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Abstract 

Background  Biologically annotated neural networks (BANNs) are feedforward Bayesian neural network models 
that utilize partially connected architectures based on SNP-set annotations. As an interpretable neural network, 
BANNs model SNP and SNP-set effects in their input and hidden layers, respectively. Furthermore, the weights 
and connections of the network are regarded as random variables with prior distributions reflecting the manifestation 
of genetic effects at various genomic scales. However, its application in genomic prediction has yet to be explored.

Results  This study extended the BANNs framework to the area of genomic selection and explored the optimal 
SNP-set partitioning strategies by using dairy cattle datasets. The SNP-sets were partitioned based on two strategies–
gene annotations and 100 kb windows, denoted as BANN_gene and BANN_100kb, respectively. The BANNs model 
was compared with GBLUP, random forest (RF), BayesB and BayesCπ through five replicates of five-fold cross-valida-
tion using genotypic and phenotypic data on milk production traits, type traits, and one health trait of 6,558, 6,210 
and 5,962 Chinese Holsteins, respectively. Results showed that the BANNs framework achieves higher genomic pre-
diction accuracy compared to GBLUP, RF and Bayesian methods. Specifically, the BANN_100kb demonstrated superior 
accuracy and the BANN_gene exhibited generally suboptimal accuracy compared to GBLUP, RF, BayesB and BayesCπ 
across all traits. The average accuracy improvements of BANN_100kb over GBLUP, RF, BayesB and BayesCπ were 4.86%, 
3.95%, 3.84% and 1.92%, and the accuracy of BANN_gene was improved by 3.75%, 2.86%, 2.73% and 0.85% compared 
to GBLUP, RF, BayesB and BayesCπ, respectively across all seven traits. Meanwhile, both BANN_100kb and BANN_gene 
yielded lower overall mean square error values than GBLUP, RF and Bayesian methods.

Conclusion  Our findings demonstrated that the BANNs framework performed better than traditional genomic pre-
diction methods in our tested scenarios, and might serve as a promising alternative approach for genomic prediction 
in dairy cattle.
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Background
Genomic selection [1] has significantly shortened the 
generation interval and increased the annual genetic 
gain of economic traits in dairy cattle [2–4] with breed-
ing costs reduced by 92% compared to traditional prog-
eny testing [5]. Statistical models serve as one of the key 
factors affecting the accuracy of genomic selection, con-
sequently exerting an impact on genetic progress. Cur-
rently, the most commonly used models for genomic 
prediction in dairy cattle include the best linear unbi-
ased prediction (BLUP) models that incorporate genomic 
information [e.g., the genomic BLUP (GBLUP) and sin-
gle-step GBLUP (ssGBLUP) methods], executed through 
solving the mixed model equations (MME), as well as the 
Bayesian methods with various priors that use Markov 
chain Monte Carlo (MCMC) to estimate the required 
genetic parameters. However, the utilization of these 
linear models is often limited by their assumption that 
genetic variants influence phenotypes only in an addi-
tive manner and fail to capture interactions. The expo-
nential growth of large-scale genomic databases provides 
a unique opportunity to move beyond traditional linear 
regression frameworks.

Machine learning (ML) algorithms can build complex 
nonlinear models and allow interaction between features 
(i.e., markers). Therefore, ML has been considered an 
effective tool for interpretating massive genomic datasets 
[6]. Recently, several studies showed that nonlinear ML 
algorithms typically exhibited higher predictive accu-
racy than conventional methods such as GBLUP and 
Bayesian approaches [6–9], especially for complex traits 
with broad-sense heritability driven by non-additive 
genetic variation (e.g., gene-gene interactions) [10]. In 
dairy science, ML has been successfully applied to pre-
dict a whole range of different traits, such as milk pro-
duction [11, 12], mastitis [13], and methane production 
[14]. Ensemble methods are a category of advanced ML 
algorithms. Random forest (RF), as an ensemble method, 
is model specification free and may account for non-
additive effects [15]. Moreover, it remains a relatively fast 
algorithm in ensemble methods even when dealing with 
a large number of covariates and interactions, making it 
suitable for both classification and regression problems 
[15]. Therefore, RF has been widely employed in genomic 
prediction [9, 15, 16]. Furthermore, to comprehensively 
capture interactions between markers and non-additive 
effects, an increasing body of research is being devoted 
to neural networks [17–19], which reflect the nonlinear 
relationships between variables by exploiting nonlinear 
activation functions between network layers. However, 
conventional neural networks often do not consider 
the varying influences of different genomic regions on 
traits, and thus lack certain biological interpretability. 

Studies have shown that genetic variants do not contrib-
ute equally to genetic variance, and genetic variations of 
large effect on a trait are often distributed within spe-
cific genomic regions [20–22]. Based on this framework, 
new prediction methods have been developed, including 
BayesRC [23], BayesRS [24], BayesRR-RC [25], NN-Bayes 
and NN-MM [26].

Most recently, Demetci et  al. [27] developed the bio-
logically annotated neural networks (BANNs), a nonlin-
ear probabilistic framework for association mapping in 
genome-wide association studies (GWAS). BANNs are 
a class of feedforward Bayesian models that integrate 
predefined SNP-set annotations, and the BANNs frame-
work has achieved better performance than state-of-the-
art methods in the area of GWAS by using prior defined 
biology information [27]. BANNs employ variational 
inference for parameter estimation, which is an optimi-
zation method that can leverage modern optimization 
techniques such as Stochastic Gradient Descent (SGD), 
to find an approximation to the posterior distribution. 
Consequently, variational inference is often more effi-
cient than MCMC sampling, as the latter requires exten-
sive sampling to estimate the full posterior distribution 
[28]. Philosophically, compared to traditional linear mod-
els, the BANNs framework considers the heterogeneity 
of the function of SNP-sets according to annotations. 
BANNs take into account the interactions between mark-
ers through setting of neural network layers, which seems 
theoretically more in line with the biological process of 
complex traits. However, the existing BANNs framework 
has not been applied to genomic prediction.

The objectives of this study were to: (i) extend the 
BANNs framework to the field of dairy cattle genomic 
selection by exploring the optimal SNP-set partition-
ing strategies; and (ii) assess the predictive ability of the 
BANNs framework by comparing it with GBLUP, RF and 
Bayesian methods.

Materials and methods
Statistical models
BANNs
As an interpretable neural network, the BANNs frame-
work models SNP effects in the input layers and SNP-
set effects in the hidden layers separately. BANNs 
utilized sparse prior distributions to select variables for 
network weights. The weights and connections of the 
network are treated as random variables that present 
genetic effects at various genomic scales. Moreover, 
BANNs fall into the category of Bayesian Network (BN) 
models. BN models can be viewed as a non-conjugate 
form of Bayesian linear regression, because they auto-
matically learn hyperparameters for priors from the 



Page 3 of 13Wang et al. Journal of Animal Science and Biotechnology           (2024) 15:87 	

data, making them generally more flexible and better 
suitable for capturing complex data structures [29].

The model representation for the BANNs framework 
is as follows:

where y is the vector of the response variable, that is, stand-
ardized de-regressed proofs (DRPs); X g =

[

x1, . . . , x|Sg |

]

 is a 
subset of SNPs for SNP-set g ; θ g =

(

θ1, . . . , θ|Sg |

)

 are the corre-
sponding inner layer weights; h(•) denotes the nonlinear acti-
vations defined for the neurons in the hidden layer; 
w = (w1, · · · ,wG) are the weights of the G-predefined SNP-
sets in the hidden layer; b(1) =

(

b
(1)
1 , · · · , b

(1)
G

)

 and b(2) are 
deterministic biases generated during the training phase of 
the network in the input and hidden layers, respectively; 1 is 
an N-dimensional vector of ones. For convenience, the geno-
type matrix (column-wise) and the trait of interest are 
assumed to be mean-centered and standardized. In this study, 
h(•) is defined as the Leaky rectified linear unit (Leaky ReLU) 
activation function. If x > 0, then h(x) = x , otherwise, we 
define h(x) = 0.01x.

The weights of the input layer ( θ ) and the hidden layer 
( w ) were treated as random variables, allowing simul-
taneous multi-scale genomic inference on both SNPs 
and SNP-sets. SNP-level effects are assumed to follow a 
sparse K-mixed normal distribution:

where πθ represents the total proportion of SNPs that 
have a non-zero effect on the trait; ηθ = (ηθ1, . . . , ηθk) 
denotes the marginal (unconditional) probability that a 
randomly selected SNP belongs to the k-th mixture com-
ponent and that 

∑

kηθκ=1; σ 2
θ
=

(

σ
2
θ1, . . . , σ

2
θK

)

 are the 
variance of the K non-zero mixture components; and δ0 
is a point mass at the zero point. The present study fol-
lows previous studies and lets K = 3, indicating that SNPs 
may have large, moderate and small non-zero effects on 
phenotypic variation [30–32]. To infer the hidden layer, it 
was assumed that the enriched SNP-sets contain at least 
one non-zero effect SNP by placing a spike and slab prior 
to the hidden weights:

Due to the lack of prior knowledge regarding the pro-
portion of relevant SNPs and SNP-sets with non-zero 
weights, an assumption was made on relatively uniform 
priors on log(πθ ) and log(πw) [27]:

(1)y =

G
∑

g=1

h
(

X gθ g + 1b(1)g

)

wg + 1b(2),

(2)θj ∼ πθ

K
∑

k=1

ηθkN
(

0, σ 2
θk

)

+ (1− πθ )δ0,

(3)wg ∼ πwN
(

0, σ 2
w

)

+ (1− πw)δ0.

where πθ denotes the total proportion of SNPs with a 
non-zero effect on the trait of interest, J denotes the num-
ber of SNPs, and πw denotes the total proportion of anno-
tated SNP-sets enriched for the trait of interest. In addition, 
the variational Bayesian algorithm was used to estimate all 
model parameters. In the BANNs framework, the posterior 
inclusion probabilities (PIPs) provide statistical evidence 
for the importance of each variant in explaining the overall 
genetic architecture of a trait. These quantities are defined 
as the posterior probability that the weight of a given con-
nection in the neural network is non-zero:

where j and g represent a specific SNP and a specific 
SNP-set, respectively.

In addition, the variational expectation-maximization 
(EM) algorithm was utilized for estimating the parameters 
of the neural network, and parameters in the variational 
EM algorithm were initialized through random draws 
from their assumed prior distributions. The iteration 
within the algorithm terminates upon meeting one of the 
following two stopping criteria: (i) the difference between 
the lower bounds of two consecutive updates falls within 
the range of 1 × 10−4, or (ii) the maximum iteration count 
of 10,000 is reached [27]. In addition, the initial values of 
variance σ 2

0  and the number of models L were set to 0.01 
and 20, respectively. In summary, the Bayesian formulation 
in the BANNs framework makes network sparsity a goal 
for genomic selection applications through the context-
driven sparse shrinkage prior distribution in Eqs. (1–4).

The original BANNs model partitioned SNP-sets 
according to gene-annotated SNPs. Two strategies were 
considered in this study to group the SNPs into differ-
ent sets. Firstly, biological annotations were considered 
(denoted as BANN_gene). The cattle genome annota-
tion file was obtained from the NCBI website (https://​ftp.​
ensem​bl.​org/​pub/​relea​se-​94/​gtf/​bos_​taurus/) for map-
ping SNPs to their nearest neighboring genes and aptly 
annotating them with relevant gene information. Unan-
notated SNPs located within the same genomic region 
were denoted as “intergenic regions” between two genes. 
A total of G = 16,857 SNP-sets were analyzed, consisting 
of 9,369 intergenic SNP-sets and 7,488 annotated genes. 
Secondly, 100  kb windows were used to divide SNPs on 
each chromosome into different groups (denoted as 
BANN_100kb). A total of G = 22,626 SNP-sets were ana-
lyzed using this strategy. On note, the choice of a 100 kb 
window was based on our testing of the predictive abil-
ity with different SNP division intervals (50  kb, 100  kb, 
200 kb, 300 kb, 400 kb, 600 kb, 800 kb, 1,000 kb), where 

(4)
log(πθ ) ∼ U −log(J ), log(1) , log(πw) ∼ U −log(G), log(1) ,

(5)PIP
(

j
)

≡ Pr[θj �= 0|y,X], PIP
(

g
)

≡ Pr
[

wg �= 0|y,X , θ g
]

,

https://ftp.ensembl.org/pub/release-94/gtf/bos_taurus/
https://ftp.ensembl.org/pub/release-94/gtf/bos_taurus/
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we found that dividing based on a 100 kb window yielded 
better results (results not shown).

GBLUP
The model of the GBLUP is given as:

in which y is also the vector of standardized DRPs, µ is 
the overall mean, 1 is a vector of ones, g is the vector of 
genomic breeding values, e is the vector of random resid-
uals, and Z is an incidence matrix allocating records to g . 
The assumptions of random effects were:

in which G is the genomic relationship matrix (G 
matrix), D is a diagonal matrix with dii =

1−r2i
r2i

 , ( r2i  is the 
reliability of DRP of individual i), and σ 2

g and σ 2
e  are the 

additive genetic variance and the random residual vari-
ance, respectively.

In this study, GBLUP was carried out using DMU soft-
ware [33]. The AI-REML method in the DMUAI proce-
dure was used to estimate the variance components.

BayesB
In BayesB, the proportion of markers with no effect is 
assumed to be π , and the proportion of markers with an 
effect is 1− π , and the prior distribution of SNP effect, 
βk , was assumed to be t-distributed. The formula of 
BayesB can be written as follows:

where y represents the vector of standardized DRPs, 
xk is the vector of genotypes for the kth SNP, and βk is 
the effect of the kth SNP. The prior distribution of βk is as 
follows:

in which v is the degree of freedom, S2
β
 is the scale 

parameter. In the present study, for the BayesB method, 
we set the proportion of no-effect SNPs ( π ) to be 0.95.

BayesCπ
In BayesCπ, the marker effects are sampled from a mix-
ture of null and normal distributions. The expression for 
BayesCπ aligns with that of BayesB except for the prior 
distribution of βk , which is as follows:

(6)y = 1µ+ Zg + e,

(7)g ∼ N(0, Gσ
2
g )and e ∼ N(0,Dσ

2
e ),

(8)y = 1µ+
∑m

k=1
xkβk + e,

(9)

βk |S
2
β
, v,π ∼ IID

{

0 with probability π

t
(

0, S2
β
, v
)

with probability 1− π ,

where σ 2
β

 is the variance of SNP effect. Additionally, in 
BayesCπ, the value of π is treated as an unknown with 
uniform (0,1) prior and is estimated through sampling 
[34].

For both BayesB and BayesCπ methods, the MCMC 
chain was run for 50,000 iterations, the first 20,000 itera-
tions were discarded as burn-in, and every 50 samples of 
the remaining 30,000 iterations were saved to estimate 
SNP effects and variance components. The analysis was 
performed using the Julia package JWAS [35].

Random forest
Random forest is a ML algorithm that employs voting 
or averaging the outcomes of multiple decision trees to 
determine the classification or predicted values of new 
instances [36]. Essentially, RF is a collection of decision 
trees, with each tree exhibiting slight differences from 
the others. RF reduces the risk of overfitting by averag-
ing the predictions of numerous decision trees [7]. The 
RF regression can be expressed as follows:

where y represents the predicted value from the RF 
regression, tm

(

ψm

(

y : X
))

 represents an individual 
regression tree, and M represents the number of deci-
sion trees in the forest. Predictions were obtained by 
propagating predictor variables through the flowchart 
of each tree, with the estimated values at the terminal 
nodes serving as the predictions. The final predictions for 
unobserved data were determined by averaging the pre-
dictions across all trees in the RF. To optimize the model, 
a grid search approach was employed to identify the 
most suitable hyperparameter M and the maximum tree 
depth, with an inner five-fold cross-validation (CV) being 
conducted to tune these hyperparameters.

Datasets
In this study, phenotypic and genomic data were col-
lected from Chinese Holstein cattle. The population and 
phenotype information are shown in Table  1. The phe-
notypic data included three milk production traits: milk 
yield (MY), fat yield (FY) and protein yield (PY); three 
type traits: conformation (CONF), feet and leg (FL) and 
mammary system (MS); and one health trait: somatic cell 
score (SCS). A total of 6,558, 6,210 and 5,962 individuals 

(10)

βk |π , σ
2
β
∼ IID

{

0 with probability π

N
(

0, σ 2
β

)

with probability 1− π ,

(11)y =
1

M

M
∑

m=1

tm
(

ψm

(

y : X
))

,
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were genotyped for milk production traits, type traits 
and SCS, respectively. DRPs derived from the official 
estimated breeding values (EBV) provided by the Dairy 
Association of China following the method proposed by 
Jairath et  al. [37] were used as pseudo-phenotypes for 
genomic predictions. The DRP reliability for each ani-
mal was estimated as r2DRP =

ERCi
ERCi+�

 , with � = 1−h2

h2
 , in 

which ERCi refers to the effective record contribution 
and h2 refers to the heritability of the trait. Note that 
ERCi = �×

RELi
1−RELi

 , where RELi is the reliability of EBV 
for individual i. All individuals were genotyped using the 
BovineSNP50 chip containing 54,609 SNPs from Illu-
mina (Illumina, San Diego, CA, USA). Missing genotypes 
were imputed using Beagle 5.4 [38]. After imputation, 
SNPs with minor allele frequency (MAF) less than 0.01 
and significantly deviating from Hardy-Weinberg equi-
librium (P < 1.0E-6) were removed using PLINK software 
[39]. After genotype quality control, 45,944 autosomal 
SNPs remained for further analyses.

Cross‑validation and genomic prediction accuracy
Prediction accuracy, mean square error (MSE) and dis-
persion were used to assess the prediction performance 
of different methods. A 5 × 5 CV (five-fold CV repeated 
five times, totaling 25 tests) process was carried out. The 
prediction accuracy was assessed with the Pearson cor-
relation coefficient between standardized DRP (sDRP) 
and predicted values (PV) of the validation population 
divided by the mean accuracy −r  (square root of reliability) 
of DRP in validation data:

Besides, following the study by Legarra and Reverter 
[40], the slope of the regression of sDRP on PV was 

accuracy =
cor(sDRP,PV )

−
r

.

calculated to assess the dispersion of the prediction, 
although some studies used the regression coefficient as 
a measure of bias and referred to it as unbiasedness [30, 
41]. In addition, MSE was also used as a measure for the 
performance of different methods, which considered 
both prediction bias and variability. In each prediction 
scenario, the reference and validation populations for all 
methods were the same in each replicate of the five-fold 
CV, and the final results of accuracy, dispersion and MSE 
are the averages of five repetitions. Furthermore, multi-
ple t-tests were conducted based on the outcomes of five 
replicates, with P-values adjusted using the Bonferroni 
method, to compare the prediction accuracy of different 
methods.

Estimating phenotypic variance explained in the BANNs 
framework
Given that the BANNs framework offers posterior esti-
mates for all weights in neural networks, it also enables 
the estimation of phenotypic variance explained (PVE). 
Here, PVE was defined as the total proportion of phe-
notypic variation explained by sparse genetic effects 
(both additive and non-additive effects) [42]. Within the 
BANNs framework, such estimation can be conducted at 
both the SNP and SNP-set levels as follows [27]:

where V(•) denotes the variance function, βθ and βw 
represent the vectors of the marginal posterior means for 
the input and outer layer weights, respectively. 
H
(

βθ

)

=

[

h
(

X1βθ1 + b
(1)

1

)

, . . . , h(XGβθG + b
(1)

G )

]

 rep-
resents the matrix of deterministic nonlinear neurons in 
the hidden layer given βθ . The estimates of variance hyper-
parameters τ 2

θ
 and τ 2w in the variational EM algorithm were 

used to approximate the residual variance observed during 
the two-layer training process [27]. In fact, the formula is 
similar to the traditional form used for estimating PVE, 
with the distinction that the contribution of non-additive 
genetic effects is also taken into account through the non-
linear Leaky ReLU activation function h(•) . In other 
words, the PVE estimated at the SNP level considers only 
additive effects, while the PVE estimated at the SNP-set 
level takes into account both additive and non-additive 
genetic effects.

Results
Annotation summary
The distribution of the number of SNPs in each SNP-
set under the two partitioning schemes is shown in 
Fig. 1. With regards to BANN_gene, of a total of 16,857 

PVE(θ) ≈
V[Xβθ ]

V[Xβθ ]+ τ
2
θ

, PVE(w) ≈
V
[

H
(

βθ

)

βw

]

V
[

H
(

βθ

)

βw

]

+ τ 2w

,

Table 1  Summary statistics for the Chinese Holstein cattle 
population, including the number of genotyped individuals and 
estimated heritability (h2)

a CONF Conformation, FL Feet and leg, MS Mammary system, FY Fat yield, MY 
Milk yield, PY Protein yield, SCS Somatic cell score

Traita h2 Birth year Number of 
genotyped 
animals

CONF 0.215 1999–2020 6,210

FL 0.193 1999–2020 6,210

MS 0.187 1999–2020 6,210

FY 0.327 1999–2021 6,558

MY 0.335 1999–2021 6,558

PY 0.331 1999–2021 6,558

SCS 0.132 2000–2021 5,962
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SNP-sets, 9,413 contained one SNP (including intergenic 
regions), while the remaining SNP-sets had varying num-
bers of SNPs, ranging from 2 to 108. For BANN_100kb, 
among the 22,626 SNP-sets, 21,466 sets had no more 
than 3 SNPs (7,152, 8,848 and 5,466 SNP-sets containing 
1, 2 and 3 SNPs, respectively), and none of the SNP-sets 
had more than 6 SNPs. Therefore, it was evident that the 
distribution of SNPs within BANN_100kb SNP-sets was 
more uniform than in BANN_gene.

Genomic prediction accuracy
Comparison of prediction performance among BANN_gene, 
GBLUP, RF and Bayesian methods
Figure  2 shows the accuracy, dispersion and MSE of 
genomic predictions for seven dairy cattle traits using six 
methods (Table S1 reports the underling values of Fig. 2). 
In terms of accuracy, BANN_gene performed best com-
pared to GBLUP, RF and Bayesian methods. The average 
improvement of BANN_gene over GBLUP, RF, BayesB 
and BayesCπ were 3.75%, 2.86%, 2.73% and 0.85%, respec-
tively, across all seven traits. For milk production traits, 
BANN_gene demonstrated better performance compared 
to GBLUP, RF, BayesB or BayesCπ, especially for MY. For 
example, the accuracy of BANN_gene for MY was 0.491, 

which resulted in a 7.68% significant improvement com-
pared to GBLUP. The accuracy of BANN_gene for milk 
production traits, compared to GBLUP, RF, BayesB and 
BayesCπ, improved by an average of 3.93%, 3.25%, 1.90% 
and 1.53%, respectively. In case of type traits, BANN_gene 
significantly outperformed GBLUP, RF and BayesB, while 
BayesCπ performed similarly with BANN_gene. The 
improvement of BANN_gene over GBLUP, RF and BayesB 
was 3.52%, 2.33% and 3.84% on average, respectively.

Compared to GBLUP, RF and Bayesian methods, 
BANN_gene yielded the lowest or the second lowest 
MSE. It yielded the smallest MSE for FL, FY, MY and 
SCS traits, while for other traits, BANN_gene showed 
the second smallest MSE. However, in terms of over-
all dispersion, BayesCπ achieved the most appropri-
ate dispersion (i.e., slopes closer to 1), followed by 
BANN_gene.

In addition, for the comparison of the two Bayesian 
methods, we found that BayesCπ obtained better results 
than BayesB across all metrics of accuracy, dispersion, 
and MSE; besides, as indicated by the estimated standard 
errors of marker effects (as shown in Table 2), BayesCπ 
produced smaller standard errors for marker effects 
across all traits.

Fig. 1  The distribution of the number of SNPs included in each SNP-set under two partitioning schemes. a Partitioning SNP-sets according to gene 
annotation (BANN_gene). b Partitioning SNP-sets according to 100 kb physical genomic intervals (BANN_100kb)
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Comparison of prediction performance among BANN_100kb, 
GBLUP, RF and Bayesian methods
BANN_100kb achieved the highest accuracy in all sce-
narios when compared to the conventional GBLUP and 
Bayesian methods, where the accuracy of BANN_100kb 
was improved by an average of 4.86%, 3.95%, 3.84% 
and 1.92% compared to GBLUP, RF, BayesB and 
BayesCπ, ranging from 2.12% to 7.46%, 2.63%  to  5.38%, 
1.87% to 6.93% and 1.25% to 3.23%, respectively. For milk 
production traits, BANN_100kb consistently achieved the 

highest accuracy, particularly for FY and MY traits, where 
BANN_100kb exhibited significant improvements of 
5.42% and 7.46%, respectively, compared to GBLUP. Com-
pared to GBLUP, BayesB and BayesCπ, BANN_100kb dis-
played average improvements in accuracy of 4.48%, 2.45% 
and 2.08%, respectively. For type traits, BANN_100kb 
also obtained the highest accuracy, with average improve-
ments over GBLUP, RF, BayesB and BayesCπ of 5.36%, 
4.14%, 5.68% and 1.71%, respectively. These results sug-
gest that BANN_100kb captured some intrinsic nonlinear 

Fig. 2  Accuracy (a), mean squared error (MSE) (b) and dispersion (c) of genomic prediction on seven traits of dairy cattle using five-fold 
cross-validation with five replications. CONF Conformation, FL Feet and leg, MS Mammary system, FY Fat yield, MY Milk yield, PY Protein yield, 
SCS Somatic cell score. The error bar represents the standard error

Table 2  Mean value of the standard error of marker effects estimated by BayesB and BayesCπ methods using all genotyped 
individuals

a CONF Conformation, FL Feet and leg, MS Mammary system, FY Fat yield, MY Milk yield, PY Protein yield, SCS Somatic cell score

Method Traita

CONF FL MS FY MY PY SCS

BayesCπ 2.55 × 10−6 4.14 × 10−6 2.43 × 10−6 3.81 × 10−6 3.37 × 10−6 3.07 × 10−6 2.01 × 10−6

BayesB 5.91 × 10−6 7.38 × 10−6 5.96 × 10−6 8.46 × 10−6 8.48 × 10−6 7.19 × 10−6 6.58 × 10−6
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features within the dairy cattle data, whereas GBLUP and 
Bayesian methods did not. Regarding MSE, BANN_100kb 
showed the lowest value for all traits. As for dispersion, 
the dispersions of the four methods were roughly as fol-
lows: bBayesCπ < bBANN_100kb < bGBLUP < bBayesB < bRF.

Comparison of prediction performance between BANN_gene 
and BANN_100kb
Comparison of the BANNs methods used for differently 
partitioned SNP subsets (BANN_gene vs. BANN_100kb) 
showed that BANN_100kb consistently demonstrated 
superior accuracy with an average improvement of 1.80%, 
1.79%, 1.73% and 1.82% over BANN_gene for CONF, FL, 
MS and FY traits, respectively. However, for MY and SCS 
traits, the accuracy of BANN_100kb closely resembled 
that of BANN_gene, with accuracies of 0.49 and 0.491 for 
MY and 0.351 and 0.352 for SCS. Overall, BANN_100kb 
resulted in an average improvement of 1.07% compared 
to BANN_gene across all traits (1.77% for type traits; 
0.54% for milk production traits), although the improve-
ments were not significant for most traits.

Concerning MSE, BANN_100kb consistently produced 
lower MSE than BANN_gene in almost all scenarios. 
Specially, BANN_100kb had an average MSE that was 
0.007 lower than that of BANN_gene for milk production 
traits and an average MSE that was lower than BANN_
gene by 0.0013 for type traits. In terms of dispersion, 
BANN_100kb achieved a generally more appropriate dis-
persion compared to BANN_gene for both milk produc-
tion and type traits.

Posterior inclusion probabilities in the BANNs framework
Table  3 summarizes the average, maximum and mini-
mum values of PIPs across all variants on SNPs and SNP-
sets from the BANNs framework. Since BANN_gene and 
BANN_100kb shared the same SNP layer, both methods 
yielded identical PIP results at the SNP level. However, at 
the SNP-set level, BANN_100kb obtained a lower standard 
error in PIP across all seven traits compared to BANN_
gene, as evidenced by the smaller range between the maxi-
mum and minimum PIP values obtained by BANN_100kb. 
In addition, for both BANN_gene and BANN_100kb 
methods, the maximum PIP values obtained at the SNP-
set level were significantly higher than those at the SNP 
level for all traits.

Estimating phenotypic variance explained in the BANNs 
framework
Figure  3 presents the average PVE for the seven traits 
in five replicates of five-fold CV. For all traits, the PVE 
estimates obtained at the SNP-set level were sub-
stantially greater than those at the SNP level, regard-
less of whether they were derived from BANN_gene 
or BANN_100kb. In addition, as BANN_gene and 
BANN_100kb shared the same SNP layer, they yielded 
identical PVE estimates at the SNP level, while at the 
SNP-set level, BANN_100kb obtained larger PVE esti-
mates. The average PVE estimated at the SNP level for 
both BANN_gene and BANN_100kb was 0.303, while 
the average PVE estimated at the SNP-set level was 
0.738 and 0.754 respectively. Moreover, we observed 

Table 3  Summary of posterior inclusion probabilities (PIPs) across all variants on SNPs and SNP-sets from the BANNs framework in five 
replicates of five-fold cross-validation

a CONF Conformation, FL Feet and leg, MS Mammary system, FY Fat yield, MY Milk yield, PY Protein yield, SCS Somatic cell score, SE standard error

Traita Layer BANN_gene BANN_100kb

Mean SE Maximum Minimum Mean SE Maximum Minimum

CONF SNPs 0.091 3.52 × 10−6 0.312 0.085 0.091 3.52 × 10−6 0.312 0.085

SNPs-Sets 0.090 4.06 × 10−5 0.764 0.069 0.090 2.60 × 10−5 0.621 0.073

FL SNPs 0.091 4.83 × 10−6 0.250 0.083 0.091 4.83 × 10−6 0.250 0.083

SNPs-Sets 0.090 5.55 × 10−5 0.996 0.064 0.091 3.53 × 10−5 0.901 0.069

MS SNPs 0.091 3.52 × 10−6 0.209 0.085 0.091 3.52 × 10−6 0.209 0.085

SNPs-Sets 0.090 4.32 × 10−5 0.931 0.068 0.090 2.69 × 10−5 0.660 0.072

FY SNPs 0.091 1.98 × 10−6 0.225 0.088 0.091 1.98 × 10−6 0.225 0.088

SNPs-Sets 0.090 4.93 × 10−5 0.998 0.066 0.090 3.21 × 10−5 0.996 0.071

MY SNPs 0.091 2.03 × 10−6 0.161 0.087 0.091 2.03 × 10−6 0.161 0.087

SNPs-Sets 0.090 5.21 × 10−5 1.000 0.065 0.090 3.28 × 10−5 0.990 0.070

PY SNPs 0.091 2.69 × 10−6 0.131 0.086 0.091 2.69 × 10−6 0.131 0.086

SNPs-Sets 0.090 5.39 × 10−5 1.000 0.066 0.091 3.35 × 10−5 0.864 0.071

SCS SNPs 0.093 2.18 × 10−5 0.475 0.069 0.093 2.18 × 10−5 0.475 0.069

SNPs-Sets 0.090 6.02 × 10−5 1.000 0.071 0.091 3.51 × 10−5 0.837 0.076
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that at the SNP-set level, the PVE for type traits (i.e., 
CONF, FL and MS) was generally greater than that for 
milk production traits (i.e., MY, FY, PY and SCS). For 
example, BANN_gene and BANN_100kb had average 
PVEs of 0.732 and 0.746 respectively for milk produc-
tion traits, while for type traits, their average PVEs 
were 0.746 and 0.764, respectively. This might partly 
explain why type traits achieved higher accuracy com-
pared to milk production traits.

Computation time
The average computation time to complete each fold 
of five-fold CV for all genomic prediction methods is 
shown in Table S2. The running time of the methods 
was measured in minutes on an HP server (CentOS 
Linux 7.9.2009, 2.5 GHz Intel Xeon processor and 515 
GB total memory). Among all methods, GBLUP was 
the fastest algorithm across all traits, with each fold 
of CV taking an average of 41.76 min to complete the 
analysis. The computational efficiency of BayesB, with 
an average of 132.08  min, was comparable to that of 
BayesCπ, which averaged 148.91  min. As the BANNs 
framework involves the construction of neural net-
works, the computation time for BANN_gene (average 
275.79  min) and BANN_100kb (average 284.49  min) 
was longer, roughly twice that of BayesB or BayesCπ. 
Additionally, we found that the computational effi-
ciency of RF (average 274.10 min) to be close to that of 
BANN_gene and BANN_100kb. This may be due to RF 
being an ensemble algorithm, involving the construc-
tion of several hundred decision trees, along with data 
sampling and feature selection for each tree, leading to 
its computationally intensive process.

Discussion
The BANNs framework was extended and applied to 
genomic prediction of dairy cattle for the first time in this 
study. In addition, two SNP-set partitioning strategies 
(based on gene annotations and 100 kb windows) under 
the BANNs framework were also explored. The supe-
riority of the BANNs methodology was demonstrated 
by using dairy cattle datasets and comparing them to 
GBLUP, RF and Bayesian methods (BayesB, BayesCπ). 
BANN_100kb, which partitioned SNP-sets based on 
100  kb intervals, outperformed GBLUP, RF, BayesB and 
BayesCπ methods in terms of prediction accuracy and 
MSE across all investigated scenarios.

Non-additive effects often play an important role in 
the phenotypic variation of complex traits [43]. This is 
also evident from the PVE results in this study, where 
the PVE at the SNP-set level, considering both additive 
and non-additive genetic effects, was substantially higher 
than the PVE at the SNP level, which accounts only for 
additive effects (Fig.  3). By incorporating nonlinear 
Leaky ReLU activation functions within the hidden layer, 
BANN_100kb effectively captured interactions among 
input variables, enabling the BANNs framework to model 
sparse genetic effects that encompass both additive and 
non-additive effects. In contrast, GBLUP and Bayesian 
methods focus on additive genetics, overlooking poten-
tial complex nonlinear relationships between markers 
and phenotypes (e.g., dominance, epistasis, genotype 
by environment interactions) [9]. Additionally, in the 
BANNs approach, the bias term b(1)g  for SNP-sets enables 
each node in the hidden layer to alter the slope for differ-
ent genotypic combinations, offering a more flexible esti-
mation of generalized heritability. Theoretically, as more 

Fig. 3  Phenotypic variation explained (PVE) for the seven traits as assessed with five replicates of five-fold CV. a PVE estimated using the BANNs_
gene method. b PVE estimated using the BANNs_100kb method. The error bar represents the standard error
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nodes and hidden layers are added to the network archi-
tecture, BANNs models will possess an increased capac-
ity to account for non-additive genetic effects, akin to 
classical Gaussian process regression methods [27]. Con-
sequently, BANNs may exhibit greater advantages when 
applied to high density SNP markers or whole-genome 
sequencing (WGS) data, as the use of WGS data has not 
improved the accuracy of genomic prediction compared 
to using high-density SNP panels [44, 45]. The BANNs 
framework could potentially provide a promising direc-
tion in this context. This is worth investigating in further 
studies.

It was found that Bayesian methods generally outper-
formed GBLUP. Bayesian models’ prediction accuracy 
is affected by the consistency between the underlying 
assumptions of the model and the true distribution of 
marker effects. Bayesian models improved prediction 
accuracy by shrinking the effects of noisy markers to 
zero. However, the performance of Bayesian methods 
over GBLUP mainly depends on the presence of QTLs 
with large effects on the analyzed trait [46]. As milk pro-
duction traits (e.g., FY, MY, PY and SCS) were character-
ized by major effect QTLs [47], both BayesB and BayesCπ 
outperformed the GBLUP method, which assumed all 
SNP effects follow the same normal distribution. In addi-
tion, GWAS on dairy cattle [48] and beef cattle [49] have 
found that only a few SNPs were significant for type 
traits, suggesting that most genetic variants have simi-
lar medium or small effects on the traits. This might be 
the reason for the similar performance of BayesB and 
GBLUP in type traits (e.g., CONF, FL and MS). Addition-
ally, it was observed that BayesB yielded more over/under 
dispersion compared to other methods. Despite BayesCπ 
producing less over/under dispersion, its prediction 
accuracy and MSE values across all traits still remained 
inferior to those of BANN_100kb.

In this study, we observed that the predictive per-
formance of BANN_gene was not as strong as that 
of BANN_100kb. As shown in Fig.  3, the PVE values 
obtained by BANN_100kb at the SNP-set level were 
greater than that obtained by BANN_gene at the same 
level for all traits. This indicates a higher proportion of 
phenotypic variance explained by genetic effects in the 
BANN_100kb method, which may partially account 
for its higher accuracy. In addition, as evidenced by the 
distribution of SNPs (Fig.  1), the 100  kb interval parti-
tioning method resulted in a more uniform SNP distri-
bution and formed a larger number of SNP-sets (a total 
of 22,626 SNP-sets). In contrast, with the gene-based 
partitioning approach, the distribution of SNPs in the 
SNP-sets was highly uneven (the number of SNPs in each 
set ranged from 1 to 108) and many SNP-sets contained 
only one SNP. In fact, BANNs are likely to rank SNP-set 

enrichments that are driven by just a single SNP as less 
reliable than enrichments driven by multiple SNPs with 
nonzero effects [27]. Besides, SNP-sets containing only 
one SNP struggle to capture interactions or combinato-
rial effects among multiple loci. When the phenotype is 
affected by multiple variants within a gene region, a SNP-
set containing only one SNP may not represent the total 
genetic contribution of that region, potentially leading to 
the model overlooking some biological information and 
thereby affecting its predictive ability. However, retaining 
these SNPs might still be beneficial compared to remov-
ing them, as BANNs are able to prioritize trait relevant 
SNPs and SNP-sets [27], and some of these single-SNP 
sets may contain SNPs that are associated with the traits 
of interest. In addition, in neural networks, the uneven 
connectivity between hidden and input layer neurons 
might also affect the predictive ability of the model, pri-
marily for the following reasons: (I) Uneven connectiv-
ity might resulted in an imbalanced weight distribution, 
causing the network to be unable to capture different 
aspects of the input data in a balanced manner. This 
might result in biased feature extraction from the input 
data, ultimately affecting the model’s generalization abil-
ity. (II) Uneven connectivity might lead to unstable gradi-
ent updates, resulting in issues such as slow convergence, 
local optima, gradient explosion, or vanishing gradients 
during the training process. (III) Due to the uneven con-
nectivity between hidden and input layer neurons, the 
network might struggle to capture complex relationships 
and features within the input data. This limitation could 
have constrained the expressiveness of the network and 
negatively affected its predictive ability. Consequently, 
the more uniform distribution of SNPs in BANN_100kb 
facilitated the network in capturing complex relation-
ships and features within the input data; moreover, the 
larger number of SNP-sets in BANN_100kb potentially 
aided the network in extracting more meaningful infor-
mation. These factors above potentially contributed to 
the greater advantage of BANN_100kb over BANN_gene. 
However, when based on high-density SNP panel or WGS 
data, the number of SNPs within each gene region will 
significantly increase, enhancing the reliability of SNP-set 
enrichment rankings [27]. Therefore, BANN_gene may 
outperform BANN_100kb under these conditions.

Although BANN_100kb has achieved superior predic-
tive performance in this study, there remain several poten-
tial extensions to the BANNs framework. (I) It would be 
beneficial to explore different prior assumptions and con-
sider alternative (more scalable) approaches for approxi-
mate Bayesian inference [50]. (II) Employing deep learning 
techniques by incorporating additional hidden layers in the 
neural network. (III) Consider environmental covariates 
(as well as potential genotype by environment interactions) 
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in the model [27]. (IV) Evidence suggested that modeling 
multiple phenotypes into analytical models often results in 
a substantial improvement of statistical power [51]; there-
fore, extending the BANNs framework to accommodate 
multiple phenotypes and exploiting phenotype correla-
tions to identify pleiotropic epistatic effects might be ben-
eficial. Moreover, investigating the performance of more 
SNP partitioning strategies through future experiments 
would be interesting. For example, (i) LD-based partition-
ing: since the uneven distribution of LD along the genome 
(i.e., the LD heterogeneity of LD among regions) has a 
great impact on genomic prediction [52], dividing SNP-
sets according to LD structure allows SNPs with higher LD 
to be grouped together, which may improve the ability to 
explain genetic variation, thus better reflecting the effects 
of genomic selection; (ii) function-annotation-based parti-
tioning: the genetic variance explained by different func-
tional regions varies across the entire genome [53, 54], 
so dividing SNPs based on gene functional regions could 
make the resulting SNP-sets more biologically meaning-
ful, such as coding region SNPs, non-coding region SNPs, 
intronic SNPs, etc. Finally, given that BANNs require more 
computation time compared to conventional methods (as 
shown in Table S2), further optimization of the BANNs 
framework code to reduce computation time remains a 
worthwhile endeavor.

Conclusions
This study applied the BANNs framework to the field of 
genomic prediction in dairy cattle, and compared it with 
GBLUP, RF and Bayesian methods. Our results demon-
strated that the BANNs framework holds greater potential 
for enhancing genomic prediction accuracy than traditional 
GBLUP, RF and Bayesian methods by modelling interac-
tions between markers, emerging as a novel choice for dairy 
cattle genomic prediction. Further research might explore 
the performance of BANNs framework when applied to 
high density SNP markers and WGS data, together with 
function-annotation-based partitioning of SNP-sets.
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