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Abstract 

Background Various blood metabolites are known to be useful indicators of health status in dairy cattle, but their 
routine assessment is time‑consuming, expensive, and stressful for the cows at the herd level. Thus, we evaluated 
the effectiveness of combining in‑line near infrared (NIR) milk spectra with on‑farm (days in milk [DIM] and parity) 
and genetic markers for predicting blood metabolites in Holstein cattle. Data were obtained from 388 Holstein cows 
from a farm with an AfiLab system. NIR spectra, on‑farm information, and single nucleotide polymorphisms (SNP) 
markers were blended to develop calibration equations for blood metabolites using the elastic net (ENet) approach, 
considering 3 models: (1) Model 1 (M1) including only NIR information, (2) Model 2 (M2) with both NIR and on‑farm 
information, and (3) Model 3 (M3) combining NIR, on‑farm and genomic information. Dimension reduction was con‑
sidered for M3 by preselecting SNP markers from genome‑wide association study (GWAS) results.

Results Results indicate that M2 improved the predictive ability by an average of 19% for energy‑related metabolites 
(glucose, cholesterol, NEFA, BHB, urea, and creatinine), 20% for liver function/hepatic damage, 7% for inflammation/
innate immunity, 24% for oxidative stress metabolites, and 23% for minerals compared to M1. Meanwhile, M3 further 
enhanced the predictive ability by 34% for energy‑related metabolites, 32% for liver function/hepatic damage, 22% 
for inflammation/innate immunity, 42.1% for oxidative stress metabolites, and 41% for minerals, compared to M1. 
We found improved predictive ability of M3 using selected SNP markers from GWAS results using a threshold of > 2.0 
by 5% for energy‑related metabolites, 9% for liver function/hepatic damage, 8% for inflammation/innate immunity, 
22% for oxidative stress metabolites, and 9% for minerals. Slight reductions were observed for phosphorus (2%), ferric‑
reducing antioxidant power (1%), and glucose (3%). Furthermore, it was found that prediction accuracies are influenced 
by using more restrictive thresholds (−log10(P‑value) > 2.5 and 3.0), with a lower increase in the predictive ability.

Conclusion Our results highlighted the potential of combining several sources of information, such as genetic  mark‑
ers, on‑farm information, and in‑line NIR infrared data improves the predictive ability of blood  metabolites in dairy 
cattle, representing an effective strategy for large‑scale in‑line health monitoring in  commercial herds.
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Background
The high energy requirements of milk production can 
lead to metabolic disorders in dairy cows during early 
lactation and throughout the lactation period [1]. Experi-
encing stress can trigger lipolysis and proteolysis to sup-
port high milk yields [2, 3]. As a result, metabolic stress 
leads to an increment in blood levels of haptoglobin, 
non-esterified fatty acids (NEFA), β-hydroxybutyrate 
(BHB), ceruloplasmin (CuCp), and globulins, followed by 
a reduction in glucose, paraoxonase (PON) and albumin 
levels [1]. Variations of blood minerals are also observed, 
which can be used as biological markers, specifically cal-
cium as a primary indicator of milk fever, and sodium, 
potassium, and zinc as markers of systemic inflammation 
and oxidation. These alterations in blood metabolite lev-
els are directly linked with the main metabolic disorders 
(energy imbalances, ketosis, and milk fever) and nega-
tively impact dairy herd profitability and production by 
affecting milk production, reproductive efficiency, and 
overall herd health [4, 5]. Consequently, there has been 
a growing interest in addressing these metabolic issues 
during the lactation phase to improve the health and 
resilience of dairy cows.

Traditionally, the metabolic evaluation of a herd is 
monitored mainly through blood metabolic profiling 
[6], allowing the identification and selection of resilient 
cows less predisposed to developing metabolic disor-
ders. However, its assessment at either an individual or 
herd level is expensive and time-consuming. Despite this, 
there has been increased attention on metabolic stress 
in lactating dairy cows due to its harmful effects on the 
profitability and sustainability of dairy herds [7]. In this 
context, noninvasive high-throughput phenotyping tech-
nologies based on milk infrared spectroscopy have been 
applied to predict variation in blood metabolites [8–11]. 
This is mainly possible because the detailed composition 
of raw milk reflects the health and nutritional status of 
dairy cows, and the disruption of metabolic homeostasis 
is reflected in alterations to these components [12, 13]. 
Milk spectral analysis is a promising method for assessing 
the metabolic status of dairy cows on a large scale due to 
the interaction between metabolic status and milk com-
pounds, mainly fat and protein [14]. In this regard, auto-
mated milk quality sensors are used to check collected 
milk’s quality and look for any health biomarkers in real-
time at the herd level [10, 15]. These in-line near-infrared 
(NIR) milk sensors play a vital role in herd management 
technologies, especially in monitoring cows’ nutrition 
and detecting metabolic alterations [16] by examining 
changes in milk composition over time. Giannuzzi et al. 
[10], with a first attempt using various machine learn-
ing methods, explored the possibility of predicting blood 
metabolic profile from the milk of individual cows using 

an in-line NIR spectroscopy milk analyzer, obtaining low 
to moderate predictions (from 0.30 to 0.65).

Considering the complex nature of metabolic stress 
during the lactation period, it is worthwhile to consider 
multiple sources of information. Integrating different lay-
ers of information has already been proposed to enhance 
the development of more accurate predictive models, 
increasing the capability to detect metabolic disturbances 
in dairy herds [8]. Early and accurate detection of cows 
prone to metabolic disorders is crucial to building strate-
gies to support farm management and breeding decisions 
to detect metabolic disorders efficiently. Therefore, this 
study was conducted to assess the potential benefits of 
integrating in-line NIR milk sensor infrared information 
with on-farm data (DIM and parity) and genetic mark-
ers for predicting the blood metabolic profile in Holstein 
cattle.

Materials and methods
Field data
A total of 388 Holstein cows from a single herd in north-
ern Italy (Piacenza province) were sampled for blood. 
These cows received a twice-daily feeding regimen con-
sisting of a diet primarily composed of corn silage and 
sorghum. Energy-protein supplementation was provided 
following nutritional guidelines for dairy cattle [17]. 
The average values (± SD) were 32.3 ± 6.54 for daily milk 
yield (kg), 4.1 ± 0.36 for fat (%), and 3.7 ± 0.13 for protein 
(%). The cows had an average for days in milk (DIM) of 
127.3 ± 60.22 (varying from 3 to 425) with a percentage of 
55%, 42% and 3% at early, mid and late lactation, respec-
tively. The percentages of 86%, 9%, and 5% were observed 
for  1st,  2nd, and from  3rd to  5th parity, respectively. Prior to 
collecting samples, a health assessment was performed, 
and any cows exhibiting clinical diseases or undergoing 
medical treatment were excluded from the study.

Blood sampling
Blood samples were collected in 7 batches (i.e., sampling 
date): 3 batches in 2019 (300 cows) and 4 batches in 2020 
(88 cows). Each cow was sampled once (n = 388). Five 
milliliters of blood from each cow were collected after 
the morning milking and before feeding through jugular 
venipuncture using vacutainer tubes containing 150 USP 
units of lithium heparin as an anticoagulant (Vacumed; 
FL Medical, Torreglia, Padua, Italy). All blood samples 
were maintained on ice until 2 h  after blood sampling, 
followed by centrifugation at 3,500 × g for 1 min at 6 °C 
(Hettich Universal 16R Centrifuge), and then the plasma 
samples obtained were collected and stored at –20  °C 
until the analysis.
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Blood metabolic profile
Blood metabolites were analyzed using a clinical auto-
analyzer (ILAB 650, Instrumentation Laboratory, Lexing-
ton, MA, USA) following methods proposed by Calamari 
et al. [18] and Hanasand et al. [19]. A complete metabolic 
profile was assessed covering energy-related metabolites 
(glucose, cholesterol, NEFA, BHB, urea, and creatinine), 
liver function/hepatic damage (aspartate aminotrans-
ferase [AST], γ-glutamyl transferase [GGT], total bili-
rubin [BILt], albumin, alkaline phosphatase [ALP], and 
paraoxonase [PON]), oxidative stress (total reactive 
oxygen metabolites [ROMt]; advanced oxidation pro-
tein products [AOPP]; ferric reducing antioxidant power 
[FRAP]; total thiol groups [SHp]), inflammation/innate 
immunity (CuCp, total proteins, globulins, haptoglobin, 
and myeloperoxidase), and minerals (Ca, P, Mg, Na, K, Cl 
and Zn). Kits from Instrumentation Laboratory (IL Test) 
were utilized to measure glucose, total proteins, albumin, 
haptoglobin, urea, Ca, AST, and GGT levels. Globulin 
concentration was estimated as the difference between 
total proteins and albumin, and potassium electrolytes 
 (K+) were assessed using the potentiometer method (Ion 
Selective Electrode coupled to ILAB 600). Zn, NEFA, 
BHB, and CuCp were analyzed using the methods 
reported by Calamari et  al. [18]. The concentrations of 
AOPP, ROMt, FRAP, and PON were determined accord-
ing to Premi et al. [20].

AfiLab equipment and near‑infrared spectra storage
The AfiLab system is a spectrometer that uses a set of 32 
discreet frequencies of light sources in the visible-NIR 
regimen (400–1,000 nm) based on light-emitting diodes 
as described by Schmilovitch et al. [21] and gives accurate 
estimates for fat in the range of 2% to 6% and for protein 
ranging from 2% to 5% (Afimilk, Israel, internal control) 
and for cheese-making traits [15]. During milking, the 
AfiLab system measures milk spectra on every 200 mL of 
milk flowing through the machine and reports an average 
of approximately 70 observations per cow in each milk-
ing session (~15  kg). Each observation is weighed with 
respect to its milk quantity (~0.20 to 0.33 mg). In addi-
tion, the AfiLab infrared information was zero-set cali-
brated once a month between the morning and afternoon 
milking sessions to eliminate possible bias as part of rou-
tine maintenance.

The AfiLab milk spectra and on-farm information from 
Afimilk system were collected concomitantly with the 
blood sampling. The AfiLab milk spectra were preproc-
essed considering the first derivative, estimated as the 
difference between consecutive NIR spectra information 
( xi ) ( x′i = xi − xi−1 ). The first derivative was then nor-
malized using a Standard Normal Variate equation 
[ SVNi = (x′

i
− x

′

i
)/sx′

i
 ], where x′i is the first derivative of 

spectrum i, x′
i
 represent the mean of the first derivative 

for spectrum i, and sx′
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−x

′

i
)2

m
 is the is the stand-

ard deviation for first derivative for spectrum i and m is 
the number of cows. The quality control of milk spectra 
was assessed by principal component analysis combined 
with Mahalanobis distance at a probability level < 0.05 
[22]; after this data processing, four animals were 
removed from the analysis.

Genomic data
All 388 cows were genotyped with the Geneseek 
Genomic Profiler Bovine 100k SNP Chip assay. The 
quality control was performed by removing the non-
autosomal regions and autosomal SNP markers with a 
minor allele frequency of less than 0.05 and a significant 
deviation from Hardy–Weinberg equilibrium (P ≤  10−5). 
Markers and samples with call rate lower than 0.95 were 
also removed. After spectra and genomic quality control, 
380 cows with information for NIR AfiLab and 61,226 
SNP markers remained in the dataset. Principal compo-
nent analysis was used to assess population substructure 
based on the SNP markers using the ade4 R package [23] 
and no evidence of population stratification was found.

Predictive ability
A 5-fold cross-validation (CV) scheme was used for 
assessing the predictive ability of the elastic-net (ENet) 
approach, which was chosen as the best-performing 
machine learning method in the blood metabolites pre-
diction in previous studies of our group [9, 10]. We ran-
domly split the dataset into five independent folds of 
approximately equal size. Thus, 4-fold were assigned to 
train the models and 1-fold to validate the model, and 
this CV procedure was repeated five times, predicting 
each fold in the validation set once. We used three elastic 
net (ENet) models to predict the target blood metabolite 
profile with increased complexity. The baseline model 
(M1) only considered NIR AfiLab information. In model 
2 (M2), we combined NIR AfiLab and on-farm informa-
tion (DIM and parity), while model 3 (M3) comprised 
NIR AfiLab, on-farm and genomic information.

Elastic‑net (ENet)
The ENet represents a penalized regression that combines 
LASSO (least absolute shrinkage and selection operator; 
l1 =

∑p
w=1 |βw| ) and RR (ridge regression; l2 =

∑p
w=1 β

2
w ) 

regularization terms [24]. The ENet alpha parameter (α) 
controls the balance between the regularization terms l1 
and l2 , providing a balance between selection (LASSO) 
and shrinkage (RR) of the predictor variables effects. ENet 
is considered a robust approach when predictor variables 
have strong collinearity. The optimum weight values for 
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λ and α in the ENet regression model are considered to 
reduce the loss function as follows:

where N  is the number of animals, α is a value between 
0 (RR penalty) and 1 (LASSO penalty), and � is the regu-
larization parameter that controls the amount of variable 
shrinkage. A random grid search was performed to find 
optimal values of α and λ ranging from 0.0 to 1.0 with an 
interval of 0.1 for each parameter. We implemented the 
ENet model using the glmnet R package [25]. The ran-
dom search for α and λ was performed using the caret 
R package [26]. During the learning process of the ENet 
approach, the training set (4-fold) was split into an 80:20 
ratio. The trained model with the highest accuracy and 
lowest mean square error (MSE) was then applied to a 
separate validation set (1-fold).

Model performance
The predictive ability of the different models was assessed by 
Pearson’s correlation ( r = cor(y, ŷ) ) between observed phe-
notypes and predicted phenotypes ( ̂y ). The predictive root 
mean squared error (RMSE) was RMSE =

√

∑

N

i=1
(y− ŷ)2/N  , 

where N is the number of animals. The slope of the linear 
regression of ŷ on y was also used to assess prediction bias. 
The relative difference (RD) in predictive ability was meas-
ured as RD =

(rmn−rm1)
rm1

× 100 , where rm1 is the predictive 
ability using the M1 approach and rmn is the predictive abil-
ity using the other models.

Feature reduction prediction
The GWAS for blood metabolites were obtained with the 
following single-trait animal model via the genomic BLUP: 

where y is a vector of blood metabolite information; b is 
the vector of fixed effects of days in milk with six classes 
(1: less than 60 d; 2: 60–120 d; 3: 121–180 d; 4: 181–240 
d; 5: 241–300 d and 6: more than 300 d) and parity in 3 
classes (1, 2, and ≥ 3 parities). The h and a are the random 
effects of batch and additive genetic effects, respectively; 
X , W  , and Z are incidence matrices relating y to fixed 
effects ( b ), batch effects ( h ), and additive genomic breed-
ing value ( a ), respectively; and e is the residual effects.

The model was fitted under the following assump-
tions: a ∼ N(0,Gσ

2
a) , h ∼ N(0, Iσ2
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) and e ∼ N(0, Iσ2e ) , 
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where σ 2
e  , σ 2

batch , and σ 2
e  are variances for additive, 

batch, and residual effects, respectively; I  is an identity 
matrix; and G is the genomic relationship matrix 

according to VanRaden [27]: G =
MM′

2
∑

m

j
=1pj(1−pj)

 where 

M is the SNP matrix with codes 0, 1, and 2 for geno-
types AA, AB, and BB, adjusted for allele frequency, and 
pj is the frequency of the second allele of the j-th SNP.

The analyses were performed using the program 
blupf90+ [28]. The P-values were estimated by the SNP 
effects standardization as follows [29, 30]:

where ui is the vector of the SNP marker effects, σui is the 
standard deviation of SNP marker effects ( ui ) and ϕ is the 
cumulative function of the normal distribution for the 
SNP effects standardization 

(

|ui|

σui

)

.
In order to evaluate the effectiveness of reduc-

ing dimensionality on predictive ability, we selected 
SNP markers from GWAS results performed in each 
training fold from 5-fold CV (i.e., 4-fold for training 
and 1-fold for validation) based on three thresholds 
of marker significance ( −log10(P-value) ) deemed as 
higher than 2.0, 2.5, and 3.0. The average number of 
SNP markers selected in each threshold is shown in 
Additional file 1: Table S2.

Results
Descriptive statistics of the blood metabolic profile 
in the investigated population are reported in Addi-
tional file  1: Table  S1. The cows enrolled in this study 
showed some relatively large data variability range for 
blood metabolites, which may indicate a low degree of 
physiological disturbance. Despite the absence of overt 
clinical disease, the high variability in certain blood 
biomarkers suggests the potential presence of subclini-
cal conditions in specific individuals, which is expected 
in a large population. Specifically, we observed a degree 
of alteration in globulins (11% of cows > 50  g/L) and 
albumin (2% of cows < 30  g/L). Regarding urea lev-
els, 43% of cows exceeded the threshold of ≥ 6.78 
mmol/L. Less than 1% of the cows showed suspicion 

P- value = 2

(

1− ϕ

(

|ui|

σui

))
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of hypomagnesemia or hypocalcemia, and less than 2% 
had hyperketonemia associated with high NEFA levels.

Predictive performance of NIR data integrated 
with on‑farm and genomic information
Model M1, which included only the milk NIR infor-
mation, achieved the lowest predictive ability ( r ) 
compared to the models including also on-farm data 
(M2) and both on-farm and genomic information 
(M3). For M1, the r-values ranged from 0.31 to 0.54 
for energy-related metabolites (Fig.  1a), 0.28 to 0.57 
for liver function/hepatic damage (Fig.  1b), 0.38 to 
0.59 for inflammation/innate immunity (Fig.  2a), 0.34 
to 0.52 for oxidative stress metabolites (Fig.  2b), and 
from 0.26 to 0.60 for minerals (Fig.  3) (see Additional 
file  1: Tables S3–S5, respectively). The combination of 
NIR and information on the farm (M2) achieved an 
average increase of 19% (3%–59%) in relation to the 
M1 model, with r-values ranging from 0.41 to 0.58 

for energy-related metabolites, 0.37 to 0.61 for liver 
function/hepatic damage, 0.41 to 0.64 for inflamma-
tion/innate immunity, 0.45 to 0.54 for oxidative stress 
metabolites, and from 0.37 to 0.68 for minerals. Inte-
grating on-farm and genomic information into NIR 
(M3) resulted in a 39% (12%–85%) average increase 
of r compared to M1, with r-values varying from 0.45 
to 0.66 for energy-related metabolites, 0.41 to 0.66 for 
liver function/hepatic damage, 0.50 to 0.69 for inflam-
mation/innate immunity, 0.52 to 0.63 for oxidative 
stress metabolites, and from 0.44 to 0.69 for minerals.

The results obtained from the M2 and M3 with a 5-fold 
CV show that including on-farm information (DIM and 
parity) or on-farm and genomic information enhances 
the predictive ability of NIR infrared prediction (see 
Additional file 2: Fig. S2). Moreover, the use of on-farm 
information in NIR infrared predictions improves the 
predictive ability by 3%–59%, with significant improve-
ments seen for P, ROMt, Ca, ALP, NEFA, PON, and BHB 

Fig. 1 Predictive ability across 5‑fold random cross‑validation for Model 1 (NIR AfiLab data), Model 2 (NIR AfiLab data and on‑farm), and Model 
3 (NIR AfiLab data, on‑farm data, and genomic information) considering elastic net (ENet), for energy‑related (a) and liver function and hepatic 
damage (b) blood metabolites. Data are shown as mean ± SD (black error bar line). Glu, glucose; Cholest, cholesterol; NEFA, non‑esterified fatty 
acids; BHB, β‑hydroxybutyrate; Crea, creatinine; AST, aspartate aminotransferase; GGT, γ‑glutamyl transferase; BILt, total bilirubin; ALB, albumin; ALP, 
alkaline phosphatase; PON, paraoxonase
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Fig. 2 Predictive ability across 5‑fold random cross‑validation for Model 1 (NIR AfiLab data), Model 2 (NIR AfiLab data and on‑farm), and Model 
3 (NIR AfiLab data, on‑farm data, and genomic information) using the elastic net (ENet), for blood metabolites related to inflammation/innate 
immunity response (a) and oxidative stress (b).  Data are shown as mean ± SD (black error bar line). CuCp, ceruloplasmin; PROTt, total proteins; Glob, 
globulins; Hapto, haptoglobin; MPO, myeloperoxidase; ROMt, total reactive oxygen metabolites; AOPP, advanced oxidation protein products; FRAP, 
ferric reducing antioxidant power; SHp, total thiol groups 

Fig. 3 Predictive ability across 5‑fold random cross‑validation for Model 1 (NIR AfiLab data), Model 2 (NIR AfiLab data and on‑farm), and Model 3 
(NIR AfiLab data, on‑farm data, and genomic information) using the elastic net (ENet) for blood minerals.  Data are shown as mean ± SD (black error 
bar line). Traits: Ca, calcium; P, phosphorus; Mg, magnesium; Na, sodium; K, potassium; Cl, chlorine and Zn, zinc
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(see Additional file  2: Fig. S2). When both on-farm and 
genomic information are combined, the r-value increases 
from 12% to 85%, with an increase of more than 30% 
in 16 metabolites (P, Ca, ROMt, ALP, PON, NEFA, Cl, 
AOPP, BHB, glucose, cholesterol, BILt, albumin, CuCp, 
SHp, and myeloperoxidase) out of the 28 evaluated. The 
slope coefficients obtained from M2 and M3 indicate that 
the predictions were slightly underestimated or overesti-
mated. The slope values for M2 ranged from 0.94 to 1.07, 
while for M3, the values were between 0.95 and 1.05. 
Model M1 showed more bias, with values varying from 
0.85 to 1.29 (Additional file 2: Tables S3–S5).

Impact of feature selection on NIR AfiLab prediction 
performance
Using selected markers based on GWAS analy-
ses improved the predictive ability when applying a 

threshold of −log10(P-value) , except for Glu, FRAP, 
and P. The predictive ability (r) varied from 0.48 to 
0.66 for energy-related metabolites, 0.46 to 0.73 for 
liver function/hepatic damage, 0.61 to 0.70 for inflam-
mation/innate immunity, 0.60 to 0.72 for oxidative 
stress metabolites, and 0.48 to 0.70 (Figs.  4, 5, 6). On 
average, preselecting markers with a threshold of 
−log10(P-value) > 2 predictions achieved higher gains 
for oxidative stress metabolites (RD = 16%, ranging 
from −2% to 36%) and for liver function/hepatic dam-
age traits (RD = 9%, ranging from 3% to 12%), while 
lower gain was observed for energy-related metabo-
lites (RD = 4%, ranging from −3% to 7%).

The predictive ability of the model M3, considering 
selected markers with a threshold of −log10(P-value) 
> 2.5 showed slight improvements in the predictive 

Fig. 4 Predictive ability, including standard errors, for energy‑related (a) and liver function/hepatic damage (b) blood metabolites for ENet fitting 
all markers and using three thresholds based on marker significance: − log10(P-value) > 2.0, − log10(P-value) > 2.5 and − log10(P-value) > 3.0 .  
Traits: Glu, glucose; Cholest, cholesterol; NEFA, non‑esterified fatty acids; BHB, β‑hydroxybutyrate; Crea, creatinine; AST, aspartate aminotransferase; 
GGT, γ‑glutamyl transferase; BILt, total bilirubin; ALB, albumin; ALP, alkaline phosphatase; PON, paraoxonase 
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ability compared to the threshold of 2. The threshold of 
2.5 resulted in an average improvement of 8.8% in the 
r-value for 20 out of 28 evaluated metabolites (Figs.  4, 
5, 6). However, using a more restrictive threshold 
( −log10(P-value)> 3) to preselect markers led to a slight 
gain or reduction in predictive ability compared to using 
all markers in M3 (Figs. 4, 5, 6). AOPP and CuCp showed 
an RD higher than 10% for all evaluated thresholds, 
indicating that few genetic markers can explain their 
variability.

Discussion
Predictive performance integrating on‑farm and genetic 
markers in NIR AfiLab
The study’s objective was to evaluate the potential of 
integrating the AfiLab NIR milk analyzer with on-farm 

data (DIM and parity) and genetic marker information 
for the prediction of blood metabolites in Holstein cows. 
The Fourier-transform mid-infrared (FTIR) technique 
has become a broadly explored tool to predict complex 
traits, such as the blood metabolic profile in dairy cat-
tle [8, 9, 31, 32]. Although in-line NIR infrared showed 
low to moderate predictive ability for blood metabolites 
(Figs. 1, 2, 3), it represents an alternative for daily moni-
toring at the herd level due to its daily availability. Pre-
vious studies have pointed out that using an integration 
of infrared with on-farm information (e.g., DIM, parity, 
and  behavior parameters) or with on-farm and genetic 
markers allows improvement in infrared predictive abil-
ity for both FTIR [33–35] and NIR [15].

The adoption of the multi-data integration approach 
for predicting complex phenotypes is on the rise, 

Fig. 5 Predictive ability, including standard errors, for inflammation/innate immunity (a) and oxidative stress (b) blood metabolites for ENet fitting 
all markers and using three thresholds based on marker significance: − log10(P-value) > 2.0 , − log10(P-value) > 2.5 and − log10(P-value) > 3.0 . 
Traits: CuCp, ceruloplasmin; PROTt, total proteins; Glob, globulins; Hapto, haptoglobin; MPO, myeloperoxidase; ROMt, total reactive oxygen 
metabolites; AOPP, advanced oxidation protein products; FRAP, ferric reducing antioxidant power; SHp, total thiol groups  
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primarily because it offers a more precise representa-
tion of the intricate biological architecture associated 
with traits. Creating a training dataset structure from 
different sources on a massive is an integration and data 
architecture challenge. These data have different struc-
ture, dimensionality, resolution, and integrity. Such data 
can be used to build predictive models that accurately 
predict the unknown target traits in different farms and 
seasons. High-throughput technologies can gather on-
farm data using automated in-line sensors installed in 
milking parlors. These sensors assess milk quality and 
quantity, recording information related to various aspects 
of individuals, including DIM, parity, and physiological 
parameters (e.g., respiratory rate  and rumination time). 
The data obtained by these sensors can be combined with 
NIR information to predict novel phenotypes, which can 
then be used for selective breeding and management pur-
poses. In recent years, there has been a growing emphasis 
on collecting on-farm data and integrating it to predict 
economically significant phenotypic traits in dairy cat-
tle [8, 15, 33]. In this study, we observed that including 
on-farm information (DIM and parity) in the NIR predic-
tions (M2) resulted in improvements on r-values with an 
average RD of 19% for energy-related metabolites, 20% 
for liver function/hepatic damage metabolites, 7% for 
inflammation/innate immunity metabolites, 24% for oxi-
dative stress metabolites, and 23% for minerals (see Addi-
tional file 2: Fig. S1).

The increased r-value could be attributed to the direct 
influence of the lactation period on energy requirements 
and changes in milk yield, as well as milk fat and pro-
tein concentrations [36]. Since metabolic disorders also 
directly impact milk yield and quality [37], separating the 

effects of on-farm factors from those caused by metabolic 
distress can improve the predictive power of statistical 
algorithms [8]. In this context, Wu et al. [38] found that 
on-farm information (DIM and parity) has a great influ-
ence on variations in serum biochemical parameters and 
hormones related to protein status, energy supply, liver 
and kidney function, and oxidative stress of mid-lactation 
Holstein cows. Thus, by combining DIM and parity with 
the NIR infrared predictions, we reduced the prediction 
error in the independent population by accounting for 
varied physiological conditions along the lactation curve. 
Furthermore, integrating on-farm explanatory variables 
allows for capturing the lactation stage that explains the 
variability of the target phenotype, thus enhancing the 
accuracy of the NIR predictions.

When predicting blood metabolites using the M2, 
FRAP, and SHp demonstrated a better predictive ability 
on average inflammation/innate immunity metabolites, 
r-values ranged from 0.41 for CuCp to 0.64 for globu-
lins and oxidative stress metabolites with r-values of 0.45 
for AOPP and 0.54 for ROMt. These values were simi-
lar to those achieved using NIR spectra [10] but lower 
when compared to FTIR spectra [8, 9, 39]. A continuous 
exchange between blood and milk occurs through the 
blood-milk barrier, leading to a good predictive ability 
for inflammation and innate immunity-related metabo-
lites because milk contains proteins like CuCp and hap-
toglobin originating from the bloodstream. In addition, 
during mammary gland inflammatory processes, the 
acute-phase proteins are also directly produced by milk 
leukocytes and mammary epithelial cells [40–42].

Myeloperoxidase, an enzyme released by activated neu-
trophils during inflammatory responses, is also found in 

Fig. 6 Predictive ability, including standard errors, for blood minerals for ENet fitting all markers and using three thresholds based on marker 
significance: − log10(P-value) > 2.0 , − log10(P-value) > 2.5 and − log10(P-value) > 3.0 . Traits: Ca, calcium; P, phosphorus; Mg, magnesium; Na, 
sodium; K, potassium; Cl, chlorine and Zn, zinc  
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milk and is associated with ongoing infections [40, 43]. 
On the other hand, oxidative stress has been associated 
with metabolic disorders in dairy cows, and milk contains 
measurable plasma thiols, reactive oxygen metabolites, 
and AOPP, which can indicate the individual’s oxidative 
stress status [44]. In this context, our results demonstrate 
that using NIR infrared with on-farm data can achieve 
moderate accuracy in predicting blood oxidant-antiox-
idant status. This allows the identification of cows with 
high oxidative stress imbalance and detect energetic and 
metabolic impairments.

Mota et al. [8] observed improved prediction of blood 
traits by integrating milk FTIR spectra with on-farm 
and genetic markers, especially for metabolites under 
strong genetic control, i.e., higher heritability. Our 
results suggest that blending on-farm and genomic data 
in NIR AfiLab prediction can help predict variations in 
blood metabolites. In particular, we observed an average 
increase of 34% in the r-value for the investigated metab-
olites compared with M1 and 13% with M2 (see Addi-
tional file 2: Fig. S1). Increasing the power of prediction 
methods is an area of active research that aims to enable 
more efficient identification and allocation of cows less 
prone to be affected by metabolic disorders. Data inte-
gration could help predict the evolution of the metabolic 
response in the medium and long term and understand 
whether the animals are in a phase of adaptation or 
chronic stress [20].

Phenotype prediction using marker selection on NIR 
AfiLab prediction performance
The standard procedure for using genetic markers for 
infrared predictions is to use all information obtained 
from the SNP array as predictors. However, several com-
plex biological downstream processes affect the pheno-
typic variability, and using SNP predictors more closely 
linked to the true quantitative trait loci (QTL) affecting 
the target phenotypes may increase the NIR AfiLab pre-
diction performance. Selecting optimal markers based on 
their significance for the target trait is a crucial step in 
reducing the dimensionality of information in predictive 
models when multiple sources of information are com-
bined. This helps to minimize the number of parameters 
in the model, avoiding overfitting and potentially improv-
ing the accuracy of predictions. The improvements in the 
predictive ability of a selected subset of markers depend 
on how well it matches the genetics underlying the phe-
notypic trait(s), and with a sufficient number of markers 
able to capture the trait variability (see Additional file 1: 
Table S2 and Additional file 2: Fig. S2–S4).

Previous studies adopted different strategies to prese-
lect predictors by directly excluding uninformative mark-
ers via machine learning [45–47] or assigning weights 

to markers according to their contributions to trait vari-
ability [48]. Piles et al. [47] and Li et al. [49] showed that 
feature selection strategies improved the predictive abil-
ity of complex traits. We observed that preselected mark-
ers using a less conservative threshold ( −log10(P-value) > 
2.0) led to improvements in the r-value from 10% to 36%, 
even if a reduction was observed for glucose (3%) and 
FRAP (2%). The notable improvement in predictive capa-
bility seen with CuCp and AOPP can be attributed to the 
advantage gained from utilizing the most influential SNPs 
that bear biological relevance to the target trait (Addi-
tional file 2: Fig. S6 and S8). This is especially pronounced 
in traits influenced by QTL, which has a relatively signifi-
cant effect (Additional file 2: Fig. S5–S9). Fragomeni et al. 
[50] and Mancin et al. [45] highlighted the advantages of 
removing non-informative SNP, where better accuracy 
was achieved by constructing the G matrix by consider-
ing the window region where the QTL was identified or 
by using only QTL information.

Selected SNPs have also been observed to capture sig-
nificant within-family variation and Mendelian segrega-
tion effects [51]. Our findings emphasized that combining 
NIR infrared and on-farm data with selected markers 
significantly associated ( −log10(P-value) > 2.0) with the 
target trait increased the predictive ability for predicting 
blood metabolites in dairy cattle (see Additional file  2: 
Fig. S2–S4). On the other hand, when dealing with more 
complex traits (i.e., polygenic traits), combining NIR 
infrared and on-farm information with approximately 5k 
selected markers (see Additional file 1: Table S2) resulted 
in a decrease in predictive ability compared to using all 
markers for glucose, NEFA, albumin, myeloperoxidase, 
FRAP, P and Na (see Additional file 2: Fig. S2–S4). These 
reductions were more remarkable as the selection criteria 
were more restrictive, i.e., −log10(P-value) > 2.5 and 3.0 
(see Additional file 2: Fig. S2–S4), and this could be due 
to reduced linkage disequilibrium between the SNP and 
the true QTL [52].

Given this, comparing less restrictive threshold (> 2) to 
more restrictive (> 2.5 and > 3) showed predictive abilities 
that were lower by about 2% and 5% for energy-related 
metabolites, 3% and 4% for liver function/hepatic damage 
metabolites, 2% and 6% for inflammation/innate immu-
nity metabolites, 3% and 10% for oxidative stress metabo-
lites, and 2% and 7% for minerals. This result highlights 
the importance of preselecting markers for predict-
ing complex phenotypes depending on how much this 
dimension reduction accurately selects predictor vari-
ables related to the target trait. Hence, our findings indi-
cate that combining NIR infrared, on-farm and genomic 
information, or selected markers from GWAS, consider-
ing a threshold of −log10(P-value) > 2.0 can enhance the 
predictive ability of metabolic imbalances in dairy cattle. 
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As such, using multi-layer information to predict blood 
metabolites at the herd level in a rapid, affordable, and 
real-time manner unveils the promising potential of milk 
NIR spectra predictions in the early detection of meta-
bolic disorders. Additionally, the outcomes of our study 
reveal moderate to high predictive abilities, making the 
prediction equations potentially useful in guiding herd 
management especially for its ability to capture day-by-
day fluctuations, and formulating breeding recommenda-
tions for more resilient cows.

Conclusions
Integrating NIR spectra with on-farm and genomic 
information yielded a better predictive ability for blood 
metabolites than the model that relied solely on AfiLab 
milk NIR spectra in Holstein cattle. Indeed, the combi-
nation of NIR spectral data with on-farm and genomic 
information consistently outperformed prediction 
based on NIR spectra by an average of 34%. Preselecting 
genetic markers from GWAS has been shown to be an 
efficient strategy for dimensionality reduction by select-
ing trait-relevant markers, improving predictive abil-
ity because it extracts a smaller number of informative 
markers. We showed that preselecting genetic markers 
with a less restrictive threshold ( −log10(P-value) > 2.0 ) 
resulted in better performance than considering all 
markers. Additionally, we found that using more restric-
tive thresholds ( −log10(P-value) > 2.5 and 3.0) led to a 
negligible improvement in the predictive ability of blood 
metabolites.
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2 (M2; milk NIR data and on‑farm data) and Model 3 (M3; milk NIR data, 
on‑farm and genomic information) against Model 1, which considers only 
the NIR infrared data. Data are shown as mean ± SD (red error bar line). 
Glu – glucose; Cholest – cholesterol; NEFA – non‑esterified fatty acids; 
BHB – β‑hydroxybutyrate; Crea – creatinine; AST – aspartate aminotrans‑
ferase; GGT – γ‑glutamyl transferase; BILt – total bilirubin; ALB – albumin; 
ALP – alkaline phosphatase; PON – paraoxonase; CuCp – ceruloplasmin; 
Glob – globulins; PROTt – total proteins; Hapto – haptoglobin; MPO 
– myeloperoxidase; ROMt – total reactive oxygen metabolites; AOPP – 
advanced oxidation protein products; FRAP – ferric reducing antioxidant 
power; SHp – total thiol groups; Ca – calcium; P – phosphorus; Mg – 
magnesium; K – potassium; Na – sodium; Cl – chlorine; Zn – zinc. Fig. 
S2. Relative gain in predictive ability Pearson correlation, considering 
three thresholds based on marker significance (‑log10(P‑value)) higher 
than 2.0, 2.5, and 3.0 against fitting all 61k SNPs, including standard errors, 
assessed for energy‑related (a) and liver function and hepatic damage (b) 
blood metabolites. Data are shown as mean ± SD (black error bar line). 
Glu – glucose; Cholest – cholesterol; NEFA – non‑esterified fatty acids; 
BHB – β‑hydroxybutyrate; Crea – creatinine; AST – aspartate aminotrans‑
ferase; GGT – γ‑glutamyl transferase; BILt – total bilirubin; ALB – albumin; 
ALP – alkaline phosphatase; PON – paraoxonase. Fig. S3. Relative gain 
in predictive ability Pearson correlation, considering three thresholds 
based on marker significance  (‑log10(P‑value)) higher than 2.0, 2.5 and 
3.0 against fitting all 61k SNPs, including standard errors, assessed for 
inflammation/innate immunity response (a) and oxidative stress blood 
metabolites (b). Data are shown as mean ± SD (black error bar line). 
CuCp – ceruloplasmin; PROTt – total proteins; Glob – globulins; Hapto 
– haptoglobin; MPO – myeloperoxidase; ROMt – total reactive oxygen 
metabolites; AOPP – advanced oxidation protein products; FRAP – ferric 
reducing antioxidant power; SHp – total thiol groups. Fig. S4. Relative 
gain in predictive ability Pearson correlation, considering three thresholds 
based on marker significance (higher than 2.0, 2.5 and 3.0 against fitting 
all 61k SNPs, including standard errors, assessed for blood minerals. Data 
are shown as mean ± SD (black error bar line). Ca – calcium; P – phospho‑
rus; Mg – magnesium; Na – sodium; K – potassium; Cl – chlorine; Zn – zinc. 
Fig. S5. Manhattan plot for the average value of markers significance  
(‑log10(P‑value)) across the 5‑fold cross‑validation for energy‑related 
metabolites. Glu – glucose; Cholest – cholesterol; NEFA – non‑esterified 
fatty acids; BHB – β‑hydroxybutyrate; Crea – creatinine. Fig. S6. Manhattan 
plot for the average value of markers significance  (‑log10(P‑value)) across 
the 5‑fold cross‑validation for blood metabolites related to inflamma‑
tion/innate immunity response. CuCp – ceruloplasmin; PROTt – total 
proteins; Glob – globulins; Hapto – haptoglobin; MPO – myeloperoxidase. 

https://doi.org/10.1186/s40104-024-01042-3
https://doi.org/10.1186/s40104-024-01042-3


Page 12 of 13Mota et al. Journal of Animal Science and Biotechnology           (2024) 15:83 

Fig. S7. Manhattan plot for the average value of markers significance  
(‑log10(P‑value)) across the 5‑fold cross‑validation for blood metabolites 
related to liver function and hepatic damage. AST – aspartate aminotrans‑
ferase; GGT – γ‑glutamyl transferase; BILt – total bilirubin; ALB – albumin; 
ALP – alkaline phosphatase; PON – paraoxonase. Fig. S8. Manhattan plot 
for the average value of markers significance  (‑log10(P‑value)) across the 
5‑fold cross‑validation for oxidative stress blood metabolites. ROMt – total 
reactive oxygen metabolites; AOPP – advanced oxidation protein prod‑
ucts; FRAP – ferric reducing antioxidant power; SHp – total thiol groups. 
Fig. S9. Manhattan plot for the average value of markers significance  
(‑log10(P‑value)) across the 5‑fold cross‑validation for blood minerals. Ca – 
calcium; P – phosphorus; Mg – magnesium; K – potassium; Na – sodium; 
Cl – chlorine; Zn – zinc.
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