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Abstract 

Background Sows commonly experience insulin resistance in late gestation and lactation, causing lower feed intake 
and milk production, which can lead to higher mortality rates in newborn piglets. The probiotic Lactobacillus rham-
nosus GG (LGG) is known to improve insulin resistance. However, whether supplementing LGG can improve insulin 
sensitivity in sows and enhance lactation performance, particularly the early survival of offspring remains unclear. 
Hence, we explored the effects and mechanisms of supplementing LGG during late gestation and lactation on sow 
insulin sensitivity, lactation performance, and offspring survival. In total, 20 sows were randomly allocated to an LGG 
(n = 10) and control group (n = 10).

Results In sows, LGG supplementation significantly improved insulin sensitivity during late gestation and lactation, 
increased feed intake, milk production and colostrum lactose levels in early lactation, and enhanced newborn piglet 
survival. Moreover, LGG treatment significantly reshaped the gut microbiota in sows, notably increasing microbiota 
diversity and enriching the relative abundance of insulin sensitivity-associated probiotics such as Lactobacillus, Bifido-
bacterium, and Bacteroides. Serum metabolite and amino acid profiling in late-gestation sows also revealed decreased 
branched-chain amino acid and kynurenine serum levels following LGG supplementation. Further analyses high-
lighted a correlation between mitigated insulin resistance in late pregnancy and lactation by LGG and gut microbiota 
reshaping and changes in serum amino acid metabolism. Furthermore, maternal LGG enhanced immunity in new-
born piglets, reduced inflammation, and facilitated the establishment of a gut microbiota.

Conclusions We provide the first evidence that LGG mitigates insulin resistance in sows and enhances offspring 
survival by modulating the gut microbiota and amino acid metabolism.
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Background
During late gestation and lactation, sows often experi-
ence insulin resistance due to obesity or a disrupted gut 
microbiota [1, 2]. In an insulin-resistant state, blood 
glucose concentrations are elevated, inhibiting the feed-
ing center, and delaying feeding behavior initiation [3]. 
This disrupts feeding continuity, leading to reduced food 
intake during lactation, and ultimately lower milk pro-
duction in sows [4]. Studies indicate that inadequate lac-
tation in sows during the perinatal period is a primary 
cause of increased piglet mortality rates [5, 6]. Piglets 
that consume less than 400 g of colostrum exhibit higher 
mortality rates within 21 d post-birth [7]. In particular 
for contemporary high-yield sows, low feed intake and 
decreased milk production are prevalent issues during 
lactation [8]. Therefore, alleviating insulin resistance dur-
ing late gestation and lactation is crucial to enhance lac-
tation performance in sows. Several strategies have been 
used to address insulin resistance in late-pregnancy and 
lactation phases in sows. For instance, supplementing 
diets with soluble fiber or resveratrol has shown promise 
in alleviating periparturient insulin resistance by modu-
lating the gut microbiota [9, 10]. However, the conclu-
sions from these studies are inconsistent. What is certain 
is that a modulated gut microbiota is an effective way to 
improve insulin resistance in sows [11].

In recent years, as probiotics have continued to gain 
prominence in improving the intestinal microbiota, 
and also the body’s immunity, anti-inflammatory, and 
antioxidant capacities, they have also been shown to 
improve reproductive performance and health status in 
sows [12–15]. A recent study showed that the gut micro-
biota had important roles regulating feed intake during 
lactation, while sows with high and low feed intake had 
a unique microbial community [11]. Emerging evidence 
now suggests that the gut microbiota in sows is associ-
ated with feeding efficiency [16]. Sows fed a Bacillus sub-
tilis C-3102 probiotic diet (5 ×  105 colony forming units 
(CFU)/g of gestation feed and  106 CFU/g of lactation 
feed) increased their feed intake during lactation [12]. 
Additionally, probiotic supplementation to sow diets 
affected gut microbiota composition in offspring piglets, 
and demonstrated potential benefits on intestinal health 
and growth performance [12, 17]. Previous studies also 
showed that Lactobacillus reuteri I5007 supplementation 
 (109 CFU/kg) from late gestation to lactation accelerated 
fecal microbiota maturation in piglets during early life 
and improved their growth performance [17].

Lactobacillus rhamnosus GG (LGG), isolated from 
healthy human feces, exhibits gastric acid and bile salt 
tolerance, and strong colonization capabilities in the gut 
[18, 19]. Studies in newborn and weaned piglets have 
shown that oral LGG benefited intestinal barrier function 

[20, 21]. Recently, several clinical and mouse model type 
2 diabetes studies reported that LGG improved insulin 
resistance by modulating the gut microbiota [22–25]. 
However, it remains unclear whether LGG alleviates 
lactation performance by improving insulin resistance 
in sows during late pregnancy. Therefore, in this study, 
we hypothesized that LGG supplementation in sows 
improved insulin resistance by regulating the gut micro-
biota, thereby improving feed intake, milk yield, and pig-
let survival.

In this study, we (1) assessed the beneficial effects of 
LGG during late pregnancy and lactation on sow insu-
lin sensitivity, lactation performance, the gut microbiota, 
and survival rates in offspring piglets; and (2) identified 
potential mechanisms whereby LGG modulated the gut 
microbiota and serum metabolites to alleviate insulin 
resistance.

Materials and methods
LGG preparation
LGG (ATCC 53103) was purchased from the China 
Center of Industrial Culture Collection and cultured 
in Man Rogosa Sharpe medium at 37 °C for 24 h under 
anaerobic conditions until the logarithmic phase, then 
centrifuged at 5,000 × g for 15 min at 4 °C, washed three 
times in sterile saline, and finally resuspended in saline. 
Our remit was to ensure that every sow in the experi-
mental group was fed 5 ×  1010 CFU of LGG. Sows in the 
control group received the same volume of saline. LGG 
dosages were calculated according to Wan et al. [26] and 
Reagan-Shaw et al. [27].

Experimental design and feeding management
Twenty healthy third-parity sows (Landrace × Yorkshire; 
at d 60 of gestation) with similar genetic backgrounds 
were randomly assigned to 2 groups based on back-fat 
thickness and body weight (Table S1). Dietary treatments 
included a basal diet (CON; n = 10) and a basal diet sup-
plemented with 5 ×  1010 CFU/d LGG (LGG, n = 10). How-
ever, two sows in the CON group had miscarriages in late 
gestation and were ultimately not included. To maximize 
live probiotic intake, a pre-trial training period was initi-
ated 2 weeks prior to official study commencement. Dur-
ing this period, a specialized feeding device containing 
a liquid solution with glucose was used to train sows to 
drink before their evening meal. This regimen ensured 
that all sows proficiently used water-sucking devices for 
optimal probiotic intake in 2 weeks. The sow basal diet 
(Table 1) was formulated to meet or exceed the nutrient 
requirements for both gestating and lactating animals 
(NRC, 2012) [28]. Animal procedures were approved 
by the Institutional Animal Care and Use Committee of 
Sichuan Agricultural University. Sows were housed in 
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individual pregnancy crates (2.0 m × 0.60 m) from d 60 of 
gestation. On d 107, sows were transferred to farrowing 
cages (2.0 m × 2.5 m). After farrowing, newborn piglets 
in the same treatment group were cross-fostered within 
24 h and adjusted to 10 piglets/litter. Gestational diets 
were provided twice daily at 08:00 h and 16:00 h. During 
gestation, sows were fed 2.6 kg/d on d 60 and this was 
stepped up to 2.75 kg/d on d 84. Sows were not fed on 
the day of parturition. On the second day, sows were fed 
1.5 kg/d, and the amount of feeding was increased by 1.0 
kg/d until they were fed ad  libitum on d 4 of lactation. 

Before formal study commencement, all sows were fed 
the same basal diet. Water was freely accessible during 
the study.

Sample collection
Fasting blood samples were collected on d 90 and 105 of 
gestation, and d 10 and 21 of lactation (morning). Rectal 
swabs from sows were collected on d 105 of gestation and 
d 10 and 21 of lactation. On these latter days, litters were 
weighed, and piglets that were representative of the aver-
age body weight were selected from litters and blood and 
fresh feces were collected. Rectal swabs from piglets were 
collected according to Wang et  al. [17]. Briefly, a sterile 
swab was inserted approximately 1–1.5 cm into the anal 
canal, moved from side to side, and left for 10–30 s to 
allow for microbe absorption onto the swab. Fecal sam-
ples were quickly placed in liquid nitrogen and subse-
quently transferred to −80 °C for storage. Colostrum was 
collected from sows within 3 h of parturition and used 
to determine milk composition. The procedure involved 
sterilizing the breast area with 75% alcohol, after which a 
representative 5 mL milk sample was collected in sterile 
tube and stored at –20 °C.

Sow and piglet performance and predicted milk yields
Feed intake of sows was recorded on d 7, 14, and 21 of 
lactation, while piglet weight was recorded on d 7, 14, 
and 21 of lactation. Milk yields were predicted based on 
daily litter weight gain and litter size according to Hansen 
et al. [29].

Serum glucose and amino acid concentration 
measurement
Sow fasting glucose concentrations were measured using 
an automatic biochemical analyzer (Hitachi 7020, Hitachi 
High-Tech Company, Tokyo, Japan), while serum amino 
acid concentrations were similarly determined using the 
Hitachi L-8800 model (Hitachi High-Tech).

Enzyme‑linked immunosorbent assay (ELISA)
Serum insulin, adiponectin, immunoglobulin G (IgG), 
immunoglobulin M (IgM), interleukin-6 (IL-6), IL-10, 
tumor necrosis factor-α (TNF-α), kynurenine, and 
indoleamine 2, 3-dioxygenase (IDO) concentrations were 
determined using respective ELISA kits (Meimian Bio-
technology, Jiangsu, China) according to manufacturer’s 
protocols.

DNA extraction and 16S rRNA gene sequencing
Microbial genomic DNA from fecal samples was 
extracted using QIAamp DNA Stool Mini kits (Qiagen 
Inc., Hilden, Germany) according to the manufacturer’s 

Table 1 Ingredient and nutrient composition of experimental 
diets (as-fed basis)

a The premix (per kilogram of diet) provided the following: Gestation: Fe, 95 mg; 
Cu, 46 mg; Zn, 100 mg; Mn, 54 mg and Se, 0.17 mg. vitamin A, 6,000 IU; vitamin 
E, 50 IU; vitamin  D3, 1,200 IU; vitamin  K3, 2.4 mg; vitamin  B1, 1 mg; vitamin  B2, 3.6 
mg; vitamin  B6, 1.8 mg; vitamin  B12, 0.0125 mg; biotin, 0.24 mg; folic acid, 2 mg; 
niacin, 25 mg; pantothenic acid, 14 mg; preservative, 500 g; antioxidant, 200 g; 
mycotoxin adsorbent, 1,000 g; and choline chloride (60%), 1,300 g. Lactation: Fe, 
100 mg; Cu, 25 mg; Zn, 125 mg; Mn, 35 mg; I, 0.2 mg; and Se, 0.3 mg. Vitamin A, 
6,000 IU; vitamin E, 50 IU; vitamin  D3, 1,200 IU; vitamin  K3, 2.4 mg; vitamin  B1, 1 
mg; vitamin  B2, 3.6 mg; vitamin  B6, 1.8 mg; vitamin  B12, 0.0125 mg; biotin, 0.24 
mg; folic acid, 2 mg; niacin, 25 mg; pantothenic acid, 14 mg; preservative, 500 
g; antioxidant, 200 g; mycotoxin adsorbent, 1,000 g; and choline chloride (60%), 
1,000 g

Items Gestation Lactation

Ingredients, %

 Corn 57.79 51.17

 Wheat bran 14.00 10.00

 Rice bran 8.00 4.00

 Soybean meal 11.00 15.45

 Soybean hull 5.06 -

 Soybean oil 0.55 2.53

 Soybean, heat-treated - 8.00

 Fish meal (Peru) - 2.00

 Sucrose - 2.00

 Glucose - 2.00

 L-Lysine HCl (78.8%) 0.16 0.13

 DL-Methionine (98%) 0.04 -

 L-Threonine (98%) 0.11 0.02

 L-Tryptophan (98%) 0.03 -

 L-Valine (99%) - 0.08

 Dicalcium phosphate 1.22 0.89

 Limestone 1.12 0.89

 Sodium chloride 0.40 0.40

  Premixa 0.52 0.44

 Total 100 100

Calculated analysis

 DE, Mcal/kg 12.77 14.24

 ME, Mcal/kg 11.87 13.13

 Crude protein, % 14.22 18.21

 Calcium, % 0.70 0.66

 Phosphorus, % 0.81 0.71
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instructions. Extracted DNAs were checked on 1% aga-
rose gels, and concentrations and purity were deter-
mined using a NanoDrop 2000 spectrophotometer 
(Thermo Scientific, USA). Based on concentrations, 
DNAs were diluted to 1 ng/µL in sterile water and 
used as templates for PCR. The V3–V4 hypervariable 
region of 16S rRNA was amplified using 341F (5´-CCT 
AYG GGRBGCASCAG-3´) and 806R (5´-GGA CTA 
CHNGGG TAT CTAAT-3´) primers. Briefly, PCR reac-
tions were carried out in 30 µL reactions, and contained 
15 µL of  Phusion® High-Fidelity PCR Master Mix (New 
England Biolabs), 0.2 µmol/L each of forward and 
reverse primers, and approximately 10 ng of template 
DNA. Thermal cycling conditions consisted of initial 
denaturation at 98  °C for 1 min, followed by 30 dena-
turation cycles at 98 °C for 10 s, annealing at 50 °C for 
30 s, and elongation at 72  °C for 30 s. Finally, the pro-
gram was maintained at 72 °C for 5 min. PCR products 
were purified using Qiagen Gel Extraction kits (Qiagen 
Inc., Hilden, Germany) after electrophoresis on 2% gels 
containing SYBR green. Amplicons were quantified, 
pooled, and sequenced using the Illumina MiSeq sys-
tem (Illumina Inc., San Diego, CA, USA) for paired-end 
reads. For bioinformatics analysis, raw paired-end reads 
were merged using FLASH (v. 1.2.7), and then high-
quality clean tags were obtained by quality filtering raw 
tags, following QIIME (v. 1.9.1) quality-control pro-
cesses. Sequence analysis was conducted using Uparse 
software (v. 7.0.1001), grouping sequences with ≥ 97% 
similarity into the same operational taxonomic units 
(OTUs) and selecting representative sequences for 
further annotation. OTU abundance information was 
normalized to the sequence number of the sample with 
the fewest sequences, and subsequent α and β diversity 
analyses were conducted using this normalized data. 
Alpha (α) diversity was used to analyze species diver-
sity in samples using three indices: Observed-species, 
Chao1, and Ace. All samples indices were calculated 
using QIIME (v. 1.7.0) and displayed using R software 
(v. 2.15.3). Beta (β) diversity analyses were used to 
assess differences in sample species complexity, with 
both weighted and unweighted UniFrac distances cal-
culated using QIIME software (v. 1.9.1). Principal coor-
dinate analysis (PCoA) based on Bray–Curtis distances 
was used to visualize sample differentiation or similar-
ity and groups were deemed significantly distinct using 
ANOSIM analysis in R software (v. 2.15.3). Linear dis-
criminant analysis effect size (LEfSe) was used to detect 
differentially abundant features across groups in R 
software (v. 1.0). PICRUSt analysis was used to predict 
microbial community functions based on 16S rRNA 
gene sequencing in R software (v. 4.0.3).

Short chain fatty acid (SCFA) determination
SCFAs were determined according to Li et al. [30]. Briefly, 
fecal samples were thawed at 4 °C and approximately 50 
mg of a uniform, representative sample was diluted in 1 
mL of ultrapure water and centrifuged at 3,500 × g for 
15 min. After, the supernatant was collected and mixed 
with 0.2 mL of metaphosphoric acid (25%) and 23.3 µL 
of crotonic acid (210 mmol/L). The mixture was placed 
at 4 °C for 30 min before centrifugation at 4,000 × g for 
10 min. Finally, 0.9 mL of methanol was mixed with 0.3 
mL of the supernatant and filtered through a 0.22-µm 
filter (Millipore Co., Bedford, MA, USA) after centrifu-
gation at 3,500 × g for 5 min. Gas chromatography (Var-
ian CP-3800, manual injection, flame ionization detector, 
FID, 10 µL micro-injector) was used to determine SCFA 
concentrations.

Untargeted serum metabolomics
Frozen serum samples were thawed at 4  °C, after which 
100 µL was mixed with 400 µL of cold methanol/ace-
tonitrile (1:1, v/v) to remove protein. The mixture was 
centrifuged for 20 min at 4  °C and then dried in a vac-
uum centrifuge. Samples were then dissolved in 100 µL 
of acetonitrile/water (1:1 volume ratio) and centrifuged 
at 14,000 × g for 15 min at 4 °C. Supernatants were then 
analyzed using Ultra-High Performance Liquid Chroma-
tography (UHPLC, 290 Infinity LC, Agilent Technolo-
gies) coupled to a quadrupole time-of-flight (AB Sciex 
TripleTOF 6600) at Shanghai Applied Protein Technol-
ogy Co., Ltd.

Raw data were converted to mzXML files in Prote-
oWizard. Peak picking was performed using the following 
parameters: centwave m/z = 10 ppm, peak-width = c (10, 
60), and prefilter = c (10, 100). Peak grouping was per-
formed using bw = 5, mzwid = 0.025, and minfrac = 0.5. 
The collection of metabolite profile annotation algo-
rithms facilitated isotope/adduct annotation. Only vari-
ables with > 50% non-zero values in at least one group 
were retained in extracted ion features. Metabolite iden-
tification relied on accurate m/z values (< 10 ppm) and 
comparisons with Tandem Mass Spectrometry (MS/MS) 
spectra in an in-house database of authenticated stand-
ards. Metabolite structures were confirmed by matching 
accurate mass numbers (within < 25 ppm) and using a 
secondary spectrogram matching method and the labo-
ratory database at Shanghai Applied Protein Technology 
Co. Ltd. Processed data were analyzed using the R pack-
age, where they underwent multivariate data analysis, 
including Pareto-scaled principal component analysis 
and orthogonal partial least-squares discriminant analy-
sis (OPLS-DA). Variable importance in projection (VIP) 
values of each variable in the OPLS-DA model were 
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calculated to indicate their contribution to the classifica-
tion. Student’s t-tests were used to determine significant 
differences between two groups of independent sam-
ples. VIP > 1 and P-values < 0.05 were used to screen for 
significant metabolite changes. For differential metabo-
lite analysis, we used Human Metabolome Database 
(HMDB) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) databases. Furthermore, all differentially abun-
dant metabolites were cross-referenced to KEGG (http:// 
www. kegg. jp/) and mapped to KEGG pathways.

Statistical analysis
Data were analyzed using SAS 9.4 (SAS Inst. Inc., Cary, 
NC, USA) with individual sows or piglets as experimen-
tal units. Serum indicators including glucose, insulin, 
Homeostatic Model Assessment for Insulin Resistance/
Insulin Sensitivity (HOMA-IR/IS), and adiponectin 
(ADP) were analyzed using the PROC MIXED procedure 
in SAS for repeated measurements in a completely rand-
omized design using the following models:

where Y (Yij, Yijk) is an observed trait, µ is the popula-
tion mean, αi is the fixed effect of the treatment (i = CON 
or LGG), βj is the fixed effect of gestation stage (j = G90, 
G105, L10, or L21), αi × βj is the interaction between diet 
and gestation stage, and e (eij, eijk) is the residual, which 
was assumed to be normally distributed with variance 
homogeneity. Piglet survival rates were analyzed using 
Chi-square tests. Gut microbiota composition was ana-
lyzed using Wilcoxon tests, with P-values corrected 
using the Benjamini–Hochberg method. Other data 
were subjected to Student’s t-tests in a completely ran-
domized design using SAS and were presented as the 
mean ± standard error of the mean (SEM). Significant 
differences were accepted at P < 0.05 and tendencies at 
0.05 ≤ P < 0.10.

Results
LGG supplementation enhances lactation performance 
and alleviate sow insulin resistance
To explore the effects of LGG on lactation performance 
in sows, blood and fecal samples were collected on ges-
tational d 90 and 115 and lactation d 10 and 21. Milk 
samples were collected on the day of parturition. Blood 
and fecal samples from offspring piglets were collected 
at the same time points as the sows (Fig.  1A). Sow lac-
tation performance is shown (Fig. 1B). The average daily 

Yij = µ+ αi + eij

Yijk = µ+ αi + βj + αi × βj + eijk

feed intake in LGG-supplemented sows showed a mar-
ginal increase of approximately 500 g/d when compared 
to the CON group (P = 0.079). Notably, during the first 
lactation week, milk yields in the LGG group signifi-
cantly surpassed CON levels (P < 0.01; Fig. 1B). Concur-
rently, heightened survival rates and increased litter 
weights of newborn piglets were observed in this time 
frame. Across the entire lactation period, feed intake, 
milk yields, and litter weight showed no statistically sig-
nificant differences (P > 0.05; Fig.  S1A). However, piglet 
survival rates in the LGG group remained significantly 
improved (P < 0.01; Fig.  S1B). Furthermore, no signifi-
cant differences in body weight or back-fat thickness 
were observed between groups (P > 0.05; Fig. S1C). LGG 
sows showed higher (P < 0.05; Fig. 1C) insulin sensitivity 
than CON sows during late gestation and lactation peri-
ods. Sows showed higher insulin sensitivity at lactation 
on d 10 (L10) than at gestation day 90 (G90), G105, and 
L21 (P < 0.05; Fig.  1C). However, no significant interac-
tion effects were noted between time and dietary treat-
ments (P > 0.05). Additionally, LGG increased lactose 
and decreased milk protein levels, and also reduced 
somatic cell counts (SCC) in colostrum when compared 
to CON sows (P < 0.05; Fig.  2A). However, no signifi-
cant differences were observed in milk fat, dry matter, 
or non-fat milk solids between groups (P > 0.05; Fig. 2B). 
Pearson’s correlation analysis revealed a positive correla-
tion between lactose and milk yields (r = 0.495, P = 0.053; 
Fig.  2C), and strong negative correlations between lac-
tose and milk proteins (r = −0.983, P < 0.0001; Fig.  2D), 
dry matter (r = −0.817, P < 0.0001; Fig. 2E), and non-solid 
milk content (r = −0.896, P < 0.0001; Fig. 2F).

LGG supplementation reshapes fecal microbiota 
composition in sows during late gestation and lactation 
periods
As shown in Fig.  3A, the microbiota α diversity index 
in feces from LGG-supplemented sows in gestation 
and lactation periods was significantly higher (P < 0.05) 
when compared to CON sows. At the same time, a sig-
nificant reduction (P < 0.05; Fig.  3A) in α diversity in 
transition from post-pregnancy to lactation in CON 
sows was observed; however, this phenomenon was 
not observed in LGG sows. PCoA using Bray–Curtis 
dissimilarity analyses distinctly separated LGG from 
CON sows during both gestation and lactation stages 
(P < 0.05; Fig.  3B). In addition, LEfSe analysis, which 
used to identify biomarkers across groups, revealed 
significant increases (P < 0.05; Fig. 3C) in genera abun-
dance (Lactobacillus, Bacteroides, and Methanobre-
vibacter) due to LGG supplementation during late 
gestation. Furthermore, during mid-lactation, a notable 
increase in Bacteroides abundance was attributed to 

http://www.kegg.jp/
http://www.kegg.jp/


Page 6 of 18Gao et al. Journal of Animal Science and Biotechnology           (2024) 15:89 

LGG (P < 0.05; Fig. 3C). To further investigate differen-
tial flora levels between groups, we generated an OTU 
bubble plot which clearly showed the top 20 genera and 
their relative abundance across groups. Venn diagram 
data showed that LGG and CON groups shared 128 
OTUs in late gestation and 228 OTUs in lactation peri-
ods (Fig.  3D). Bacteroides were predominant in both 
late gestation (Fig. 3E) and lactation periods (Fig. 3G). 
Wilcoxon rank sum tests were then used to explore 

differential microorganisms between groups; the top 5 
significantly different bacteria are shown (Fig. 3). Rela-
tive Bacteroides, Lactobacillus, Methanobrevibacter, 
Actinobacillus, and Butyricimonas abundance at the 
genus level was higher (P < 0.05; Fig.  3F) in LGG sows 
when compared with CON sows at G105. However, no 
significant differences (P > 0.05; Fig. 3F) in relative Fir-
micutes and Bacteroidota abundance, and their ratios 
(F/B) were observed. At L10, the top 5 dominant genera 

Fig. 1 The overall trial design and LGG supplementation effects on insulin resistance and performance in sows. LGG was supplemented from d 
60 of gestation until the end of lactation. Serum and fecal samples were collected on d 90 (G90), 105 (G105) of gestation, and days 10 (L10) and 21 
(L21) of lactation. Milk was collected on the day of parturition (G114), and piglet samples were collected on d 10 and 21 of lactation (A). Changes 
in sow feed intake, lactation yield, litter weight gain, and piglet survival after LGG supplementation (B). Comparison of the insulin sensitivity index 
between sow groups during late gestation and lactation (C). Changes in serum glucose, insulin, and adiponectin concentrations in sows (D). S: 
stage, L: LGG, S × L: interaction between reproductive stage and LGG treatment. Serum biochemical indicators, including glucose, insulin, HOMA-IR, 
HOMA-IS, and adiponectin were analyzed using the PROC MIXED procedure (SAS) for repeated measurements in a completely randomized 
design. Piglet survival rates were analyzed using Chi-square tests. Other data were analyzed using Student’s t-tests. HOMA: homeostasis model 
assessment. IR: insulin resistance. IS: insulin sensitivity. Data were presented as the mean ± SEM. *P < 0.05 and **P < 0.01. Tendencies were accepted 
at 0.05 ≤ P < 0.10
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were Ucg-002, Bacteroides, NK214_group, Oscillibac-
ter, and Bifidobacterium (P < 0.05; Fig.  3H). Addition-
ally, increased Bacteroidetes abundance and decreased 
F/B (P < 0.05; Fig.  3H) were observed following LGG 
supplementation.

To explore whether insulin resistance was associated 
with gut microbiota changes, we performed Spear-
man’s correlation analyses between the insulin resist-
ance index and differential bacteria (top 5 genera). 
Correlation analyses showed that insulin resistance 
at G105 was significantly associated with Bacteroides 
abundance in feces (r = −0.66, P < 0.05; Fig. 4). We also 
examined SCFAs, including acetic acid, propionic acid, 
butyric acid, isobutyric acid, valeric acid, and isovaleric 
acid levels, in sow feces at G105. However, no sig-
nificant differences were observed between groups 
(P > 0.05; Table  S2). Thus, LGG supplementation dur-
ing late gestation significantly reshaped gut microbiota 
composition in sows and was associated with insulin 
resistance.

LGG supplementation alters serum metabolites at G105
Given that LGG supplementation significantly altered the 
gut microbiota, we further investigated serum metabo-
lite changes in sows. UHPLC was used to detect serum 
metabolites at G105. In total, 1,249 metabolites (717 and 
532 under positive and negative ion modes, respectively) 
were detected across groups. A hierarchical clustering 
heatmap of significant differential metabolites showed 
differences in metabolite expression patterns in different 
samples (P < 0.05; Fig.  5A). A volcano plot showed 231 
(130 and 101 up- and down-regulated peaks, respectively) 
and 279 (155 and 124 up- and down-regulated peaks, 
respectively) peak features in positive and negative ion 
modes, respectively (Fig. S2A). An OPLS-DA score plot 
also showed different serum metabolic profiles in CON 
and LGG groups (Fig. S2B). Using VIP > 1 and P < 0.05 
parameters, 54 significant metabolite changes were iden-
tified between groups (26 and 28 under positive and 
negative ion modes, respectively), of which, 14 metabo-
lites were enriched in LGG sows, and the remaining were 

Fig. 2 LGG supplementation to sows improves milk yield and is associated with increased lactose levels. Comparison of lactose, protein, somatic 
cell counts (SCC), fat, dry matter, and non-solid milk (A and B). Linear regression analysis of lactose content in colostrum (X) and milk yield (Y), 
non-solid milk (Y), protein (Y) and dry matter (Y) (C–F). The student’s t-test was used to compare differences between sow groups. Data were 
presented as the mean ± SEM. Correlations between lactose and milk yield, non-solid milk, protein, and dry matter were analyzed using Pearson’s 
correlation analysis

(See figure on next page.)
Fig. 3 LGG supplementation reshapes the gut microbiota in sows during late gestation and lactation. Gut microbiota α diversity, 
including observed species, ACE, and Chao 1 indices (A). Principal coordinates analysis (PCoA) score plots (B). LefSe bar (C) and Venn diagram (D) 
showing sows on d 105 of gestation (G105) and d 10 of lactation (L10). OTU bubble maps were drawn for the top 20 bacteria ranked by relative 
abundance at G105 and L10 (E and G). The relative abundance of the significantly different top 5 genera at G105 and L10 (F and H). Data were 
presented as the mean ± SEM. PCoA ordination plots show fecal bacterial communities in CON and LGG groups based on Bray–Curtis distances. 
Groups were deemed significantly distinct using ANOSIM analysis (P < 0.05). Wilcoxon tests were used to evaluate statistical differences. *P < 0.05, 
**P < 0.01 and ns means not significant (P > 0.05)
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enriched in CON sows. KEGG pathway analyses showed 
that 10 metabolic pathways were altered, and four metab-
olites were significantly enriched in the amino acid bio-
synthesis pathway (P < 0.05; Fig.  5B). Then, PICRUSt 
analysis was used to predict microbial community func-
tions based on 16S rRNA sequencing (Fig. 5C), including 
metabolic pathway and KEGG enrichment analyses. We 
observed that amino acid metabolism was a significantly 
enriched metabolic pathway shared by the serum metab-
olome and fecal microbial function predictions (Fig. 5D). 
Further data analyses showed that serum branched-chain 
amino acids (BCAA) including valine, leucine, and iso-
leucine tended (P = 0.0844; Fig. 6A) to be decreased fol-
lowing LGG supplementation. Correlation analysis also 
revealed a significant positive correlation between BCAA 
and insulin resistance (r = 0.710, P < 0.001; Fig. 6B). Con-
versely, a significant negative correlation was observed 
between BCAA and Bacteriodes abundance (r = −0.556, 
P < 0.05; Fig. 6C). Tryptophan is metabolized by IDO to 
produce kynurenine (Fig.  6D). In our study, there was 
no significant difference in tryptophan levels between 
the two sow groups (P > 0.05; Fig.  6E). However, serum 
metabolome data analyses revealed a significant reduc-
tion in serum kynurenine content following LGG sup-
plementation (P < 0.05; Fig.  6F). The kynurenine to 
tryptophan ratio, which is used to measure IDO content, 
showed a decreasing tendency (P = 0.053; Fig.  6G) fol-
lowing LGG supplementation. Serum kynurenine did 
not show a significant positive correlation with insulin 
resistance (r = 0.437, P = 0.103; Fig. 6H). However, a sig-
nificant positive correlation was observed between serum 
kynurenine and serum glucose (r = 0.6645, P < 0.01; 
Fig.  6I). Interestingly, heatmap analysis revealed a clear 
correlation between these significantly up-regulated 
microorganisms and metabolites (P < 0.05; Fig.  6J). Spe-
cifically, with the exception of Actinobacillus, the remain-
ing up-regulated bacteria all showed correlations with 
metabolites, with the strongest correlation identified for 

Lactobacillus toward organic acids and derivatives and 
lipids and lipid-like molecules. Importantly, Lactobacil-
lus was significantly negatively correlated with serum 
kynurenine (P < 0.05; Fig. 6J).

LGG supplementation reduces serum BCAA 
and kynurenine
To confirm BCAA and kynurenine reductions in serum, 
we quantified amino acids in serum from G105 sows. As 
expected, LGG supplementation significantly reduced 
serum BCAA levels (P < 0.05; Fig.  7A). Serum kynure-
nine levels increased with gestation progression (P < 0.01; 
Fig.  7B), whereas it was significantly decreased in LGG 
sows at G105 (P < 0.05; Fig.  7C). Serum IDO levels at 
G105 were also significantly decreased (P < 0.01; Fig. 7D) 
following LGG supplementation. However, LGG supple-
mentation had no significant effects on serum tryptophan 
levels (P > 0.05; Fig. 7E) at G105, or on serum kynurenine 
and IDO levels (P > 0.05) (Fig. S3) at G90, L10, and L21.

Maternal LGG supplementation modifies the gut 
microbiota in offspring piglets
To investigate the potential impact of maternal LGG con-
sumption on the gut microbiota in piglet offspring, fecal 
samples collected at L10 and L21 underwent 16S rRNA 
sequencing. We observed that fecal microbiota α diver-
sity was significantly increased (P < 0.05; Fig. S4A) as pig-
lets matured, but with no significant differences (P > 0.05, 
Fig. S4A) between groups. However, PCoA revealed a 
more pronounced impact of maternal LGG supplemen-
tation on piglet microbial communities at L10 (P < 0.05; 
Fig.  8A). Gut microbial interaction network analyses 
showed that the gut microbiota at L10 had more com-
plex structures in the LGG group (Fig. 8B), characterized 
by higher density, greater depth, and more nodes, when 
compared with CON piglets (Table S3). We further ana-
lyzed genus differences in piglet groups, and found that 
LGG supplementation increased the relative abundance 

Fig. 4 Serum insulin resistance is associated with Bacteroides abundance in late gestating sows. Spearman’s correlation analysis showed 
that the serum insulin resistance index at d 105 was strongly associated with intestinal Bacteroides abundance. HOMA: Homeostasis Model 
Assessment. IR: insulin resistance. IS: insulin sensitivity. Red squares indicate a positive correlation and blue squares indicate a negative correlation. 
*P < 0.05 and **P < 0.01
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Fig. 5 LGG supplementation alters serum metabolites in late gestating sows. Cluster plots show 49 significantly different serum metabolites 
between LGG and CON groups (A). Serum metabolites in KEGG pathway analysis (B) and microbial 16S rRNA function predictions (C) show 
that amino acid supplementation of LGG significantly changed amino acid metabolism pathway. Amino acid metabolism was a shared KEGG 
pathway among the 2 omics (D)
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of the beneficial bacteria NK4A214_group, while it 
decreased the relative abundance of harmful bacteria 
such as Streptococcus and Klebsiella (P < 0.05; Fig. S4B). 
Thus, maternal LGG supplementation conferred greater 
benefits toward the piglet microbiome during early 
lactation.

Maternal LGG supplementation modulates 
immunoglobulin and inflammatory cytokines levels in sow 
milk and piglet serum
To assess the impact of maternal LGG supplementation 
on immunoglobulins and inflammatory cytokines in 
sow milk and piglet serum, we analyzed several param-
eters (Fig.  9). LGG supplementation exerted no effects 
(P > 0.05; Fig. S5) on immunoglobulin levels in milk, 
whereas it generated higher (P < 0.05; Fig.  9A) IgG and 
IgM levels in umbilical cord serum. For inflammatory 
cytokine analysis in piglet precaval serum, TNF-α levels 
at L10 and L21 were lower (P < 0.05; Fig. 9B) in LGG pig-
lets when compared with CON animals, whereas IL-10 
levels at L21 tended (P = 0.07; Fig.  9B) to be higher in 
LGG piglets when compared with CON animals.

Discussion
In sows, a high feed intake and high body reserve mobi-
lization are considered key prerequisites for higher milk 
production [4]. However, when production cannot meet 
the nutritional needs of piglets, sows over-mobilize 
their own body reserves, resulting in reduced reproduc-
tive lives [31]. In our study, sows fed diets supplemented 
with LGG had higher milk production levels during the 
first lactation week, while body weight, body lipid, and 
protein loss between groups did not differ. In contrast, 
when compared with CON sows, LGG supplementa-
tion improved feed intake during the first lactation week. 
These observations suggested that LGG supplementa-
tion increased milk production by increasing food intake 
rather than sows mobilizing their own body reserves. 
Insulin resistance is one characteristic of perinatal meta-
bolic syndrome in gestating and lactating sows [1], where 
excessive insulin resistance reduces feed intake dur-
ing lactation [2]. We showed that insulin sensitivity was 
increased in sows fed LGG diets when compared with 

CON sows, consistent with a study showing that oral 
Lactobacillus rhamnosus LS-8 administration generated 
lower insulin resistance index values in high-fat diet mice 
[32]. Therefore, high insulin sensitivity may contribute to 
high food intake in LGG-fed sows during lactation. Sev-
eral previous studies indicated that LGG increased insu-
lin sensitivity by increasing adiponectin levels in mice 
with type 2 diabetes or insulin resistance [33–35]. How-
ever, in our study, no differences in serum adiponectin 
concentrations were recorded between groups, possibly 
owing to species-specific differences.

Another important milk yield factor is lactose [36, 37], 
which is not only an important nutrient, but also directly 
affects milk yields by regulating osmotic pressure in 
mammary epithelial cells [36]. In our study, increased lac-
tose levels were observed when sows were fed an LGG-
supplemented diet; a positive correlation was observed 
between lactose and milk yields. As expected, lactose was 
strongly negatively correlated with other solid compo-
nents in milk, consistent with previous studies showing 
that the content of other solids decreased as milk yields 
increased [37, 38]. Circulating glucose is the only sub-
strate source of lactose synthesis in sow mammary glands 
[39]. Glucose uptake is dependent on glucose transport-
ers, with insulin-dependent glucose transporters 8 identi-
fied in mammary glands in recent years [40]. Therefore, 
we speculated that higher insulin sensitivity in LGG-fed 
sows promoted glucose uptake capacity in mammary 
glands, thereby synthesizing more lactose (Fig. 10). Milk 
is the only energy source for newborn piglets. Therefore, 
increased milk yields and lactose levels in LGG sows 
contribute to greater offspring survival rates and growth 
performance.

Current evidence now shows that gut microbiota dys-
biosis is one cause of insulin resistance in sows [1]. As 
our data indicated, gut microbiota α-diversity was higher 
in LGG sows when compared to CON sows, consistent 
with research showing that LGG enhanced α-diversity in 
an insulin resistance mouse model [41]. Previous reports 
also showed that individuals with insulin resistance had 
lower Lactobacillus abundance [42, 43], which could be 
increased by LGG [44]. Consistent with these observa-
tions, we identified higher Lactobacillus abundance in 

Fig. 6 LGG improves insulin resistance in late gestating sows by regulating the gut microbiota, branched-chain amino acid (BCAA), and kynurenine 
levels. BCAA levels in serum metabolites (A). Pearson’s correlation analysis of BCAAs with the insulin resistance index HOMA-IR (B) and Bacteroides 
(C). The kynurenine production pathway (D), tryptophan (E), kynurenine (F) levels in the metabolome and their ratios (G). Correlation analysis 
showing serum kynurenine content with HOMA-IR (H) and glucose (I). Spearman’s correlation analysis showed a correlation between differential 
microbial features and serum metabolites in sows at 105 days of gestation (J). BCAA: branched chain amino acids. Trp: tryptophan. Kyn: kynurenine. 
IDO: indoleamine 2,3-dioxygenase. GLU: glucose. HOMA: homeostasis model assessment. IR: insulin resistance. *P < 0.05, **P < 0.01 and ns refers 
to not significant (P > 0.05)

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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LGG sows. Additionally, in patients with insulin resist-
ance, the gut microbiota was characterized by lower Bac-
teroidetes abundance and F/B ratios [45]. In our study, 
lactating sows fed an LGG diet increased their Bacteroi-
detes abundance levels and F/B ratios, consistent with 
previous findings in mice [24]. Previous studies also 
showed that LGG supplementation improved Bacteroides 
abundance [23]. Interestingly, in our study, Bacteroides 
were predominant in both late gestation and lactation 
periods. Spearman’s correlation analyses showed a sig-
nificant negative correlation between Bacteroides abun-
dance and insulin resistance at late gestation. Therefore, 
LGG consumption appeared to improve insulin sensitiv-
ity and lactation performance in sows by modulating the 
gut microbiota [46].

Serum metabolites are important markers that reflect 
metabolic status and bodily health [47, 48]. Recent stud-
ies confirmed that a dysregulated gut microbiota influ-
enced host amino acid metabolism and contributed to 
insulin resistance [49–51]. In particular, high serum 
BCAA levels were shown to promote insulin resistance 

development, correlating with reduced Bacteroides abun-
dance [52, 53]. Interestingly, we demonstrated that LGG 
supplementation reduced serum BCAA levels in sows. 
Further analysis revealed a positive correlation between 
BCAA and insulin resistance, while a negative correla-
tion was observed between BCAA and Bacteroides abun-
dance. Thus, ameliorated insulin resistance in LGG-fed 
sows was potentially linked to altered BCAA levels and 
Bacteroides abundance.

Kynurenine is the main tryptophan metabolite [54]. A 
recent study reported a crucial role for the gut micro-
biota in tryptophan metabolism [55]. Notably, elevated 
kynurenine levels were positively associated with insu-
lin resistance, making it a key predictor of gestational 
diabetes [56, 57]. IDO is the rate-limiting enzyme in 
tryptophan metabolism, and responsible for generat-
ing kynurenine. Similarly, the kynurenine to tryptophan 
ratio (K/T) can reflect indoleamine-2,3-dioxygenase 1 
activity [54]. Inhibiting IDO expression can also effec-
tively improve insulin resistance [55, 58]. In our study, 
we observed relatively lower serum kynurenine, IDO, 

Fig. 7 Quantitative analysis of serum branched-chain amino acid and kynurenine levels in late gestating sows. Branched-chain amino acids (valine, 
leucine, and isoleucine) in sow serum on d 105 of gestation (A). Serum kynurenine levels on d 90 and 105 of gestation and d 10 and 21 of lactation 
(B). Serum kynurenine (C), tryptophan (D), and IDO (E) levels on d 105 of gestation. BCAA: branched chain amino acids. IDO: indoleamine 
2,3-dioxygenase. Data were analyzed using Student’s t-tests or one-way analysis of variance, and were presented as the mean ± SEM. *P < 0.05, 
**P < 0.01 and ns indicates not significant (P > 0.05)
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and K/T levels in LGG-fed sows. Interestingly, a positive 
correlation was identified between kynurenine and fast-
ing plasma glucose levels. This suggested that increased 
kynurenine may be one cause of insulin resistance in 
sows during late pregnancy. A previous mouse study 
reported a significant increase in maternal serum kynure-
nine levels and insulin resistance in late pregnancy when 
compared to d 0 of gestation, which was not alleviated 
until the end of lactation [55]. Similar results were identi-
fied in our study, where serum kynurenine levels in sows 

increased continuously from late gestation to lactation. 
Additionally, our findings agreed with findings in mice 
and children with type 1 diabetes, indicating that regard-
less of increased or decreased serum kynurenine levels, it 
appears to be stable in the levels of tryptophan [55, 59]. 
This observation may be related to changes in other tryp-
tophan metabolic pathways, because kynurenine, indole, 
and serotonin are all tryptophan metabolites, and when 
kynurenine is decreased or increased, this may cause 
fluctuations in other metabolic pathways. Correlation 

Fig. 8 LGG supplementation in sows influences gut microbial communities in offspring piglets. Principal coordinates analysis (PCoA) score plots 
(A), microbial interaction network diagram (B). PCoA ordination plots show fecal bacterial communities in CON and LGG groups based on Bray–
Curtis distances. Groups were deemed significantly distinct using ANOSIM analysis (P < 0.05)
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analysis revealed a notable negative relationship between 
Lactobacillus abundance and kynurenine levels, consist-
ent with observations in a pregnant mouse model [55]. 

Mechanistically, reactive oxygen species produced by 
Lactobacillus may inhibit IDO synthesis, which in turn 
inhibits kynurenine production [60, 61]. We observed 
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Fig. 9 Maternal LGG supplementation improves cord blood immunoglobulins and affects piglet inflammation. Immunoglobulin M and G levels 
in umbilical cord blood (A), IL-10 and TNF-α levels in piglet serum on d 10 and 21 of lactation (B). Data were analyzed using Student’s t-tests 
and presented as the mean ± SEM. *P < 0.05 and **P < 0.01. Tendencies were declared at 0.05 ≤ P < 0.10. ns indicates not significant (P > 0.05)

Fig. 10 Mechanism showing LGG supplementation effects on sow performance and piglet health. In sows, LGG supplementation reshaped 
the gut microbiota and affected branched-chain amino acid and kynurenine synthesis in late gestation and lactation periods, and improved insulin 
sensitivity, feed intake, and lactation yields. This ultimately improves piglet survival in early lactation. Additionally, the beneficial effects of LGG 
supplementation include increased immunoglobulin levels in cord blood and improved inflammatory responses in piglets. PMEC: pig mammary 
epithelial cells
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that alleviated insulin resistance in LGG-fed sows dur-
ing late pregnancy and lactation was linked to reduced 
BCAA and kynurenine production.

The maternal gut microbiota has a long-term impact 
on establishing the gut microbiota in offspring [12, 62]. 
Beneficial gut bacteria are key to maintaining intesti-
nal health and systemic immunity [63]. As expected, 
we showed that maternal LGG supplementation signifi-
cantly increased the abundance of the beneficial bacteria 
NK4A214_group and decreased the relative abundance of 
the harmful bacteria Streptococcus and Klebsiella in pig-
lets at d 10 of lactation. However, no significant intesti-
nal flora differences were observed between groups on d 
21 of lactation. This could be attributed to the dynamic 
nature of gut microbiota establishment in newborn pig-
lets, which is influenced by various factors [64]. Critically, 
a stable intestinal microflora requires more complex 
flora characteristics to resist and adapt to external envi-
ronmental changes [17]. Gut microbial co-occurrence 
network data based on core genera in LGG piglets were 
more complex than CON piglets on d 10 of lactation. 
This observation suggested that LGG supplementation in 
sows exerted positive roles on gut microbiota establish-
ment in early-offspring piglets. Piglet viability in early life 
is influenced by bioactive factors found in umbilical cord 
blood and breast milk. Specifically, viability is subject to 
maternally derived immuno-active substances, such as 
IgG and IgM [65]. We observed that LGG significantly 
increased IgG and IgM levels in cord blood but not in 
milk. Similarly, a previous clinical study reported that 
LGG supplementation in pregnancy potentially influ-
enced fetal immune parameters and immunomodulatory 
factors in breast milk [66]. Additionally, serum inflamma-
tory cytokine changes in LGG piglets suggested potential 
health benefits from maternal LGG supplementation.

Conclusions
In our study, LGG critically mitigated insulin resistance 
in gestating and lactating sows, with a significant finding 
showing that LGG affected BCAA or kynurenine metab-
olism by regulating specific microorganisms (e.g., Bacte-
roides and Lactobacillus) and ultimately affecting insulin 
resistance and lactation performance in sows. Increased 
insulin sensitivity stimulated heightened feed intake 
and lactose synthesis, ultimately fostering increased 
milk production and heightening early survival rates in 
newborn piglets during lactation. Moreover, maternal 
LGG supplementation enhanced immunoglobulin lev-
els in umbilical cord blood, providing robust support 
for improved neonatal piglet viability. Simultaneously, 
LGG-induced maternal effects favored healthy gut 
microbiota establishment in neonatal piglets, dimin-
ishing pathogenic microbes and inflammation during 

lactation. Our study has substantial academic and prac-
tical significance, providing valuable scientific insights 
and practical implications for the academic commu-
nity and the swine industry. Additionally, the molecu-
lar mechanisms underpinning the interactions between 
gut microbes and amino acid metabolism, in improving 
insulin sensitivity, warrant further investigation.
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