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Abstract 

Understanding biological mechanisms is fundamental for improving animal production and health to meet the grow‑
ing demand for high‑quality protein. As an emerging biotechnology, single‑cell transcriptomics has been gradually 
applied in diverse aspects of animal research, offering an effective method to study the gene expression of high‑
throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identi‑
fied cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions 
in animals using single‑cell transcriptomics. In this paper, we introduce the development of single‑cell technology 
and review the processes, advancements, and applications of single‑cell transcriptomics in animal research. We sum‑
marize recent efforts using single‑cell transcriptomics to obtain a more profound understanding of animal nutrition 
and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the prac‑
tical experience accumulated based on a large number of cases is highlighted to provide a reference for determin‑
ing key factors (e.g., sample size, cell clustering, and cell type annotation) in single‑cell transcriptomics analysis. 
We also discuss the limitations and outlook of single‑cell transcriptomics in the current stage. This paper describes 
the comprehensive progress of single‑cell transcriptomics in animal research, offering novel insights and sustainable 
advancements in agricultural productivity and animal health.
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Introduction
Cells, the basic unit of life, vary widely in shape, size, and 
gene expression. It is vital to explore the different bio-
logical properties of individual cells in complex tissues 
to understand the process of life activities. The invention 

of flow cytometry at the end of the 1960s was a major 
breakthrough in both qualitative and quantitative meas-
urements of cellular characteristics, as well as cell sort-
ing [1]. It remains a widely applied strategy for single-cell 
analysis and isolation to date. In 1990, polymerase chain 
reaction was introduced to amplify DNA or RNA in indi-
vidual cells, providing even more functional informa-
tion [2], which further demonstrated that transcriptomic 
studies on individual cells were feasible. However, this 
method is limited by amplification bias and low through-
put. The development of first-generation sequenc-
ing techniques made significant progress in molecular 
sequencing technology, but the costs remained high, and 
the sequencing throughput was low [3, 4]. Next-gen-
eration sequencing technologies, such as “sequencing 
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by synthesis” and accelerated parallel sequencing, have 
successfully overcome the above limitations, and RNA 
sequencing (RNA-Seq) is the best-known and most 
commonly used approach to date [5]. RNA-Seq involves 
total RNA extracted from organs, tissues, or a group of 
cells, obtaining average transcriptomic data while often 
masking specific information of individual cells in the 
population. To systematically study complex biological 
processes at higher resolution and reveal functional het-
erogeneity within tissues, researchers have developed a 
series of technologies, including multidimensional stud-
ies at the single-cell level. In 2009, Tang’s team developed 
the single-cell RNA sequencing (scRNA-Seq) method, 
enabling large-scale access to gene expression infor-
mation from individual cells [6]. Since then, the use of 
scRNA-Seq has undergone rapid growth and evolution. 
In 2018, the journal “Science” ranked scRNA-Seq at the 
top of its list of the year’s most noteworthy technolo-
gies. Using scRNA-seq, international research projects, 
such as the Human Cell Atlas (https:// www. human cella 
tlas. org/), have been launched to identify all cell types 
involved in human development, health, and disease. 
Notably, a collaborative project consortium focusing 
on livestock, FarmGTEx (http:// farmg tex. org/), joined 
forces in the single-cell transcriptomic research of dif-
ferent livestock species by bringing together researchers 
from around the world to discover regulatory variants, 
molecular targets, and phenotype predictions at the 
single-cell level. Single-cell technologies are now emerg-
ing at multiple molecular levels, including genomics, 

transcriptomics, epigenomics, proteomics, and metabo-
lomics, at continuously enhanced resolution, accuracy, 
and efficiency, setting the stage for the practical applica-
tion of single-cell technologies.

Single-cell RNA sequencing is a technology that can be 
used to comprehensively reveal the gene expression pro-
files of cells by sequencing transcripts in individual cells 
one by one [7]. It is currently the most mature technology 
for high-throughput functional resolution at the single-
cell level. As shown in Fig. 1, the process begins with the 
dissociation of fresh tissue into a single-cell suspension, 
followed by the selection of different single-cell capture 
strategies depending on the cell numbers. Manual opera-
tions (e.g., limited dilution, laser cutting, micromanipu-
lation) are generally chosen for small cell numbers, but 
microfluidic and microwell techniques are used when 
the cell throughput is on the order of tens of thousands 
[7]. After single-cell capture, cDNA is obtained through 
reverse transcription, amplified, and then sequenced. 
Downstream analysis can be conducted after completion 
of the single-cell sequencing run. The analysis process 
typically involves 3 stages: primary analysis (base detec-
tion), secondary analysis (multiple isolation, alignment, 
and genetic identification), and tertiary analysis (data vis-
ualization and interpretation) [8]. As scRNA-Seq involves 
a sufficient number of active cells from fresh samples, 
it is impossible to perform it efficiently from frozen or 
indigestible samples. The emergence of modern single-
nucleus RNA sequencing has solved this problem by 
inserting an extraction procedure to extract the nuclei of 

Fig. 1 The workflow of single‑cell/nucleus RNA sequencing
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single cells before isolating and labelling the nuclei, mak-
ing it possible to detect nuclear gene expression at the 
single-cell level [9, 10]. However, this method is currently 
not applicable for immune cells, and sequencing sensitiv-
ity may be low due to the low abundance of mRNA in the 
nuclei of some cells. Overall, single-cell transcriptomics 
has allowed us to fully decipher cell types/subtypes and 
functions in almost all species by constructing a refer-
ence catalogue of gene expression encompassing cells 
throughout the body. In addition, single-cell transcrip-
tomic data can be visualized in multiple dimensions via 
bioinformatics analyses, such as differential enrichment 
and proposed time-series analyses. These strategies ena-
ble the reconstruction and simulation of biological sys-
tem operations.

Livestock produces more than 15% of the world’s high-
quality protein. The Food and Agriculture Organization 
of the United Nations predicts that by 2050, up to 50% 
of animal food will be required to feed 10 billion peo-
ple. Rapidly emerging bioscience biotechnologies have 
assisted animal science experts in producing even more 
animal products with limited resources. However, when 
facing new challenges, such as studying the biological 
factors determining economic traits, product quality, 
and animal health, it is crucial to use high-throughput 
methods, especially single-cell transcriptomics, to better 
investigate cellular functions and interactions. Relevant 
research has already been conducted in animal studies 
worldwide using scRNA-Seq (see Additional file  1 for 
details). For example, identifying and annotating various 
cell types in livestock can reveal their specific functions 
and interactions, which is crucial for obtaining an even 
better understanding of the cellular composition, differ-
entiation status, and intercellular regulatory networks 
in animal tissues and organs. This technology provides 
high-resolution information on gene expression in indi-
vidual cells, facilitating the discovery and comparison of 
expression differences between cells and allowing for the 
identification of key genes related to economically impor-
tant characteristics, nutrient metabolism, and disease 
resistance. In addition, scRNA-Seq can enable the discov-
ery of new genes and regulatory elements, particularly 
those that are poorly expressed or cell-specific. Thus, our 
understanding of livestock animal genomes is enhanced, 
and a new approach to functional studies is provided. The 
transcriptomic changes in cells can be tracked at different 
time points via scRNA-Seq, revealing the dynamic pro-
cesses of cell development, differentiation, and functional 
transformation. This information is important for under-
standing tissue growth, development, regeneration, and 
immune responses in livestock.

Our paper provides an overview of the use of scRNA-
Seq in livestock research in recent years. It also offers 

insights and references on the single-cell data analysis 
process, which can serve to make scRNA-Seq a more 
robust tool for research on animal husbandry and breed 
optimization.

Applications of single‑cell transcriptomics 
for livestock husbandry
Exploration of nutrient metabolism and immune responses
The gastrointestinal tract (GIT) serves as a vital organ for 
nutrient absorption, and the mucosal immune system in 
animals largely affects production performance, animal 
welfare, and the safety of livestock products. Through sin-
gle-cell sequencing of the livestock GIT, we will be able to 
investigate the composition and distinct metabolic pat-
terns of various cell types, and ultimately, we may provide 
precise targets for nutritional manipulation and enhance 
nutrient absorption in these animals. Among the GIT in 
ruminants, the rumen holds undeniable significance for 
nutrient digestion and absorption, particularly for short-
chain fatty acids (SCFAs), which are absorbed by the 
rumen epithelium and can meet 70%–80% of the body’s 
energy requirements [11]. However, the rumen epithe-
lium is a complex structure consisting of four layers of 
cells of different types and functions. This complexity 
has hindered mechanistic explorations of rumen epithe-
lial absorption and turnover of specific nutrients. Earlier 
scRNA-Seq work has shown that spiny cells of the rumen 
epithelium play a crucial role in SCFAs [12], but more 
detailed cell subtypes were not identified due to factors 
such as the lack of identified marker genes. The applica-
tion of the newly developed rumen single-cell suspen-
sion preparation method for scRNA-Seq has given rise 
to even more comprehensive insights into rumen epi-
thelial cell types. Wu et al. [13] integrated and expanded 
specific marker genes for bovine cell lineages based on 
previous studies; 20,728 rumen epithelial cells were clus-
tered into 18 rumen epithelial cell types, and the specific 
metabolic characteristics of each cell subtype were char-
acterized. The ability of different epithelial cells to absorb 
SCFAs was explored by analysing the expression of genes 
encoding transporter proteins and scoring the related 
functional pathways. The findings revealed that channel-
gap-like (Cg-like) spinous cell regulated by IL-17 was the 
preferred subtype for SCFA absorption in dairy cows 
[13]. The microbiota is essential for nutrient absorption 
in the GIT, and further joint mining of rumen metagen-
omic data characterized the interactions between Cg-like 
cells and fibre-degrading bacteria via structural domains 
of the secreted proteins (Fig.  2) [14]. Unfortunately, 
the study did not address ruminal nutrient uptake dur-
ing different developmental stages. Studies on intestinal 
nutrient absorption in monogastric animals based on 
single-cell transcriptomics have primarily concentrated 
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on cross-species comparisons of distinct cell types and 
functional analyses. Specifically, studies have examined 
significant interspecies differences and regional charac-
teristics in hormone-secreting enteroendocrine cell [15, 
16]. For example, there is a gradual decrease in the num-
ber of these cells after the birth of piglets [17].

The immune system is vital for animal health and plays 
a pivotal role in defending against external hazards by 
maintaining physiological equilibrium. The application of 
scRNA-Seq for investigating livestock immunity has gen-
erated valuable insights. The advent of scRNA-Seq has 
contributed to an in-depth understanding of functional 
heterogeneity, molecular regulatory mechanisms, and 
infection responses among cellular subsets within central 
immune organs (e.g., the bursa and thymus) and periph-
eral immune organs (e.g., Pyle’s collecting lymph node) 
[18–20]. However, investigations on the bone marrow of 

domestic animals remain a major issue. Single-cell tran-
scriptional profiling of various immune cells, such as 
peripheral blood monocytes and lymphocytes of domes-
tic animals, underlines the homology and species speci-
ficity of immune gene expression, providing a molecular 
basis for understanding the immune response process in 
livestock [21–31]. For example, single-cell transcriptomic 
data of peripheral blood mononuclear cells (PBMCs) 
following disease in domestic animals have been used 
to identify pathogenic immune cell subpopulations and 
transcriptional modules driving pathogenesis [32]. This 
approach has helped with identifying subpopulations and 
molecular markers of PBMCs in chickens infected with 
avian influenza and avian leukemia virus [33–35], unrav-
elling key signalling factors associated with lipopolysac-
charide-induced glycolipid metabolism abnormalities in 
cattle [22], and uncovering cell types and genes linked to 

Fig. 2 Functional mechanism of rumen short‑chain fatty acids uptake
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periparturient immunosuppression in dairy cows [36]. In 
recent years, single-cell sequencing research has shifted 
towards porcine immune cells during piglet weaning 
stress, weaning diarrhoea, and intestinal inflammation, as 
it enables the tracking of immune cell heterogeneity dur-
ing pathogenic microbial infections and host responses 
during diseases. For example, scRNA-Seq analysis 
revealed that tumor necrosis factor-α secreted by differ-
ent immune cells could contribute to disease, as observed 
in studies investigating African swine fever and porcine 
intestinal inflammation [37, 38]. These observations have 
opened new avenues for the development of novel vac-
cines and targeted therapies. In summary, scRNA-Seq 
studies allow for the precise identification and analysis of 
cell types and their interactions involved in the immune 
processes of domestic animals. They also allow for the 
examination of regulated genes, signalling pathways, 
transcription factors, and immune cell subpopulations 
with potential pathogenic functions. Current studies pri-
marily focus on exploring immune mechanisms, however 
the potential of scRNA-Seq could be harnessed to evalu-
ate the efficacy and response to immunotherapy. This 
involves concentrating on T cells, which are important 
players in the immune response and play key roles in ani-
mal health.

Investigation of cell factors for animal reproductive 
performance
The level of reproductive performance in livestock, 
which can directly affect productivity, depends on the 
ability to produce high-quality male and female gam-
etes. The use of scRNA-Seq combined with proposed 
time-series analysis has allowed for the careful investi-
gation of the dynamic mapping of cell fate transitions 
and gene expression changes during spermatogenesis in 
dairy goats, sheep, yaks, and premature piglets [39–45]. 
Through comprehensive analyses, researchers have iden-
tified specific marker genes and key signalling pathways 
related to germ cells within the testes of farm animals. 
Furthermore, studies have explored the homology and 
differences in male germ lines across different species, 
expanding our understanding of testicular development 
and spermatogenesis [40, 46, 47]. It has become evident 
that spermatogenesis relies on an ecological niche com-
posed of testicular somatic cells. Consequently, stud-
ies have increasingly focused even more on single-cell 
sequencing analyses of these cells over the past few dec-
ades. However, due to variations in study samples and 
resolution, there are significant knowledge gaps related 
to the classification of testicular somatic cells, necessitat-
ing further investigation [40, 42–44, 46]. The growth and 
development of ovarian follicles are primarily regulated 
by granulosa cells. Through single-cell transcriptomics, 

the heterogeneity and differentiation pathways of folli-
cular cells and granulosa cells in the ovaries of livestock 
animals have been characterized [48–52]. However, 
intercellular interactions within the ovary remain poorly 
understood. Recent studies in yaks, goats, and domes-
ticated pigs have attempted to fill this gap [53–56]. For 
instance, Chen et  al. discovered that porcine ovarian 
mural granulosa cells primarily engage in intercellu-
lar communication with cells of the same type, whereas 
ovarian theca granulosa cells predominantly emit sig-
nalling cues to different cell types [53]. Nevertheless, 
these studies are based on relatively small sample sizes, 
and more in-depth work is needed to corroborate their 
findings. High-precision mapping of germ cell genesis in 
livestock animals has enabled researchers to conduct in-
depth studies on the screening, diagnosis, and treatment 
of reproduction-related disorders, such as sperm dam-
age, abnormal oocyte development, and male infertility, 
in the progeny of interspecifically crossbred individuals 
[57–59]. The regulatory characteristics and interspe-
cific differences of various types of cells in the gonads of 
livestock animals obtained at specific time points rep-
resent another research focus that can be assessed by 
single-cell transcriptomics [60–62]. To date, continu-
ous developmental differentiation in livestock gonads is 
poorly understood. Only the gonadal differentiation of 
the chicken embryo has been analysed, and the discovery 
that the supporting cells during gonadal differentiation 
in the chicken embryo are derived from mesenchymal 
stem cells, in contrast to other vertebrates, has revolu-
tionized our previous understanding of gonadal cell types 
[63]. Notably, noncoding RNAs significantly affect the 
regulation of germ cell proliferation and differentiation 
in livestock [40, 64]. However, capturing these noncod-
ing RNAs remains challenging, necessitating advance-
ments in the application of this technology to enhance 
our understanding of livestock reproductive performance 
[65].

Single-cell transcriptomics has also been widely 
accepted as an efficient tool for investigating cell fate 
and transcriptional regulation during embryonic devel-
opment. Studies employing scRNA-Seq have exam-
ined embryos at various life stages in livestock, such as 
cattle, pigs, chickens, sheep, and rabbits, thus making 
dynamic transcriptional profiles and cellular differen-
tiation trajectories accessible within each germ layer of 
early-stage embryos [66–74]. For example, these analyses 
have uncovered species-specific features of early embry-
onic development (E5-E13) in pigs, revealing the differ-
entiation of bovine trophoblast mononuclear cells into 
binucleated cells and the changes in differential gene 
expression and associated signalling pathways from the 
8-cell to the mulberry embryo stage in sheep [67, 68, 
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71]. By leveraging scRNA-Seq, researchers can also ana-
lyse embryos with developmental abnormalities or those 
transferred from in  vitro cultures. These investigations 
contribute to identifying potential causes of developmen-
tal abnormalities, offering valuable guidance for improv-
ing reproductive techniques such as in vitro fertilization 
and embryo transfer. It has been observed that incom-
plete activation of certain metabolic pathways leads to 
metabolic abnormalities. Epigenetic modification may 
be responsible for the significant effects on subsequent 
pregnancy and calving rates in females, and comparing 
the developmental transcriptional profiles of embryos 
transferred in vitro from different states [75] may provide 
new ideas for the treatment of embryonic developmental 
abnormalities.

Elucidation of genetics and developmental biology 
in livestock
Throughout the ontogeny of an organism, the tran-
scriptome of certain cells undergoes substantial trans-
formation. scRNA-Seq represents a novel approach for 
elucidating the dynamic patterns of gene expression dur-
ing livestock genetic development and for revealing the 
regulatory networks governing developmental and evolu-
tionary processes. The ultimate goal is to depict the tra-
jectory of cellular fate transformations. Developmental 
mapping has been performed on the nervous systems and 
skeletal limbs of monogastric animals [74, 76–78] while 
focusing on the nodes and key cell types involved in the 
developmental differentiation of organs or tissues. It is 
worth mentioning that aided by single-cell transcriptom-
ics of embryonic limbs in poultry, studies have pinpointed 
pivotal regulators and signalling pathways driving limb 
differentiation formation along with their regionaliza-
tion for the first time [79, 80]. Among ruminants, rumen 
development has received significant attention. Scien-
tists have constructed a comprehensive developmental 
landscape of thirteen metabolic tissues in ruminants [81, 
82], which encompasses a holistic comparison of hetero-
geneity within rumen epithelial cell types, cell functions 
and interacting microbiota between calves and adults. 
These findings suggested that calf epithelial progenitor 
cells exhibit greater differentiation potential and display 
greater activity in cell proliferation, differentiation, and 
innate immune responses [81, 82]. Conversely, adult 
bovine cells show prominence in immune cells and have 
increased activity during antioxidant, adaptive immune, 
and fatty acid metabolism processes [81, 82]. Similarly, 
studies have shown that the keratinization process during 
rumen epithelial cell development is associated with the 
cessation of keratinocyte differentiation at specific stages 
[12, 83]. Previous studies have successfully identified key 
genes associated with rumen growth and development 

by scRNA-Seq of the rumen epithelium [84, 85]. Overall, 
scRNA-Seq is assisting in the construction of a develop-
mental evolutionary tree of livestock from the embryo to 
the mature individual. In single-cell transcriptional stud-
ies on animal genetic development, previously unidenti-
fied cell types are discovered, such as a specific class of 
endothelial cell clusters found in yak lungs, were revealed 
as potential factors in plateau acclimatization, and it was 
shown that calf-specific  STOML3+ cells have the poten-
tial to maintain the internal environment of the liver [82, 
86]. In addition, the exploration of unexpected func-
tionalities harboured by common cell types has become 
possible, e.g., luminal epithelial cells could be involved 
in both lactation and immune responses [13]. It is worth 
mentioning that whole-body single-cell atlases have been 
generated for several mammalian species [87–91], with 
those in humans and mice covering the entirety of life 
stages [92]. However, to date, comprehensive whole-body 
single-cell atlases are still lacking for livestock animals.

The comparison of single-cell transcriptomic data from 
high- and low-productivity livestock has become an 
approach to identify genes and key cell types related to 
economic traits and has led to the selection and breed-
ing of highly productive livestock breeds. Taking meat 
production traits as an example, the quantity and quality 
of meat production largely depend on the development 
of skeletal muscle. Analyses of the single-cell transcrip-
tomics of skeletal muscle from fat and lean pigs could 
effectively identify key genes for adipocyte differentiation 
and epigenetic modifications [93–95]. By analysing the 
developmental trajectories of myogenic progenitor cells, 
it was observed that the skeletal muscles of lean livestock 
were more closely related to myogenic progenitor cells 
and more responsible for muscle development than the 
skeletal muscles of fat pigs, suggesting that mechanistic 
explorations of myogenesis can lead to the study of dif-
ferences in genealogical cell differentiation [93, 96]. The 
identification of specific liver cell clusters between laying 
and non-egg-laying populations in egg-laying birds may 
also provide new insights for improving egg production 
in the future [97]. More information can also be acquired 
from single-cell transcriptomic studies of niche economic 
traits such as fleece- and silk-producing traits. The for-
mer is limited by the asynchronous development of the 
wool bursa [98], and the latter is limited by the under-
studied organ of the silk gland; neither the wool bursa nor 
silk glands have been accurately analysed previously for 
specific cell types. The emergence of scRNA-Seq has ena-
bled in-depth knowledge of the distribution of the com-
position of each cell type and the trajectories of key cells 
during the different developmental periods of the wool 
bursa and silk glands [99–102]. Additionally, new marker 
genes involved in the synthesis of velvet and silk proteins 
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have been identified [100], which can improve the quality 
of cashmere and silk. For instance, the ACTA2, COL1A1, 
and CLCL6 genes may regulate cashmere fineness [103]. 
Although single-cell transcriptomic analyses have shown 
promise for improving genetic breeding, current research 
results are difficult to apply in animal production or 
have limited impact. Future research concentrating on 
diseases that are commonly associated with production 
should follow. For example, particular cell subpopulations 
associated with mastitis in dairy cows can be identified.

Emergence of disease models
The utilization of scRNA-Seq in model animals is highly 
important, especially in pigs, an animal commonly used 
as a medical/disease model [104–106]. By employing 
scRNA-Seq, researchers have gained profound insights 
into the composition of organelle types between pigs 
and men, thereby revealing the heterogeneity and con-
servatism of gene expression and regulatory mechanisms 
within the biological processes of interest and promoting 
in-depth biomedical research and widespread use of the 
domestic pig as an animal model. Previous studies have 
focused on individual tissues or organs (e.g., immune 
cells [15, 18, 23, 24, 27, 60], lungs [107], liver, embryos 
[108], the reproductive system [46, 47, 109], and the 
digestive tract [16, 110]) in pigs. These studies utilized 
cross-species analyses to identify conserved or specific 
gene modules in tissues or screened for cellular subpop-
ulations and risk genes associated with disease. Moreo-
ver, they have revealed gene–trait associations through 
modelling or induction. Pig lung tissue data were char-
acterized for both similarities and differences in cellular 
communication and expression patterns of respiratory 
virus receptors in each cell type of the lung compared 
with human lung tissue data [107]. A comprehensive por-
cine brain atlas has facilitated the identification of cell 
types and risk genes linked to eight neurological disor-
ders, e.g., attention deficiency [111]. Data from the pan-
creas have suggested that TXNIP, a stress gene in acinar 
cells, could become a potential target for the treatment 
of diabetes [112]. The investigation of the gallbladder 
in neonatal piglets has shed light on the mechanisms of 
cystic fibrosis-related hepatobiliary disease [113]. For 
the first time, a pioneering study constructed a porcine 
single-cell atlas database that comprehensively describes 
the heterogeneity of cells among 20 tissues/organs in 
pigs [114], providing a global view of tissue differences 
between domestic pigs and humans. Rather than focus-
ing on specific cell clusters, Wang et al. [114] emphasized 
distinct functions and typical markers of endothelial cells 
commonly involved in different tissues and suggested 
that the endothelium may interact with cells through 
the VEGF, PDGF, TGF-β, and BMP pathways. Microglia 

have also been noted to be highly conserved across spe-
cies during evolution [114], strongly supporting the 
view of pigs as an invaluable data resource for research 
on human diseases. In the context of xenotransplanta-
tion, pigs are considered the most suitable donors for 
human organ transplantation. However, the occurrence 
of rejection has restricted the application of this tech-
nique [115]. The expression patterns of ten genes associ-
ated with human immunobiological incompatibility and 
dysregulation of coagulation have been obtained across 
different cell types in pigs [107]. This discovery holds the 
potential to enhance the immunocompatibility of por-
cine xenotransplantation in the future through targeted 
genetic engineering, thereby improving survival after 
organ transplantation [116]. However, is important to 
note that the current study does not adequately address 
the influence of physiological states and manipulation on 
the samples. These factors may affect the results by lead-
ing to differing numbers of captured cells and altered 
cell typing. Future research should address this crucial 
aspect.

In addition to pigs, chickens and rabbits serve as valu-
able disease models for constructing single-cell reference 
maps. Differential cellular components can be identified 
by comparing “disease maps” with “normal maps”, which 
may in turn predict molecular disease mechanisms. For 
example, rabbits have been used to study mammalian 
cardiac contraction, proto-gut embryonic development, 
proliferative vitreoretinopathy, and hyperlipidaemia-
induced spongiosis [72, 117–119]. Similarly, chickens 
have proven valuable for investigating retinal develop-
ment, hearing damage, and the mechanism underlying 
melatonin-related weight loss [120–122]. Among wild 
animals, antlers, a unique mammalian appendage capa-
ble of complete natural regeneration, have been dem-
onstrated to grow similarly to long bones in humans. 
Leveraging the potential of scRNA-Seq, scientists have 
revealed key cell types and differentiation trajectories 
involved in antler regeneration [123–125], opening new 
avenues for exploring mammalian organ regeneration 
and organ damage repair. Future research should address 
the current limitations in genome annotations for rein-
deer [123–125].

Experience in single‑cell transcriptomic data 
analysis
The optimal sample size for single‑cell transcriptomic 
research
Increases in sample size and sequencing depth could 
result in the discovery of new and rare cell types, encom-
passing both previously unrecognized entities and those 
present in tissues where they have not been detected 
before [126]. For instance, among 42,182 cells from three 
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forestomach samples, T helper 17 and epithelial stem and 
progenitor cells were first identified in dairy cows [13]. A 
total of 29,231 individual cells were obtained from three 
samples of porcine adipose tissue, from which subtypes 
of cells transformed from endothelial to mesenchymal 
cells were distinguished [114]. Compared to studies in 
livestock, there are more instances of new cell type iden-
tification in humans and model organisms, such as a 
new specialized uroepithelial cell type discovered among 
25,307 cells across three bladder samples in humans and 
mice [127] and four clusters of nonsensory epithelial cells 
of the ampulla identified from four stages of mouse crista 
ampulla samples [128]. Based on the aforementioned 
examples of novel cell discoveries, it is evident that 
employing three or more biological replicates and analys-
ing over 20,000 cells significantly enhances the likelihood 
of uncovering new cell types. Considering the spatial 
positioning of tissue sampling and individual differences 
in cell dissociation, a larger number of biological samples 
further provides advantages in elucidating the compre-
hensive distribution of cell types. However, due to the 
high cost of reagents and sequencing (a total of 10–15 K 
RMB per sample), excessive sampling may cause more 
significant input and divert focus from validation experi-
ments. As an illustration, in cell atlas studies, larger bio-
logical sample numbers are preferable for identifying cell 
types at higher resolution [21, 44, 102]. However, if the 
focus is solely on identifying which cell type is responsive 
to an experimental treatment, one biological replicate 
may be effective, as that one cell type typically consists 
of more than 20 cells/transcriptomes [129, 130]. In addi-
tion, time-series designs generally involve fewer biologi-
cal replicates than two-group comparisons [36, 129].

With the development of single-cell sequencing tech-
nologies, an eight-channel microfluidic system that can 
capture up to 10,000 cells per channel has been devel-
oped, allowing for simultaneous detection of sample cell 
counts ranging from 50,000 to 800,000 cells in a single 
run [131], making a single sample cover a large number 
of cell/transcriptomic replicates. Bioinformatics tools 
allow us to enhance and refine the power of single-cell 
data analysis through the interpretation of transcriptome 
data. Deconvolution algorithms are now being employed 
to dissect bulk transcriptomic data to the single-cell 
level [132], increasing the statistical power of bulk tran-
scriptomics in single-cell experiments. In addition to 
deconvolution algorithms, a framework for integrating 
single-cell RNA sequencing, epigenomic SNP-to-gene 
maps and genome-wide data enables the identification of 
target cell types based on the strong statistical power of 
GWAS data. Currently, emerging large-scale single-cell 
pre-trained models with tens of millions of cells, such 
as scGPT, can empower the tasks of our small datasets, 

including cell classification, network inference, and 
transcription factor perturbation analysis [133]. Taken 
together, researchers need to determine the amount of 
biological replication that is sufficient to capture biologi-
cal variability and provide statistically significant results 
while considering the cost of experiments and the com-
plexity of data analysis. Bulk sequence data and large-
scale pre-trained models could be used to enhance the 
statistical power of single cells.

The number of cell clusters that optimally match the real 
situation
In brief, the number of cell types is determined by clus-
tering algorithms; specifically, after obtaining single-cell 
datasets, the cells can be categorized into 2–5 major clus-
ters based on automatic annotation and positional vari-
ance in the dimensionality reduction results. With major 
biological classifications, multiple higher resolutions 
could be used to identify the more specific cell types cor-
responding to the basic biological knowledge of a given 
tissue (Fig.  3). As an example, the large intestine com-
prises diverse epithelial cell types arranged in distinct 
configurations. Absorptive enterocytes predominate, lin-
ing the villi and crypts and specializing in the uptake of 
water, electrolytes, and nutrients from the luminal con-
tents [134]. Goblet cells interspersed throughout secrete 
protective mucus, creating a mucosal barrier against 
pathogens and toxins [135]. Enteroendocrine cells release 
hormones to regulate digestive functions, while Paneth 
cells, predominantly found in the small intestine but also 
present in smaller numbers in the large intestine, contrib-
ute to innate immunity through the secretion of antimi-
crobial peptides [136, 137]. Mesenchymal cells, immune 
cells, endothelial cells and neural cells are present in the 
large intestine. However, the epithelium of the intestine is 
usually composed of a single layer of columnar epithelial 
cells, such as those with 1 or 2 clusters, and some cuboi-
dal cells, such as goblet cells, with 2 or 3 clusters [21]. 
Different resolution values should be tested to provide 
the finest demonstration of the known cell types within 
each tissue. Furthermore, based on the objectives and 
experimental design, the resolution and number of cell 
clusters may vary while maintaining biological features. 
A greater number of clusters is essential for key subclus-
ter identification. For instance, specific macrophage and 
conventional dendritic cell subsets were identified as 
key mediators of cellular cross-talk in the colon tumour 
microenvironment from 54,285 cells divided into 40 clus-
ters [138].

Moreover, clustering algorithms should also be essen-
tial for generating the number of cell clusters. First, 
suitable algorithms should be chosen based on the 
cell numbers. The K-nearest neighbours algorithm is 
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typically applied to datasets with small cell numbers, 
with the number of clusters predetermined before clus-
tering. Moreover, the Louvain and Leiden algorithms are 
normally used for single-cell datasets with more than 
100,000 cells, with the number of clusters determined by 

the resolution set by the analyser [139, 140]. The num-
ber of clusters can be determined by intra- and interclus-
ter similarity, community detection, eigenvector-based 
metrics, and stability [141]. However, these four pre-
dominant clustering methods lack systematic evaluation 

Fig. 3 A summary of the common cell types identified in the gastrointestinal tract of livestock
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strategies for estimating the number of cell types. There-
fore, stability-based approaches for estimating the num-
ber of cell types, such as scCCESS, have been proposed 
[141], enabling the estimation of the number of cell clus-
ters without the need for researcher observation. Some 
bioinformatic visualization tools also help us estimate 
the number of clusters. The Clustree algorithm [142] 
employs a bottom-up hierarchical clustering approach 
for cluster information at different resolutions, which 
facilitates our selection of a suitable resolution by incor-
porating biological insights.

A well‑formulated strategy for cell type identification
The identification of cell types is a fundamental and 
essential step in the analysis of single-cell transcriptome 
data and is accompanied by dimension reduction and 
clustering [143]. Generally, the number of cell types and 
the annotation results should be consistent with the cor-
responding physiological characteristics.

The common cell types identified in the GIT of live-
stock are summarized in Fig.  3. The clusters can be 
classified into five main cell groups: epithelial cells, 
endothelial cells, stem cells, immune cells and others. 
We noticed that the number of clusters for immune cell 
types in the forestomach is generally lower than that 
in the intestine, while fibroblasts and muscle cells were 
more diverse. In the intestine, specifically in the small 
intestine, B cells and macrophages are more abundant. 
The cluster numbers correspond to substantial peristal-
sis and mechanical wear in the foregut, as well as the 
clear ability of the small intestine to eliminate exogenous 
invading microorganisms [144]. Collectively, these cells 
form a complex biological system responsible for diges-
tion, nutrient absorption, protection against pathogens, 
and tissue repair and regeneration. Based on the previ-
ous cell group summary, we propose three approaches 
that are beneficial for identifying cell types: (1) collecting 
biological background information in a given situation; 
(2) referencing standard cell type names and databases; 
and (3) assisting in cell type identification with the help 
of bioinformatic software. It is necessary to summarize 
basic knowledge in the process of annotating cell types, 
including biological knowledge and standards/universal 
naming rules. Regarding how many types of cells should 
be classified, an effective method is to summarize the 
physiological characteristics of animal tissues through 
the accumulation of relevant experimental data and sci-
entific research results [143]. For example, according to 
basic knowledge, the cell types present in the epithelial 
tissue of the rumen of dairy cows consist of four lay-
ers of epithelial cells (basal, spiny, granular, and stratum 
corneum; stratum corneum cells are dead cells and will 
not be captured), immune cells residing in the tissue, 

endothelial cells in the connective tissue, smooth mus-
cle cells, and fibroblasts [13]. Therefore, the presence of 
these cell types can be used as a reference when deter-
mining whether the number of cell types is accurate 
and whether the current clustering parameters should 
be adjusted. In animal science research, genes related to 
animal production or health traits may have correspond-
ing biological significance to cell type. For example, Wu 
et al. [13] found a new subcluster of rumen epithelial cells 
called channel gap-like spinous cells in dairy cows via an 
in-depth analysis of solute carrier gene expression. Addi-
tionally, Wang et al. identified EndMT cells as critical for 
endothelial-to-mesenchymal transition (EndMT) based 
on gene expression in stromal and endothelial cells [114].

To make the cell type identification results more bio-
logically meaningful, the integration of public databases 
and bioinformatics analysis software should be con-
sidered. Public databases of single-cell transcriptome 
data, such as the Human Cell Atlas, incorporate marker 
genes for cell type identification and standard or univer-
sal cell type nomenclature rules [145]. In animal science 
research, the cattle cell atlas constructed by Wu et al. [82] 
and the pig cell atlas constructed by Wang et al. [114] are 
also of high reference value, although they do not cover 
all tissue types. A unified system will improve efficiency 
and applicability for other studies [146]. Clustree soft-
ware can be used for determining whether the number of 
cell types obtained from clustering is appropriate [142]. 
Software that automatically annotates cell types can also 
assist in identifying cell types, e.g., Cellhint [146], Cell-
Typist [147], and SingleR [148]. Software programs for 
the automated annotation of cell types have been devel-
oped based on mathematical models and are specific for 
annotating certain cell types. For example, Cellhint is 
used to annotate human cells, and CellTypist is only used 
to annotate human immune cells. Notably, bioinformat-
ics analysis should be performed manually to ensure the 
biological significance of the annotated results.

Outlook
Currently, single-cell transcriptome sequencing technol-
ogy is cumbersome and costly in terms of experimental 
steps. Professional experimentation and specialized soft-
ware support are required for all aspects, from sample 
preparation to data analysis. Moreover, the bias of cell 
capture during the sequencing process may lead to inac-
curate results, which is mainly attributed to the possibil-
ity of missing or detecting specific types of cells at low 
frequencies. Moreover, bioinformatics tools and algo-
rithms are still suboptimal, making it challenging to 
extract meaningful information from the massive amount 
of data. In the future, it will be necessary to simplify and 
optimize the process of single-cell technology to reduce 
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its cost and operational difficulty and to make it easier to 
apply in different fields. The accuracy and efficiency of 
cell capture techniques should be improved to reflect the 
diversity of cellular communities. In the meantime, tech-
niques for cell capture and mRNA enrichment in prokar-
yotes are still under development. The implementation 
of microbiome single-cell transcriptome technology will 
substantially broaden the application landscape of single-
cell technology [149].

One of the greatest limitations of scRNA-Seq is the loss 
of spatial information due to tissue dissociation. Spatial 
transcriptomics is a more recently developed methodol-
ogy that allows for the localization and construction of a 
cellular expression map with a spatial dimension, which 
is not achievable with scRNA-Seq. Coupled with scRNA-
Seq, this approach can stereoscopically demonstrate the 
heterogeneous distribution and functional localization of 
individual cells and reveal spatial differences in cells dur-
ing evolutionary development or disease onset. However, 
the application of this approach to domestic animals is 
still relatively rare. Only studies on the spatiotemporal 
transcriptional profiling of chicken heart development 
have been reported, but have revealed the pathways 
through which cardiac cell differentiation and mor-
phological changes occur at the same time as spatially 
restricted regulatory programmes [150]. The complexity 
of life activities is difficult to determine by single-modal-
ity omics methods; therefore, single-cell multi-omics 
technologies, including single-cell transcriptome as the 
core analysis combined with genome, proteome and 
metabolome analyses, are inevitable [151] and will be 
able to deepen the understanding of cell type and state in 
greater dimension. For example, the dynamic changes of 
single-cell RNA/ATAC sequencing in porcine embryonic 
skeletal muscle were consistent with the activity of differ-
ent cell type-specific transcription factors, which helped 
identify key regulators of muscle formation after integra-
tive analysis [152].

Sequencing of certain animals or organs can be chal-
lenging due to their limited availability, difficulty in 
manipulation, or ethical concerns. Organoids, 3D cul-
tures developed from stem cells that closely resemble the 
source tissue [153], are valuable in  vitro tools for orga-
noid single-cell transcriptomics in such cases. Integrat-
ing organoids with scRNA-Seq can allow more precise 
comparisons between organoids and source tissues in 
terms of cell types and gene expression patterns; more-
over, through real-time monitoring of transcriptome 
changes in single cells of organoids cultured under differ-
ent treatments, it is possible to provide potential cellular 
and molecular phenotypic information on complex traits, 
such as feed efficiency and disease resistance. Orga-
noid models have been constructed for various livestock 

species [154–156] and are mainly used to study organ 
development, host–microbe interactions, cellular nutri-
ent metabolism mechanisms, and drug toxicity. Zhang 
et al. [83] utilized a significant quantity of butyric acid to 
stimulate rumen organoids, and the organoids showed 
noticeable keratinization and significant increases in the 
expression levels of related keratinization genes. These 
findings were confirmed by single-cell sequencing, dem-
onstrating the potential for combining single-cell tran-
scriptomes and organoids for the study of biological 
mechanisms.

Single-cell transcriptomics reveals the role of differ-
ent cells in organisms. However, it is important to rec-
ognize that in multicellular organisms, the functionality 
of the organism is dependent on synergistic interactions 
between different cells. Thus, single-cell transcriptome-
based research should consider the relationships between 
cell lineages and the interactions between cells. This 
might also prevent an overemphasis on the functions of 
individual cells and might rather ensure that the influ-
ence of the hostile environment on cell development 
and function is not ignored. Using a multidimensional 
approach to single-cell transcriptome studies, such as 
cell communication analysis, the interaction network 
between cells can be reconstructed and predicted, reveal-
ing signalling and regulatory mechanisms and providing 
a more accurate reference for studying overall organ-
ism and tissue function. It is also possible to validate the 
accuracy of single-cell sequencing data through various 
biological experimental means, ensuring a more reliable 
assessment of research results.

Conclusions
Single-cell transcriptomics has enabled the analysis of 
heterogeneity in gene expression in tissues and organs 
at the single-cell level. This advancement has provided 
a robust framework for identifying cell types, discov-
ering rare cell populations, screening marker genes, 
exploring cellular developmental trajectories, and ana-
lysing cellular functions. ScRNA-Seq has also been 
extensively applied in animal science, particularly in 
studies involving domestic species of high economic 
importance. Using scRNA-Seq, animal researchers 
have investigated topics such as nutritional regulation, 
metabolic mechanisms, spermatogenesis, embryonic 
development, genetic breeding, and disease mecha-
nisms in livestock. Through the construction of single-
cell atlases for different animal organs, researchers have 
revealed the intricate cellular heterogeneity and gene 
expression variability present at the individual, organ, 
and tissue levels. This approach has facilitated deeper 
mechanistic investigations at the molecular level, shed-
ding light on the underlying genetic basis of important 
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traits and disease pathogenesis. Consequently, scRNA-
Seq has made substantial and significant contributions 
to advancing our understanding of animal biology and 
is ultimately poised to enhance the quality of livestock 
products to meet increasing consumer demands. When 
analysing single-cell transcriptomic data, the optimal 
sample size should be determined based on the biologi-
cal variation, statistical significance, cost and complex-
ity of the data analysis. Accurate cell clustering and cell 
type annotation should consider background knowl-
edge, as well as appropriate and stable algorithms. Cur-
rently, scRNA-Seq still faces several great challenges, 
ranging from sample processing to data analysis, and 
the integration of novel experimental methodologies 
and sequencing technologies is needed to probe and 
elucidate the intricate regulatory networks and causal 
relationships among diverse biomolecules in a multidi-
mensional manner. Through continued innovation and 
interdisciplinary collaboration, single-cell transcrip-
tomics holds the promise of unlocking new frontiers 
in animal research and fostering sustainable advance-
ments in agricultural productivity and animal health.
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