitro matured cumulus-oocyte complexes were 
washed three times with HEPES-TALP medium and 
placed in IVF-TALP medium for in  vitro fertilization. 
Sperm from a single sire was prepared by density gradi-
ent centrifugation utilizing the ISolate sperm separation 
kit (Irvine Scientific, Santa Ana, CA, USA) and washed 
twice by centrifugation in SP-TALP. Sperm was added to 
the fertilization dish at the concentration of 1 ×  106/mL, 
followed by the addition of penicillamine-hypotaurine-
epinephrine solution. In  vitro fertilization was carried 
out for 17–19 h at 38.5  °C in a humidified atmosphere 
containing 5%  CO2. Cumulus cells were removed from 
putative zygotes by vortexing in 400 μL/of HEPES-TALP. 
Putative zygotes were then cultured in groups of up to 
50 in 500 μL of SOF-BE2, covered with 300 μL of light 
mineral oil. In vitro culture was carried out at 38.5 °C in 
a humidified atmosphere containing 5%  CO2, 5%  O2 and 
90%  N2. Seven d after in vitro fertilization, grade one [50] 
blastocysts were cryopreserved using the slow-freezing 
procedure in ethylene-glycol solution [51].

Estrous synchronization, artificial insemination, 
and embryo transfer
Nulliparous heifers of Angus-cross genetic background 
(15–19 months of age, weighing > 296 kg) were utilized 
for this experiment. Animals were randomized into one 
of the two experimental groups, based on whether they 
would be artificially inseminated or serve as recipients 
for embryo transfer.

Estrous synchronization [52] was initiated by insert-
ing a controlled internal drug release (CIDR, 1.38 g 
progesterone), which was removed after 14 d. Sixteen d 
post removal of CIDR, 25 mg of prostaglandin F2 alpha 
 (Lutalyse®, Zoetis, Parsippany-Troy Hills, NJ, USA) was 
administered along the application of an estrus detection 
patch (Estrotect™; Rockway Inc., Spring Valley, WI, USA) 
mid-way between the hip and tail head. All animals were 
observed for estrus by two investigators, and heifers that 
showed clear signs of standing estrus [53] and ≥ 50% of 
color change on the estrus detection patch continued the 
protocol. Alternatively, when there was no sign of estrus, 
the heifer was re-enrolled in estrous synchronization.

If the heifer was assigned to be artificially inseminated, 
AI was conducted 12–16 h after the onset of standing 
estrus. All heifers were inseminated with semen from one 

sire, which was the same sire used for in  vitro embryo 
production.

For embryo transfer, 7 d post-estrus, the presence of a 
corpus luteum was evaluated by transrectal ultrasonog-
raphy. If a corpus luteum was present, one embryo was 
deposited in the uterine horn ipsilateral to the corpus 
luteum. If the heifer did not present a corpus luteum, she 
was re-enrolled in estrous synchronization.

Collection of the uterine lumen contents
Heifers were euthanized with captive bolt on d 18 of 
pregnancy (herein considered 18 d post fertilization). 
The reproductive tract was removed from each heifer 
within 15 min of euthanasia and immediately prepared 
for flushing. To prepare the reproductive tract for flush-
ing, first, mesometrium was removed from the uterine 
horns. Next, the cervix was removed by cutting the base 
of the uterine body. Then, an 18-g needle coupled to a 
syringe was inserted into the distal portion of the ipsilat-
eral horn and 20 mL of nuclease-free phosphate-buffered 
saline solution were flushed towards the base of the uter-
ine body. The fluid was flushed into a cell strainer placed 
in a 50-mL conical tube, which retained a conceptus, 
when present, and clumps of cells. The flushed solution 
was centrifuged (3,000 × g for 15 min at 4 °C) for the pal-
letization of cells and other debits. The supernatant was 
filtered using a polyvinylidene difluoride 0.45 μm mem-
brane filters for the removal of potential remaining cells. 
The flushed material was stored at –80 °C until extraction 
of miRNAs.

Samples were categorized as obtained from pregnan-
cies initiated by artificial insemination (AI, n = 7), or 
in  vitro produced embryo followed by embryo transfer 
(IVP-ET, n = 7), or no conceptus present (NCP, n = 5) 
after embryo transfer (Fig. 1A).

Processing of the uterine luminal flush and high 
throughput sequencing of small RNAs
Starting with 10 mL of ULF, EVs were captured and iso-
lated using the ExoQuick-TC™ Tissue Culture Media 
Exosome Precipitation Solution (System Biosciences, 
Palo Alto, CA, USA) following the manufacturer’s pro-
tocol (Fig. 1B). The kit is based on the purification with 
polyethylene glycol [54] along with centrifugation, which 
is an acceptable method for the collection of EVs [55] and 
has been validated to precipitate EVs that are positive for 
the tetraspanins CD9 [56] or CD63 [57, 58] including in 
cattle follicular fluid [57]. Both markers are characteristic 
of EVs [55].

Particle size analysis was conducted in two representa-
tive samples (three technical replicates per sample) as a 
service provided by System Biosciences, Palo Alto, CA, 
USA. The size of EVs was assessed using a NanoSight 
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NS300 instrument (NanoSight Ltd., Amesbury, UK) and 
a sCMOS camera, under shutter setting 1,000 and gain 
400. The assays were conducted in parallel with standard 
beads (100 nm latex bead – standardized by the National 
Institute of Standards and Technology), which reported 
a 5% coefficient of variation in the measurements of the 
standard beads.

To further validate the enrichment of EVs, we separated 
two samples for precipitation of EVs as indicated above. 
We assayed EVs markers using the Exo-Check Exosome 
Antibody Arrays (System Biosciences, Palo Alto, CA, 
USA) according to the manufacturer’s manual. This slot 
blot has 12 pre-printed spots and out of which antibod-
ies for exosome markers (CD63, CD81, ALIX, FLOT1, 
ICAM1, EpCam, ANXA5 and TSG101), and GM130, a 
cis-Golgi marker to identify cellular contamination. The 
signal was developed by chemiluminescence using West-
ernBright™ Sirius™ HRP substrate (Advansta, San Jose, 
CA, USA). The array was imaged on a iBright™ CL750 
Imaging System (ThermoFisher Scientific).

After obtaining the pellet with EVs, small RNAs 
extracted using TRIzol Reagent [59] following proce-
dures optimized for small sample size [60]. We accessed 
the small RNAs using the Agilent Small RNA kit (Agi-
lent, Waldbronn, Germany) in a 2100 Bioanalyzer Instru-
ment (Agilent) (Fig.  1B) and submitted the samples for 
sequencing at the VANTAGE (Vanderbilt Technologies 
for Advanced Genomics) at Vanderbilt University, Nash-
ville, TN. Sequencing libraries were prepared with the 
 NEBNext® Small RNA Library Prep Set for  Illumina® 

(New England Biolabs, Ipswich, MA, USA) and sequenc-
ing was assayed in a NovaSeq 6000 Sequencing System 
(Illumina, San Diego, CA, USA) to produce a minimum 
of 10 million reads per sample (Fig. 1B).

Raw sequences were processed for the removal of 
adapters with Trimmomatic [61] and alignment to the 
bovine genome (Bos_taurus.ARS-UCD1.2.104) using 
bowtie2 (v.2.3.5.1) [62] using the “–very-sensitive” option. 
Next, Samtools (v 1.10) [63] was used to retain only pri-
mary alignments. Lastly, featurecounts (v 2.0.1) [64] was 
used to count reads according to the Ensemble annota-
tion (Bos_taurus.ARS-UCD1.2.104) [65, 66]. Counts per 
million (CPM) was calculated with the function “cpm” 
from the “edgeR” package [67, 68] in R software. Lastly, 
only annotated small RNAs with > 50 sequences across all 
samples were retained for downstream analysis.

Statistical analyses
Transcript abundance of miRNAs was compared using 
the R packages ‘edgeR’ [67, 68], with the quasi-likelihood 
test, and ‘DEseq2’ [69], using the Wald’s and likelihood 
test. The nominal P values of both tests were corrected 
for multiple hypothesis testing using the false discovery 
rate (FDR) method [70]. Differential transcript abun-
dance was assumed when FDR < 0.05 for both tests.

Enrichment tests for Gene Ontology categories were 
carried out using “goseq” package [71] in R software. 
In all tests, the genes whose transcript abundances 
were estimated for the samples being tested were used 
as the background. The nominal P value was adjusted 

Fig. 1 Overview of the experiment and study carried out. A Experimental groups included in the experiment. B Schematics of the procedures 
and data produced, as well as the results obtained. C Depiction of the data obtained from the public data base. Created with BioRe nder. com

https://www.biorender.com/
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for multiple hypothesis testing by controlling the fami-
lywise error rate (FWER) following the method pro-
posed by Holm [72] using the function “p.adjust” from 
the ‘stats’ R package. Significance was inferred when 
FWER ≤ 0.01.

Transcript abundance from mRNA data were 
obtained from EET and endometrium collected from 
the same uteri used to collect ULF EVs (GSE232489 
[73], Fig.  1C). Co-expression analysis is an analytical 
approach to identify quantitative relationships between 
transcript abundances, and can be measured using a 
correlation coefficient [74]. Given the experimental 
design in our study, we were able to conduct a co-
expression analysis between miRNAs and mRNAs for 
which we adopted the procedures recommended by 
Johnson and Krishnan [75]. All miRNAs and protein 
coding genes that passed our filtering for lowly 
expressed genes were used in this analysis. For each 
group and sample type (i.e., EET AI), CPM metric was 
calculated using the trimmed mean of M values method 
[76]. Then, CPM was transformed using the arcsine 
transformation Log x + x2 + 1  using the “asinh” 
function in R. Lastly, the Pearson coefficient of correla-
tion and the corresponding P value were calculated 
using the function “corAndPvalue” from the package 
“WGCNA” [77] for each pair of genes (miRNA and 
mRNA). Empirical values of FDR (eFDR) [21, 78]were 
estimated with 10,000 randomizations of the data. Co-
expression was inferred when eFDR < 0.00004 (equiva-
lent to nominal P value < 0.00001).

miRNA predicted targets
In order to assess if a specific protein coding genes 
would be a target of a specific miRNA, we obtained 
mRNA predicted targets for miRNAs from humans and 
cattle from the miRWalk database [79] (http:// mirwa 

lk. umm. uni- heide lberg. de/ resou rces/) on November 
 26th 2021, including untranslated regions and coding 
sequences.

Results
Following the nanoparticle tracking analysis with finite 
track length adjustment [80], the mode size distribution 
of the EV 90 and 97, with an average and standard devia-
tion of the particle sizes of 148 ± 102 and 168 ± 120 nm, 
respectively. An assay of eight proteins that are common 
markers of EV showed a high abundance of ALIX in our 
EV preparation. Other proteins with signal but at a lower 
abundance were ANXA5, TSG101, ICAM and FLOT1. 
There were faint signals of CD63 and GM130 (Fig. 2A). 
Next we extracted RNAs from EVs out of which, most 
were miRNAs (Fig. 2B).

Small RNA sequencing of EVs collected from the 
ULF was performed for 19 samples from gestation d 18 
(AI, n = 7; IVP-ET, n = 7; NCP, n = 5). Altogether, over 
537 million reads were produced from the small RNAs 
obtained from the EVs in the ULF, out of which 9,082,232 
sequences matched to miRNAs on the Ensembl annota-
tion averaging of 478,012 sequences per samples. After 
filtering for annotated miRNAs that had more than 50 
reads across all samples, there were 263 annotated miR-
NAs (Additional file 1). Notably, the top 40 miRNAs pre-
sent in the ULF flushed from pregnant uterus on d 18 of 
gestation accounted for 92% of the total reads produced 
and mapped to annotated miRNAs (Fig. 3A).

There were 24 miRNAs with differential abundance 
in the EVs obtained from ULF in the AI group ver-
sus the NCP group (greater abundance in AI: bta-
mir-130b, bta-mir-15b, bta-mir-17, bta-mir-2285aa, 
bta-mir-2315, bta-mir-2387, bta-mir-302a, bta-mir-302b, 
bta-mir-371, bta-mir-500, bta-mir-503, bta-mir-6120, 
bta-mir-7-3, bta-mir-7857-1, bta-mir-7857-2, bta-
mir-93, MIR18A, MIR378A, MIR7-1; lower abundance 

Fig. 2 Overview of the biological samples. A Two unedited slot blots containing antibodies for EV markers, along positive and negative controls. B 
Representative image of the bioanalyzer assay for small RNAs

http://mirwalk.umm.uni-heidelberg.de/resources/
http://mirwalk.umm.uni-heidelberg.de/resources/
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in AI: bta-mir-181b-2, bta-mir-320a-1, bta-mir-320a-2, 
MIR34B, FDR < 0.05, Fig.  3B, Additional file  2). Four 
miRNAs were more abundant in the EVs obtained from 
ULF of the AI group (bta-mir-17, bta-mir-7-3, MIR18A, 
MIR7-1, FDR < 0.05, Fig. 3C, Additional file 3) relative to 
those in the IVP-ET group.

Because miRNAs mostly degrade mRNAs, we tested 
whether the four miRNAs with higher abundance in the 
ULF EVs from AI group as compared to IVP-ET group 
could contribute to lower abundance of target mRNAs 

in conceptus and endometrial tissues collected from the 
same uteri (GSE232489 [73]). According to target predic-
tions for humans and cattle present in the miRWalk data-
base [79], the mature forms of bta-mir-17, bta-mir-7-3, 
MIR18A, MIR7-1, could be targeting 116, 397, 453 genes 
that have lower abundance in extra-embryonic tissues, 
caruncular and intercaruncular areas of the endome-
trium, respectively. Although there was no significant 
enrichment, the biological functions with the greatest 
number of genes with reduced transcript abundance in 

Fig. 3 miRNAs in the ULF. A Top 40 most abundant miRNAs in the ULF EVs of pregnant heifers (AI group) on gestation d 18. B miRNAs 
with differential abundance in the ULF EVs of d 18 pregnant heifers (AI group) versus NCP counterparts. C miRNAs with differential abundance 
in the ULF EVs of pregnant heifers harboring an IVP-ET conceptus versus an AI conceptus. AI: artificial insemination; IVP-ET: in vitro produced 
and embryo transfer; NCP: no conceptus present after ET
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extra-embryonic tissues were “signal transduction” (5 
genes), “regulation of transcription by RNA polymerase 
II” (5 genes), and “transmembrane transport” (4 genes) 
(Additional file  4). In the caruncular areas of the endo-
metrium, most genes were annotated with “regulation 
of DNA-templated transcription” (32 genes), “signal 
transduction” (27 genes), and “protein phosphorylation” 
(25 genes) (Additional file 5). By contrast, the biological 
process “cilium movement” (7 genes) was significantly 
enriched (FWER = 0.0787) for intercaruncular areas of 
the endometrium. The categories with the greatest num-
ber of genes were “regulation of transcription by RNA 
polymerase II” (23 genes), “protein phosphorylation” (18 
genes), and “transmembrane transport” (16 genes) (Addi-
tional file 6).

We also interrogated the data to understand whether 
miRNAs present in the ULF of d 18 pregnant heifers 
would have a co-expression pattern with genes expressed 
in the conceptus. Our analysis showed that 20 genes 
(AMMECR1L, APEX1, CNIH1, CREG1, DDX52, EIF1AD, 
GNA12, MGST1, NPC2, PARP6, POLE3, PSMD14, 
PURB, TMEM218, TRAPPC4, WBP4, etc.) had tran-
scripts co-expressing with 15 miRNAs in the ULF of 
heifers pregnant by AI (bta-mir-143, bta-mir-145, bta-
mir-155, bta-mir-16b, bta-mir-19b-2, bta-mir-335, bta-
mir-429, bta-mir-532, bta-mir-9-2, MIR129-2, MIR140, 
etc.) (FDR < 0.0004, Fig.  4A, Additional file  7). Notably, 
the co-expressing pairs of protein-coding genes (n = 36) 
and miRNAs (n = 27) present in the ULF of heifers har-
boring a conceptus produced in vitro were different from 
those identified in pregnancies initiated by AI (genes: 
AFDN, B4GALT4, C2CD2, DBT, DMPK, EIF4G2, FBL, 
FGGY , GGA1, IDH3B, IRF2BP2, KCNK1, MINDY1, 
MINDY3, MTX1, MYO9B, NDUFA8, NDUFS1, NQO2, 
NUFIP2, PTPRA, RAPGEF1, RASGRP2, RMDN3, 
RMND1, RPS5, SERPINB1, TPX2, USP20, ZWILCH; 
miRNAs: bta-let-7a-3, bta-mir-100, bta-mir-106b, bta-
mir-139, bta-mir-141, bta-mir-155, bta-mir-184, bta-
mir-194-1, bta-mir-194-2, bta-mir-2387, bta-mir-30a, 
bta-mir-365-1, bta-mir-378-2, bta-mir-499, bta-mir-652, 
bta-mir-7-3, bta-mir-7859, MIR185, MIR197, MIR200B, 
MIR378A, MIR99B, FDR < 0.0004, Fig.  4A, Additional 
file  7). Twelve pairs of miRNAs (7 in the AI group and 
5 in the IVP-ET group) and protein-coding genes with 
inverted correlation were supported by the miRWalk 
database [79] of miRNA targets (Fig. 4B).

We also identified co-expressing pairs between pro-
tein-coding genes expressed in the endometrium and 
miRNAs present in the ULF. In caruncular areas of the 
endometrium of pregnancies harboring a conceptus 
produced by AI, there were 20 genes (B3GNT6, CBY1, 
CUX1, ENG, FAAP100, GPATCH3, GUCY1A1, MFSD4A, 
MMP11, NSMF, RIC8A, SYMPK, SYNGR1, TPM1, 

UBE2O, UBLCP1, ZNF202, etc.) forming co-expression 
pairs with 16 miRNAs (bta-mir-146a, bta-mir-192, bta-
mir-204, bta-mir-2285b-1, bta-mir-29b-1, bta-mir-29b-2, 
bta-mir-30b, bta-mir-32, bta-mir-3596, bta-mir-454, 
bta-mir-6119, bta-mir-7861, bta-mir-92a-2, MIR128-
1, MIR29A, MIR455) (FDR < 0.0004, Fig.  5A, Addi-
tional file  8). By contrast, only 8 genes (CD3E, CNDP2, 
HADHA, MAP4K1, SLC5A11, STX5, TMEM171, etc.) 
formed co-expression with 6 miRNAs (bta-let-7f-2, bta-
mir-196a-1, bta-mir-204, bta-mir-324, bta-mir-500, 
MIR494) in pregnancies initiated by the transfer of an 
in vitro-produced embryo (FDR < 0.0004, Fig. 5A, Addi-
tional file  8). Only six pairs of miRNAs and protein-
coding genes with inverted correlation in pregnancies 
initiated by AI were supported by the miRWalk database 
[79] of miRNA targets (Fig. 5B).

In intercaruncular areas of the endometrium, there 
were 16 genes (A2M, ACE, ADPRH, BOLA-DQA5, 
C25H16orf71, C9H6orf118, CLIC5, CXCL16, FAP, 
FNDC5, HENMT1, HGH1, NDUFB2, PGAM5, PPIC, 
TSPAN17) forming co-expression pairs with 18 miR-
NAs (bta-mir-10174, bta-mir-1307, bta-mir-133a-1, 
bta-mir-144, bta-mir-187, bta-mir-190a, bta-mir-
196a-1, bta-mir-221, bta-mir-2285bc, bta-mir-28, bta-
mir-30f, bta-mir-490, bta-mir-7857-1, MIRLET7C, etc.) 
(FDR < 0.0004, Fig.  6A, Additional file  9). By contrast, 
only 17 genes (ABCD1, ASGR2, BPGM, CHCHD3, 
ECPAS, FARSB, GAS8, ILDR1, POLR2M, SF3B2, 
SLC66A1, SPINDOC, STX18, STX1A, TNMD, etc.) 
formed co-expression with 17 miRNAs (bta-mir-196a-1, 
bta-mir-2285bc, bta-mir-2387, bta-mir-2887-1, bta-
mir-302a, bta-mir-320a-1, bta-mir-429, bta-mir-484, 
bta-mir-505, bta-mir-95, MIR183, MIR18A, MIR197, 
MIR200B, MIR491, etc.) in pregnancies initiated by the 
transfer of an in  vitro-produced embryo (FDR < 0.0004, 
Fig. 6A, Additional file 9). We identified six pairs of miR-
NAs and protein-coding genes with inverted correlation 
supported by the database of miRNA targets (Fig. 6B).

Discussion
The ULF contains EVs during the cycle and early preg-
nancy in all studied mammals including cattle [27, 81–
84]. The ULF EVs contain small RNAs, and their contents 
change throughout pregnancy [42–45]. Trophoblast and 
epithelial cells in the endometrium can uptake these EVs 
and their content [42, 43, 45, 46], supporting the idea that 
small RNAs present in the ULF have a role in pregnancy 
establishment. The particle size analysis confirmed that 
the purification with polyethylene glycol [54] enriched 
the pellet with EVs (30–150 nm [85], 30–200 nm [86]), 
while avoiding apoptotic bodies or cells. The protein 
ALIX has been identified in EVs isolated from concep-
tuses [37, 41], but this result does not eliminate that those 
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EVs could also have come from the endometrium. Nota-
bly, however, is that ALIX may have a role into enriching 
miRNAs into EVs during their biogenesis [87]. Collec-
tively, most, if not all, of miRNAs reported in this study 

were present in EVs originated from the conceptus and 
endometrium.

Our study has shortcomings. First our experimen-
tal design did not allow us to identify the origin of the 

Fig. 4 Coexpression between protein-coding genes expressed in d 18 conceptuses and miRNAs in the surrounding ULF EVs. Only genes annotated 
with a symbol are depicted in the figure. AI: artificial insemination, IVP-ET: in vitro produced and embryo transfer
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EVs, hence the discussion addresses miRNAs present 
in EVs in the ULF without attempting to sort out their 
origin. Second, we did not measure progesterone nor 
IFNT, which are important elements in the establish-
ment of pregnancy. Third, we did not carry out specific 
mechanistic studies to evaluate the impact of disturb-
ing miRNAs on conceptuses or endometrium nor cor-
responding cell lines. Such shortcomings hinder the 
establishment of causation [88] and origin of the EVs. 
However, the careful hypothesis-driven data analysis of 
a rich and unique dataset overlapped with a reputable 
database that pairs miRNA and their targets provided 
important biological insights into the importance of 
miRNA cargo in EVs present in the ULF.

Our comprehensive analysis of miRNAs in the ULF 
of cyclic and pregnant heifers on gestation d 18 con-
firms that miRNA profiles in the ULF change in conse-
quence of pregnancy. Four miRNAs were downregulated 
in the ULF on gestation d 18, and there is a compelling 
body of evidence supporting that the downregulation 
of these miRNAs is necessary for appropriate attach-
ment of the conceptus to the endometrium. In rats, the 
abundance of mir-320 was lower on gestation d 5 in the 
endometrium [89]. The hsa-miR-320a is two-fold more 
abundant in the ULF of women with recurrent implanta-
tion failure compared to healthy fertile women [90]. The 
upregulation of mir-320a inhibits the growth and inva-
sion of human extravillous trophoblast cell line HTR-8/

Fig. 5 Coexpression between protein-coding genes expressed in caruncular (CAR) areas of the endometrium on gestation d 18 and miRNAs 
in the ULF EVs. Only genes annotated with a symbol are depicted in the figure. AI: artificial insemination, IVP-ET: in vitro produced and embryo 
transfer
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SVneo by targeting interleukin 4 [91]. Also in humans, 
the upregulation of miR-34b in the endometrium is asso-
ciated recurrent implantation failure [92]. In vitro experi-
ments indicate that miR-34b inhibits cell proliferation by 
targeting Wnt/β-catenin [93] or Notch 1 [94] signaling 
pathways. In mice, the entire mir-181 family members, 
including mir-181b, which targets Leukemia Inhibitory 
Factor mRNA, were downregulated in the uterus on d 4 
of pregnancy [95]. Taken together, the lower abundance 
of the miRNAs bta-mir-181b-2, bta-mir-320a-1, bta-mir-
320a-2, and miR-34B in the uterine lumen creates an 
environment that is permissive to trophoblast prolifera-
tion and differentiation, which are essential for conceptus 
development during attachment.

Twenty miRNAs had greater transcript abundance in 
the ULF of a pregnant uterus relative to the non-preg-
nant counterparts. The bta-mir-302a and bta-mir-302b 

were among the topmost significant miRNAs, with 
greater fold change in pregnant versus not-pregnant 
uterus. mir-302a-3p was detected in porcine trophoblast 
but not in the endometrium [96], thus it is possible that 
the trophectoderm is the source of this miRNA in the 
ULF. miR-302 can induce and maintain pluripotency in 
trophoblast cells [97], and its expression is reduced upon 
pharmacological induction of differentiation of tropho-
blast cells [98]. Also of note, miR-15b is one of the three 
miRNAs that can stimulate the differentiation of mouse 
embryonic stem cells into trophoblast-like cells and sus-
tain self-renewal properties [97]. In humans, miR-15b-5p 
stimulates trophoblast cell growth and migration [99]. 
The miRNA miR-503 is also highly expressed in mouse-
differentiated trophoblast cells [100]. Collectively, these 
miRNAs with greater abundance in the ULF on gesta-
tion d 18 of pregnancy may have a role in maintaining the 

Fig. 6 Coexpression between protein-coding genes expressed in inter-caruncular (ICAR) areas of the endometrium on gestation day and miRNAs 
in the ULF. Only genes annotated with a symbol are depicted in the figure. AI: artificial insemination, ET: embryo transfer
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balance of stemness and differentiation of the trophoblast 
cells.

Four miRNAs were upregulated in the ULF of the preg-
nant uterus and were also down-regulated in the ULF 
when conceptuses were produced in vitro (mir-7-1, mir-
7-3, mir-17, mir-18a). Interestingly, mir-7 downregu-
lates the TGF-β-SMAD family member 2 pathway [101], 
promoting proliferating extravillous trophoblast cells 
[102, 103]. mir-17 inhibits trophoblast differentiation by 
regulating hGCM1 and hCYP19A1  [104]. miR-18a was 
detected in both placental trophoblasts and endothelial 
cells [105–107] and promotes trophoblast cell differ-
entiation [30] and invasion [105, 108, 109]. Collectively, 
these data would suggest that mir-7-1, mir-7-3, mir-17, 
mir-18a have an important role in the balance between 
proliferation and differentiation of trophoblast cells. It is 
important to note, that the lower abundance of mir-7-1, 
mir-7-3, mir-17, mir-18a in the ULF of pregnancies ini-
tiated by the transfer of an in vitro produced conceptus 
may be impactful to the differentiation of binucleate cells, 
which are less abundant in the chorion of some pregnan-
cies harboring an in vitro produced conceptus [110].

Most miRNAs execute their roles by promoting mRNA 
degradation and/or inhibiting translation [111, 112]. To 
that end, we analyzed our dataset in conjunction with 
mRNA transcriptome obtained from the same repro-
ductive tracts [73] to investigate co-expression between 
miRNA and mRNAs. The inverted co-expression, 
inferred from our data, of predicted miRNA—mRNA 
target pairs, from mirWalk database, support the hypoth-
esis that miRNAs present in the ULF regulate transcript 
abundance of protein-coding genes in the conceptus and 
endometrium during the early stages of pregnancy. This 
could be explained by exchange of miRNAs between 
cells [29] where miRNAs can be enclosed into EVs [113], 
exported to the ULF and be up taken by either the con-
ceptus or endometrium, thus a potential mechanism of 
signaling between conceptus and endometrium. While 
we could not determine the origin of the miRNA, co-
expression analysis provided clues about the tissue where 
they are exerting their action.

The results also showed that the co-expression between 
miRNAs in the ULF and mRNAs (EET and endome-
trium) were remarkably different based on whether the 
conceptus was produced in  vitro or generated by AI. 
Because the origin of the miRNAs was not determined 
in our experiments, we cannot determine whether those 
differences were caused by the conceptus or by the endo-
metrial differential biosensing [25, 114, 115] of the con-
ceptus’ origin. However, this differential co-expression 
adds another layer of complexity to the myriad of indi-
vidualized [21] molecular interaction between conceptus 
and endometrium at attachment.

Notably, mir-143 showed co-expression with multiple 
target genes in EET obtained from pregnancies initiated 
by AI. In pigs, mir-143-3p is present in the luminal fluid 
and is taken by trophoblast cells promoting cell prolif-
eration and migration [116]. Although there was no co-
expression between mir-143 and genes expressed in the 
endometrium in our analysis, mir-143 may also have 
a role in endometrial cells. In mice, mir-143 is highly 
expressed in the subluminal stroma at implantation sites 
[117]. In rats, endometrial cells express mir-143 on gesta-
tion d 5–8, and experiments carried out in human endo-
metrial stromal cells showed that mir-143 inhibits cell 
proliferation, migration, and invasion [118]. In women, 
mir-143 expression in the endometrial epithelium is 
induced by progesterone, and mir-143 inhibits the pro-
liferation of endometrial cancer cells [119]. Among the 
co-expression pattern inferred in the EET of pregnan-
cies with an in vitro produced conceptus, miR-141 is also 
expressed in trophoblast cells, and can regulate tropho-
blastic cell viability and proliferation [120].

One interesting observation about the co-expression 
between miRNA and mRNAs in the endometrium is that 
there were less pairs of co-expressing genes relative to the 
EET. Second, the co-expressing pairs detected in carun-
cular and inter-caruncular areas of the endometrium 
were different, which is not a surprising finding because 
these areas have genes with differential transcript abun-
dance [25], reflecting their anatomical and physiologi-
cal differences [10, 23, 121, 122]. Notably, mir-30b had 
a co-expression pattern with two genes (B3GNT6, 
GUCY1A1). In women, mir-30b [123, 124] and mir-
30d [123]  (14th most abundant miRNA in the ULF) may 
participate in the regulation of endometrial receptivity, 
although the functional mechanisms remain unknown. 
The miRNA mir-28, which formed a co-expression pat-
tern with PPIC in inter-caruncular areas of the endome-
trium, had greater transcript abundance in implantation 
sites relative to inter-implantation sites in mice on d 5 
of pregnancy [125]. Also, in the inter-caruncular area of 
the endometrium, MIR18A showed a co-expression with 
ABCD1, revealing a potential role of this miRNA in the 
endometrium. It is also notable that there was a greater 
transcript abundance of this miRNA in the ULF of preg-
nancies initiated by AI relative to non-pregnant or preg-
nancies initiated by the transfer of an in  vitro cultured 
embryo.

The results of co-expression between miRNAs in the 
ULF and mRNAs of target genes is a strong indication 
of the participation of those miRNAs in the ULF in the 
regulation of transcript abundance in EET and endo-
metrium. However, it is important to highlight that our 
experiment did not determine the impact of that regu-
lation on the conceptus, endometrium, or pregnancy 
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health. For instance, the excessive abundance of mir-143 
[90] and mir-145 [126, 127] have been associated with 
pregnancy failure in women and mice. A high abun-
dance of mir-29b has been associated with preeclampsia 
in women [128], and the ULF of women with recurrent 
implantation failure had 2.7-fold more transcripts of mir-
491 relative to the ULF of healthy fertile women [90].

Conclusions
In summary, the results of this study support the idea 
that EVs present in the ULF of cows on d 18 of gesta-
tion contain a myriad of miRNAs. The alteration in the 
abundance of specific miRNAs in pregnant uterus versus 
non-pregnant ones indicates a role of specific miRNAs in 
the regulation of trophoblast health, endometrial remod-
eling, and the establishment of pregnancy. The presence 
of a conceptus produced in vitro was associated with the 
failure to increase the abundance of 4 miRNAs and sug-
gests another layer of complexity that contributes to the 
lower success of pregnancy establishment of in vitro-pro-
duced embryos.
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