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Abstract 

Background Mastitis caused by multiple factors remains one of the most common and costly disease of the dairy 
industry. Multi‑omics approaches enable the comprehensive investigation of the complex interactions between mul‑
tiple layers of information to provide a more holistic view of disease pathogenesis. Therefore, this study investigated 
the genomic and epigenomic signatures and the possible regulatory mechanisms underlying subclinical mastitis 
by integrating RNA sequencing data (mRNA and lncRNA), small RNA sequencing data (miRNA) and DNA methylation 
sequencing data of milk somatic cells from 10 healthy cows and 20 cows with naturally occurring subclinical mastitis 
caused by Staphylococcus aureus or Staphylococcus chromogenes.

Results Functional investigation of the data sets through gene set analysis uncovered 3458 biological process GO 
terms and 170 KEGG pathways with altered activities during subclinical mastitis, provided further insights into subclin‑
ical mastitis and revealed the involvement of multi‑omics signatures in the altered immune responses and impaired 
mammary gland productivity during subclinical mastitis. The abundant genomic and epigenomic signatures with sig‑
nificant alterations related to subclinical mastitis were observed, including 30,846, 2552, 1276 and 57 differential 
methylation haplotype blocks (dMHBs), differentially expressed genes (DEGs), lncRNAs (DELs) and miRNAs (DEMs), 
respectively. Next, 5 factors presenting the principal variation of differential multi‑omics signatures were identified. 
The important roles of Factor 1 (DEG, DEM and DEL) and Factor 2 (dMHB and DEM), in the regulation of immune 
defense and impaired mammary gland functions during subclinical mastitis were revealed. Each of the omics 
within Factors 1 and 2 explained about 20% of the source of variation in subclinical mastitis. Also, networks of impor‑
tant functional gene sets with the involvement of multi‑omics signatures were demonstrated, which contributed 
to a comprehensive view of the possible regulatory mechanisms underlying subclinical mastitis. Furthermore, multi‑
omics integration enabled the association of the epigenomic regulatory factors (dMHBs, DELs and DEMs) of altered 
genes in important pathways, such as ‘Staphylococcus aureus infection pathway’ and ‘natural killer cell mediated cyto‑
toxicity pathway’, etc., which provides further insights into mastitis regulatory mechanisms. Moreover, few multi‑omics 
signatures (14 dMHBs, 25 DEGs, 18 DELs and 5 DEMs) were identified as candidate discriminant signatures with capac‑
ity of distinguishing subclinical mastitis cows from healthy cows.

Conclusion The integration of genomic and epigenomic data by multi‑omics approaches in this study provided 
a better understanding of the molecular mechanisms underlying subclinical mastitis and identified multi‑omics 
candidate discriminant signatures for subclinical mastitis, which may ultimately lead to the development of more 
effective mastitis control and management strategies.
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Introduction
Bovine mastitis, an inflammatory disease of the mammary 
gland, is a major concern for the dairy industry because 
it leads to significant economic impacts through reduced 
milk production, lower milk quality, high veterinary costs, 
early culling of infected cows, animal welfare issues and 
reproductive problems, amongst others [1, 2]. Mastitis is a 
multi-factorial disease caused by various types of bacteria, 
viruses and other pathogens, and occurs in both clinical 
and subclinical forms. Subclinical mastitis is characterized 
by long term infection without visible signs in the mam-
mary gland or milk [3] but an increase in milk somatic cell 
count (SCC), which indicates an immune response to the 
infection [4]. A range of bacteria could cause subclinical 
mastitis, however, Staphylococcus aureus and coagulase-
negative staphylococci, such as Staphylococcus chromoge-
nes, are considered the primary pathogens because of the 
negative economic impact they have on dairy production 
[5]. Cows with subclinical mastitis are at an increased 
risk of developing clinical mastitis, which may cause even 
more severe symptoms and discomfort, and lead to higher 
veterinary costs and even early culling. Therefore, the 
development of effective mastitis management practices 
is essential to the success and sustainability of the dairy 
industry.

The rapid development of cutting-edge sequencing 
technologies has provided valuable insights into the 
molecular mechanisms of mastitis, which may contrib-
ute to the improvement of breeding programs and the 
development of new strategies for managing and con-
trolling mastitis. For instance, genome-wide associa-
tion studies (GWAS) have identified numerous genetic 
variations related to milk production and health of 
dairy cows [6–8]. These variations have been utilized in 
genomic breeding programs, contributing significantly 
to the achievement of higher genetic gains in genomic 
breeding programs and in the improvement of animal 
production, health and profitability in the dairy indus-
try [9–11]. Moreover, various studies profiled the tran-
scriptome of different tissues, such as mammary gland, 
milk somatic cells and blood cells, and revealed impor-
tant differentially expressed genes, gene networks, bio-
logical processes and pathways involved in the host 
immune response to subclinical mastitis [12–16]. In 
addition to genetic mechanisms, studies of epigenetic 
modifications, including DNA methylation, non-cod-
ing RNAs and histone modifications have furthered 

understanding of the regulatory mechanisms underly-
ing bovine subclinical mastitis [17–19]. For example, 
DNA methylation alterations have been found to medi-
ate the gene expression changes in response to masti-
tis, which provided further insights into the molecular 
mechanisms of the phenotype variations unexplained 
by genetic factors [20, 21].

These single omics studies, including genomics, tran-
scriptomics and methylomes amongst others, have 
made important contributions to our understanding of 
bovine mastitis. However, they provided a limited view 
of mastitis by focusing on single layers of biological 
information and may not provide systematic functional 
information, which is necessary for understanding 
the biological mechanisms underlying mastitis patho-
genesis. To address these limitations, the multi-omics 
approach has emerged as a promising tool for gaining 
deeper understanding and elucidation of the potential 
causative molecular mechanisms that underlie sub-
clinical mastitis. Applying the multi-omics approach to 
integrate a range of high dimensional datasets at multi-
ple layers could reveal new interactions or relationships 
among different biological processes, thereby contrib-
uting to providing a more complete view of a biologi-
cal system [22, 23]. The multi-omics approach has been 
applied to various fields, including human disease, med-
icine, agriculture and environmental science, to gain a 
better understanding of complex biological systems and 
to develop new diagnostic and therapeutic approaches 
[24, 25]. However, it is important to note that the appli-
cation of multi-omics approaches in studying bovine 
mastitis is still in its early stages. For instance, a few 
studies integrated two omics data, such as GWAS and 
RNA-sequencing data [26], transcriptome and miRNA 
profiles [27–29], or transcriptome and methylome 
[30–33], and revealed novel insights into the genetic 
and epigenetic basis of mastitis. This highlights the 
importance of using multi-omics approaches to gain a 
deeper understanding of mastitis and emphasizes the 
advantage of integrating more omics data for a more 
comprehensive investigation of the pathogenesis and 
regulatory mechanisms of mastitis.

In light of the complex and multifaceted nature of 
subclinical mastitis, our study aims to provide a more 
comprehensive understanding of its molecular mecha-
nisms. Through the integration of multiple omics data 
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from milk somatic cells, including mRNA transcrip-
tome, DNA methylome, and non-coding RNA (ncRNA) 
transcriptomes (specifically, long non-coding RNA 
(lncRNA) and microRNA (miRNA)), we seek to deline-
ate a multi-omics network (DNA methylation-ncRNA-
mRNA) elucidating the hub pathways involved in the 
pathogenesis of subclinical mastitis. Furthermore, our 
objective is to identify a set of candidate discriminant 
signatures with the potential to serve as biomarkers in 
mastitis control strategies. By achieving these goals, we 
aspire to significantly contribute to the augmentation 
of our current understanding of the intricate regula-
tory systems governing subclinical mastitis. Ultimately, 
we anticipate that our study’s outcomes will offer valu-
able insights for the development of novel strategies 
to control mastitis, encompassing interventions such 
as diagnostics, treatments, and enhance prediction of 
breeding values in breeding programs.

Materials and methods
Animals and sample collection
Lactating dairy cows with subclinical mastitis from com-
mercial dairy farms in Quebec, Canada, were recruited 
for the study. Further detailed information regarding 
cow selection and sample collection procedures can be 
found in our previous reports [15, 32]. In brief, we firstly 
monitored the milk SCC records of all lactating cows for 
a period of 6 months using Fossomatic flow cytometric 
cell counter (Lactanet, Sainte-Anne-de-Bellevue, Que-
bec, https:// lacta net. ca/). Cows with consecutively high 
(> 350,000 cells/mL) (potential subclinical mastitic (SM) 
cows) (n = 81) or low SCC (< 100,000 cells/mL) (potential 
heathy control (HC) cows) (n = 63) for a period of 3 or 
more months were selected for the study. Then 5 mL milk 
samples from each quarter of SM cows and a 20 mL com-
posite sample from each HC cow were collected and sent 
to Biovet laboratories (St-Hyacinthe, QC, Canada) for 
bacteriological examination. Fifteen HC cows that tested 
negative for mastitis pathogens were kept as the HC 
group. Among cows of SM group, eighteen tested posi-
tive for Staphylococcus aureus (SAP) and four cows tested 
positive for Staphylococcus chromogenes (SCP) in at least 
one quarter, and were enrolled as SM group (n = 22). 
Next, we collected about 200 mL composite milk samples 
from HC cows (equal volumes from all four quarters), 
and 200 mL milk sample from one positive quarter (even 
if more than one quarters were positive for a pathogen) of 
SM cows. Following collection, a small part of each milk 
sample (~ 2 mL) was sent for bacteriological examination 
to validate pathogen infection identified in the first bac-
teriological results. Meanwhile, milk somatic cells were 
isolated from the remaining milk samples by low speed 
centrifugation (1500 × g, 15 min, 4  °C). Finally, we kept 

milk somatic cell samples from 10 HC and 20 SM cows 
(comprising 16 SAP cows and 4 SCP cows) for next-step 
analysis, which had consistent bacteriological examina-
tion results and enough milk somatic cells.

Animal use procedures were approved in accordance 
with the guidelines of the Canadian Council on Animal 
Care, and ethical approval to conduct the study was pro-
vided by the Animal Care and Ethics Committee of Agri-
culture and Agri-Food Canada (approval #570).

Generation of multi‑omics data
The milk somatic cells per cow were divided into two 
equal parts, one part was used for the isolation of DNA 
and the other part to which an equal volume of Trizol 
reagent was added, was used for the isolation of total 
RNA using respectively DNeasy Blood and Tissue Kit, 
and RNeasy Mini Kit (Qiagen Inc., Toronto, ON, Can-
ada). The genomic DNA was used for whole genome-
wide DNA methylation sequencing (WGMS), while the 
total RNA was subjected to RNA sequencing for char-
acterization of mRNA and lncRNA transcriptomes, and 
small RNA sequencing for miRNA profiling. The details 
regarding the generation of multi-omics data, including 
DNA methylation and mRNA transcriptome and miRNA 
expression profiles are found in our previous reports 
[15, 32, 34, 35]. Briefly, the library preparation and deep 
sequencing were performed by Centre d’expertise et 
de services Génome Québec (Canada). We used stand-
ard bioinformatics pipelines to process the raw WGMS 
reads, RNA sequencing reads (mRNA and lncRNA) and 
miRNA sequencing reads [36]. Following sequence qual-
ity check, the clean sequences were mapped to the bovine 
reference genome ARS-UCD1.2 [37]. Next, the method 
of methylation haplotype blocks (MHBs) was used to 
represent the DNA methylation status. The MHBs were 
identified using MONOD2 [38] and defined as regions 
that harbored at least 3 CpG sites and in which the adja-
cent CpG sites were associated (linkage disequilibrium 
r2 ≥ 0.5). The MHBs were firstly identified for SM-SAP 
and SM-SCP data sets separately as described in our pre-
vious studies [32, 34]. For this study, we kept the com-
mon MHBs identified in both data sets to represent the 
DNA methylation omics. Then, the methylated haplotype 
load (MHL), which is a weighted mean of the fraction of 
methylated methylation haplotypes at different lengths, 
were used to compare the methylation status of MHBs 
between SM and HC groups by using two-tailed Student’s 
t-test to identify differential MHBs (dMHBs). The P-value 
was adjusted by Benjamini and Hochberg false discovery 
rate (FDR) method [39]. Significant dMHBs were defined 
as MHBs with ≥ 20% difference in MHL and FDR > 0.05. 
From the RNA sequencing data, the mRNA and lncRNA 
profiles were identified meanwhile the miRNAs were 

https://lactanet.ca/
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identified from the small RNA sequencing data. For 
the transcriptome data (mRNA, miRNA and lncRNA), 
we firstly filtered to remove those with low reads (low 
expression level). We kept genes (mRNAs), lncRNAs and 
miRNAs with ≥ 10 reads count in ≥ 50% of samples per 
group for the next-step analysis. We then used DESeq2 
for the normalization of read counts and identification 
of differentially expressed genes (DEGs), lncRNAs (DEL) 
and miRNAs (DEM) between SM and HC groups, where 
FDR < 0.05 and |log2 fold change  (log2FC)|≥ 1 were used 
as thresholds to define significant differences between 
SM and HC groups.

Integrative single sample gene‑set analysis of multi‑omics 
data
Firstly, we used the multi-omics gene-set analysis R 
package program, MOGSA [40], to integrate multi-
ple omics datasets, including genes (mRNAs), MHBs, 
lncRNAs and miRNAs, and annotated the multi-omics 
features to functional gene sets. MOGSA is an enrich-
ment approach that relies on matrix factorization of 
multi-omics data measured on the same samples, which 
is powerful to learn patterns of biological significance 
in high dimensional data [40]. MOGSA generates gene 
set scores (GSSs) for each sample by learning the most 
variant features following integration of all input omics. 
Since MOGSA does not require pre-filtering of data but 
requires multi-omics data measured on the same sam-
ples, we used all expressed mRNAs, lncRNAs, miRNAs 
and the identified MHBs in milk somatic cells from 24 
samples which had data on the four omics, including 
nineteen SM cows (15 SAP and 4 SCP cows) and 5 HC 
cows. The default parameters were used in the analysis. 
A total of 321 KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathways and 7654 Gene Ontology (GO) bio-
logical processes (BP-GO) terms were downloaded from 
KEGG [41] and GO [42] databases, respectively, and used 
as functional gene sets. The significant gene sets were 
defined as having significant GSS (FDR < 0.05) in more 
than two thirds of the samples (n = 16).

Discovery of the principal sources of variation 
in multi‑omics data
Secondly, we performed Multi-Omics Factor Analysis 
(MOFA) to discover the principal sources of variation 
in the four omics data sets by using MOFA2 [43]. The 
expression level (read count) of genes, lncRNAs and miR-
NAs were normalized for size factor normalization and 
variance stabilization with DESeq2. The DNA methyla-
tion data (MHL of MHBs) was normalized by using the 
quantile normalization method. The normalized omics 
datasets (DEG, DEL, DEM and dMHB) were input-
ted into MOFA2 (version 1.8.0) for integrative analysis. 

MOFA2 uses a probabilistic approach to model the 
shared and dataset-specific factors that underlie the vari-
ability across the multiple omics datasets. The identified 
factors can then be used to identify the molecular signa-
tures and pathways that are associated with each factor. 
The default number of factors (n = 10) was used which 
was trimmed based on the minimum variance explained 
criteria (2%). The model was firstly trained by MOFA2 
function ‘prepare_mofa’ and then used for factor analysis 
by using the MOFA2 function ‘run_mofa’, and the identi-
fied factors were interpreted based on the features with 
the highest factor loadings.

The results of the factor analysis were visualized using 
the MOFA2 functions. For instance, heatmaps were plot-
ted to display the variance decomposition by factor and 
the total variance explained per omics. While the factor 
values and feature weights were exhibited by scatterplot. 
The get set enrichment analysis was then performed on 
the identified factors by using the MOFA2 function “run_
enrichment”. The KEGG pathways and BP-GO terms 
were used as the gene set annotations. The statistical sig-
nificance of the identified pathways and BP-GO terms 
was determined using a FDR threshold of 0.05.

Identification of candidate discriminant signatures 
from multi‑omics data
In order to identify highly correlated multi-omics signa-
tures that discriminate the SM (SAP and SCP) and HC 
groups, we used the DIABLO (Data Integration Analy-
sis for Biomarker discovery using a Latent component 
method for Omics studies) method implemented in the 
R package, mixOmics version 6.22.0 [44], to integrate the 
four omics datasets. The input data for DIABLO included 
normalized expression values of DEGs, DELs, DEMs and 
dMHBs (describe in data preparation of MOFA2) from 
19 SM cows (15 SAP and 4 SCP cows) and 5 HC cows 
which had all four omics data. Before using the DIABLO 
framework, we examined the correlation between omics 
in a non-integrative context by using pairwise PLS (Pro-
jection to Latent Structure) comparisons that revealed 
strong correlation between the omics data sets. To ini-
tialize the DIABLO model, we used a weighted design 
(0.1) to achieve the balance between maximizing the 
correlation between omics datasets and maximizing the 
discriminative ability of the model. The optimal num-
ber of components and number of signatures to choose 
per omics were detected by using the function ‘perf ’ and 
‘tune.block.splsda’, respectively, using fourfold cross-vali-
dation repeated 10 times. The final DIABLO model with 
optimal parameters was run with function ‘block.splada’ 
to identify the candidate discriminant signatures, includ-
ing genes, miRNA, lncRNAs and MHBs. The results were 
visualized with functions from mixOmics, including 
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diagnostic plot (‘plotDiablo’)—shows the correlation 
between each input omics, circus plot (‘circosPlot’)—dis-
plays the correlation between identified signatures, bar 
plot (‘plotLoadings’)—presents the loading weight per 
signature per omics on each component, and clustered 
image map (‘cimDIABLO’)—shows the multi-omics sig-
nature expression per sample.

Target gene prediction, functional annotation 
and visualization
TargetScan8.0 [45] was used to predict the target genes 
of miRNAs by using thresholds of weighted context++ 
score < −0.2 and weighted context++ score percen-
tile ≥ 95. The target genes of miRNAs which were not 
expressed in the mRNA transcriptome of milk somatic 
cells were removed. In addition, we further checked the 
possible correlations between miRNAs and their pre-
dicted target genes by using Spearman’s rank correla-
tion coefficient with the R package, Hmisc version 5.0–1 
[46]. Only the predicted target genes that were also sig-
nificantly negatively correlated with the correspond-
ing miRNA (P < 0.05 and r < −0.3) were kept as target 
genes of miRNAs for next-step analysis. To prepare the 
gene set annotation file for miRNA, the involvement of 
a miRNA in a gene set (BP-GO term or KEGG pathway) 
was defined as the miRNA that targets at least one gene 
in the corresponding gene set. Besides, the target genes 

of lncRNAs were predicted by their cis- and trans-role. 
The cis-target genes of lncRNAs were identified by co-
location of protein-coding genes (mRNA) in the 100 kb 
upstream and downstream regions of the corresponding 
lncRNA and also expressed in milk somatic cells. Then 
we calculated the Spearman’s rank correlation coeffi-
cient (r) in one-to-one correspondence between detected 
genes and lncRNAs using Hmisc [46]. The genes with a 
P < 0.01 and |r|> 0.95 with a lncRNA were filtered as the 
trans-target (co-expressed) genes of the correspond-
ing lncRNA. Similarly, the involvement of a lncRNA in a 
gene set was defined as the lncRNA that cis-/trans-tar-
gets at least one gene of the corresponding gene set.

Results
Multi‑omics data collection
Milk somatic cells from 30 cows, including 20 SM (16 
SAP and 4 SCP) and 10 HC cows were used to construct 
the multi-omics profiles responding to subclinical mas-
titis (Fig.  1A). The WGMS data was available for all 30 
cows, however, one cow (SM-SAP) lacked RNA sequenc-
ing data and 6 cows (1 SM-SAP and 5 HC cows) lacked 
small RNA sequencing data due to limited sample vol-
umes. Finally, a total of 30 DNA methylation profiles, 
29 transcriptomes including gene (mRNA) and lncRNA 
profiles and 24 miRNA profiles of milk somatic cells were 
used (Fig. 1A). We identified a total of 55,854 MHBs from 

Fig. 1 Overview of sample type (A) and workflow of multi‑omics approaches (B). A Overview of sample type and availability for each omics. The 
number of samples are displayed as rows and omics data sets as columns. SM‑SCP: Subclinical mastitis due to Staphylococcus chromogenes, SM‑SAP: 
Subclinical mastitis due to Staphylococcus aureus, HC: Healthy control, MOGSA: Multi‑omics gene‑set analysis, MOFA2: Multi‑Omics Factor Analysis, 
DIABLO: Data integration analysis for biomarker discovery using latent variable approaches for omics studies
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WGMS sequences, 13,581 mRNAs and 3183 lncRNAs 
from RNA sequences, and 288 miRNAs from small RNA 
sequences, which were leveraged to derive insights into 
mastitis biology and identify important genetic and epi-
genetic signatures (Fig. 1B).

Biological insight of subclinical mastitis by multi‑omics 
data integration
Next, we used the multi-omics signatures to derive fur-
ther insights into mastitis biology by using MOGSA. Due 
to no missing value allowed for MOGSA, 24 samples with 
data from all four omics (5 HC and 19 SM cows) were 
used. MOGSA identified 3458 BP-GO terms (out of 7773) 
with significant up- or down-regulated GSSs in at least 

16 samples (FDR < 0.05). The majority of the significant 
BP-GO terms (n = 2458, 70.84%) had higher GSSs in SM 
group compared to HC group, with most of them being 
immune functions or disease related terms. For example, 
the most significant BP-GO term, “regulation of cell acti-
vation”, had significant GSS in all 24 samples (i.e., large 
difference of GSS between SM and HC groups) (Fig. 2A). 
Next, 244 GO terms had significant GSS in 23 samples, 
most of which showed large difference of GSSs between 
SM and HC groups, such as “leukocyte differentiation”, 
“regulation of defense response”, “immune response 
regulating signaling pathway”, “positive regulation of 
immune response”, “response to virus” “regulation of cell 
cell adhesion” and “regulation of lymphocyte activation”, 

Fig. 2 Integrative gene set analysis. A and B Heatmaps showing the gene set scores (GSSs) of the top 10 most significantly regulated GO terms 
(A) and KEGG pathways (B) in milk somatic cells. C and D Omics‑wise decomposition of the GSS for some of the gene sets. The contribution 
of each omics is represented by the corresponding bar, and the y‑axis means the omics‑wise decomposed GSS. SM‑SCP: subclinical mastitis due 
to Staphylococcus chromogenes, SM‑SAP: subclinical mastitis due to Staphylococcus aureus, HC: health control, MHB: methylation haplotype block
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etc. (Fig.  2A, Table S1). In contrast, the BP-GO terms 
with lower GSSs in SM group are mostly related to met-
abolic processes, transmembrane transport and other 
biosynthesis related processes (Table S1). Moreover, 
the MOGSA also identified 170 significant KEGG path-
ways, including 134 and 36 KEGG pathways with higher 
and lower GSSs in SM group compared to HC group, 
respectively. Consistent with BP-GO terms, most of the 
KEGG pathways with up-regulated GSSs were disease 
pathways or pathways with important immune func-
tions, such as “Th1 and Th2 cell differentiation”, “Path-
way in cancer”, “Chemokine signaling pathway”, “Th17 
cell differentiation” and “Human cytomegalovirus infec-
tion” amongst others (Fig. 2B, Table S1). Meanwhile, the 
KEGG pathways with down-regulated GSSs are related 
to biosynthesis and metabolism, such as “Glycosylphos-
phatidylinositol (GPI)-anchor biosynthesis”, “Beta-Ala-
nine metabolism” and “Arginine biosynthesis”. It is worth 
noting that GSS difference between SM and HC groups 
were generally greater in immune/disease-related KEGG 
pathways than the metabolism-related KEGG pathways, 
suggesting that the altered activities of immune functions 
were stronger than metabolism processes during subclin-
ical mastitis.

We further introduced the data-wise decomposition 
of the GSSs to evaluate the relative contribution (either 
concordant or discrepant) of each omics to the overall 
GSSs. As shown in Fig.  2C  and  D, the four omics had 
concordant contributions to most of BP-GO terms and 
KEGG pathways within group but different contribu-
tions between groups. For instance, most immune related 
BP-GO and KEGG pathways, such as “immune response 
regulating signaling pathway” (Fig.  2C), “Th1 and Th2 
cell differentiation” (Fig.  2D), “positive regulation of 
immune response”, “Chemokine signaling pathway”, and 
“NF-kappa B signaling pathway” amongst others, had 
significant positive GSS from all four omics in SM-SAP 
group, but negative GSS in HC and SM-SCP groups 
(Table S1). This suggests the up-regulated activities of 
immune-related processes in SM-SAP group. How-
ever, we also observed discrepant contributions in the 
four omics to the GSS of some metabolism/biosynthesis 
related BP-GO terms and KEGG pathways. For exam-
ple, mRNA and miRNA had negative GSS in SM-SAP 
group but positive GSS in HC and SM-SCP groups for 
the KEGG pathway “Glycosylphosphatidylinositol (GPI)-
anchor biosynthesis” (Fig. 2E). However, lncRNA showed 
opposite contribution to the GSS of this term (“Glyco-
sylphosphatidylinositol (GPI)-anchor biosynthesis”) by 
being positive in SM-SAP group but negative in HC and 
SM-SCP groups. Another case is the BP-GO term “lipo-
protein metabolic process”, to which MHB and lncRNA 
contributed positively to the GSS but mRNA and miRNA 

showed negative GSS for this term in SM-SAP group, 
which is opposite for SM-SCP and HC groups (Fig. 2F). 
Interestingly, the overall GSS in SM-SCP group to this 
term (“lipoprotein metabolic process”) is similar to that 
of SM-SAP group, however, the decomposed contri-
bution of the four omics to the GSS was similar to HC 
group. This is consistent with the characteristics of 
SM-SCP, in that SC causes very mild mastitis. Thus the 
decomposition of GSS evaluated the contribution of each 
omics data to the gene sets, revealing their involvements 
in the altered immune responses and impaired mammary 
gland productivity during subclinical mastitis.

Genomic and epigenomic alterations in response 
to subclinical mastitis
We next identified the multi-omics alterations relevant 
to subclinical mastitis by comparing the SM cows to HC 
cows for each omics with all available data sets of the 
corresponding omics (Fig.  1A). In order to obtain the 
DNA methylation signatures related to SM caused by S. 
aureus or S. chromogene, we kept the 55,854 MHBs com-
monly identified in both SM-SAP and SM-SCP datasets 
to represent the DNA methylation omics. By comparing 
the methylation status of these MHBs in SM group to 
HC group, we found 30,846 differential MHBs (dMHBs) 
(|MHL difference|  ≥ 20% and FDR < 0.05) (Table S2A). 
Among them, 76.16% (23,492) showed significantly 
higher methylation levels in SM cows compared to HC 
cows, while only 7354 (23.84%) were hypo-methylated 
in SM cows. The majority of dMHBs are located in the 
intergenic regions or CpG deserts (Fig.  3A), followed 
by genes and repeat elements. Within genes, most 
dMHBs were collocated with introns. We also identi-
fied 4365 dMHBs that were overlapped with regula-
tory regions, including promoter regions (n = 667), first 
exons (n = 100) and first introns (3660). It is worth not-
ing that dMHBs, particularly the most variable ones, 
showed clear differences and clustering between SM 
and HC cows (Fig. 3B). A total of 13,581 genes (mRNAs) 
with at least 10 read counts in more than 50% of cows 
per group were used as the mRNA transcriptome omics. 
In addition, we identified 2552 differentially expressed 
genes (DEGs) (|log2FC|  ≥ 1 and FDR < 0.05), includ-
ing 1383 up-regulated and 1169 down-regulated DEGs, 
by comparing the transcriptome data of SM cows to 
HC cows (Fig.  3C, Table S2B). The top 10 most sig-
nificant DEGs were all up-regulated in SM cows, 
including CD72 (CD72 molecule), LOC104975911, 
LOC101902048, LOC101907132, SLC25A19 (solute 
carrier family 25 member 19), SEMA4A (semaphorin 
4A), NAIP (NLR family apoptosis inhibitory protein), 
FCGR3A (Fc gamma receptor IIIa), LOC107132656, 
and CPB2 (carboxypeptidase B2)  (Fig.  3C). Meanwhile, 
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we also mined 3183 lncRNAs from the RNA-Seq tran-
scriptome data as lncRNA omics, and identified 1276 
differentially expressed lncRNAs (DELs) (|log2FC|  ≥ 1 
and FDR < 0.05), including 696 down-regulated and 
580 up-regulated DELs in SM group compared to 
HC group (Fig.  3D, Table S2C). LOC112442644 and 
LOC107132935 were the most significant down- and 
up-regulated DEL, respectively (Fig. 3D). Furthermore, a 
total of 288 known miRNAs with at least 10 read counts 
in at least 50% of the samples per group were kept to rep-
resent the miRNA omics. We identified 57 differentially 
expressed miRNAs (DEMs), comprising 28 up-regulated 
and 29 down-regulated DEMs in SM cows compared to 
HC cows (Fig. 3E, Table S2D). The top 10 most signifi-
cant DEMs included 5 up-regulated DEMs (bta.miR.15b, 
bta-miR-1306, bta-miR-223, bta-miR-935 and bta-
miR-582) and 5 down-regulated DEMs (bta-miR-151-3p, 
bta-miR-143, bta-miR-149-3p, bta-miR-95, bta-miR-24), 
and the top 3 are all up-regulated, including bta-miR-
15b, bta-miR-1306, and bta-miR-223 (Fig. 3E).

The multi‑omics principal variance related to subclinical 
mastitis
The significant differential signatures from the four 
omics, including 4365 dMHBs overlapping with regula-
tory regions, 2552 DEGs, 1276 DELs and 57 DEMs were 
input data for MOFA2 for the principal variation analysis. 
Notably, MOFA2 was designed to cope with missing val-
ues, therefore all 30 samples were used (Fig. 4A). MOFA2 
identified 5 factors which explain at least 2% of the vari-
ance in at least one omics (Fig.  4B, Table S3A). Among 
them, Factors 1 and 2 captured most of the variance, sug-
gesting broad roles in the trait under investigation. Factor 
1 captured the variance that is present across DEG, DEM 
and DEL. Meanwhile, Factor 2 captured the co-variance 
between dMHB and DEM. On the contrary, Factor 3 was 
very active in a single omics capturing strong variance in 
DEL and to a lesser extent in DEG. Factor 4 captured a 
strong source of variance in DEG and weak variance in 3 
omics, and Factor 5 was slightly active and capture weak 

Fig. 3 The Genomic and epigenomic alterations in response to subclinical mastitis (SM). A Distribution of differential methylation haplotype blocks 
(dMHBs) in genomic regions. Hyper and hypo represents the hyper‑ and hypo‑methylation of dMHB in SM group compared to healthy control (HC) 
group. B Heat map of the top 40 most significant dMHBs showing the clear clustering of cows from SM and HC groups. C–E Volcano plots showing 
the differentially expressed genes, lncRNAs, and miRNAs. The number of up‑ and down‑regulated signatures are noted on the top right and left 
corners of corresponding plots
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Fig. 4 Multi‑Omics Factor Analysis (MOFA) of subclinical mastitis. A Overview of samples and data type. Data modalities are showed in different 
rows (D represents the number of signatures) and samples are displayed in columns where the missing samples were marked in grey color. B The 
proportion of total variance explained per factor per omics. C The cumulative proportion of total variance explained by each omics. D Factor values 
of Factors 1 and 2 colored by the health condition, including healthy control (HC), subclinical mastitis due to Staphylococcus aureus (SM‑SAP) 
and Staphylococcus chromogenes (SM‑SCP). E, G, I Feature weights of differentially expressed genes (DEGs) (E), lncRNAs (DELs) (G), and miRNAs 
(DEMs) (I) associated with Factor 1. F, H, J Heatmaps showing the expression values of the top 20 DEGs (F), top 10 DELs (H), and DEMs (J) with 
greatest absolute weights in Factor 1. K Feature weights of differential methylation haplotype blocks (dMHBs) associated with Factor 2. L The Factor 
2 values versus methylation level of dMHB chr29:32,080,542:32,080,599, which had largest absolute weight (negative). M Visualization/grouping 
of samples using Factors 1 and 2. The various shapes and colors represents samples according to group and pathogen
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variance in DEG, DEM and DEL. Cumulatively, the 5 fac-
tors explained about 80% variance in DEG (82.82%) and 
DEL (81.00%), 55.98% variance of dMHB and 66.55% var-
iance of DEM (Fig. 4C).

As showed in Fig. 4D, Factor 1 had positive factor val-
ues in HC group and negative factor values in most SM 
samples. This indicate that the signatures, including 
DEG, DEM and DEL, positively associated with Fac-
tor 1 (positive weight) had higher expression levels in 
HC group (down-regulated in SM group compared to 
HC group). While the signatures with negative weights 
had up-regulated expression in SM group compared 
to HC group. Based on the top weights, a large num-
ber of signatures were identified with association with 
Factor 1 (Fig.  4E–J, Table S3B–D). Notably, more up-
regulated DEGs (with negative weights) had greater 
absolute weights than the down-regulated DEGs (with 
positive weight), revealing the more important contribu-
tion (stronger association) of up-regulated DEGs to Fac-
tor 1. For example, amongst the most important DEGs 
with largest absolute weights, PAEP (progestagen-asso-
ciated endometrial protein), CSN2 (casein beta), LALBA 
(lactalbumin alpha), GLYCAM1 (glycosylation depend-
ent cell adhesion molecule 1), CSN1S2 (casein alpha-
S2), CSN1S1 (casein alpha-S1), and HSTN (histatherin) 
had down-regulated expression in SM group while 
THBD (thrombomodulin), LOC527744, and STEAP4 
(STEAP4 metalloreductase) had up-regulated expression 
(Fig.  4E, F). Interestingly, the most up-regulated DEGs 
such as CXCR1 (chemokine (C-X-C motif ) receptor 1), 
CXCR2 (C-X-C motif chemokine receptor 2), TGM3 
(transglutaminase 3), THBD and STEAP4, etc., have 
immune-related functions (Fig.  4F). Similarly, most of 
the important DELs with greater absolute weights were 
negatively associated with Factor 1 (negative weight) and 
up-regulated in SM group compared to HC group, such 
as LOC104976076, LOC112441114, and LOC104971364, 
etc. (Fig.  4G). Only one lncRNA (LOC112447094) in 
the top 10 most important DEL had higher expression 
level in HC group (Fig.  4H). However, more DEMs had 
greater weights and were down-regulated in SM groups 
(Fig.  4I  and J). For instance, bta-miRNA-30-5p had the 
greatest absolute weight, suggesting the strongest asso-
ciation with Factor 1, but was significantly down-reg-
ulated in SM groups  (log2FC = −1.86). Besides, a high 
portion of variance in dMHB was captured by Factor 2 
which had positive factor value in most SM cows and 
negative factor value in most HC cows (Fig.  4D). The 
majority of dMHBs with strong association with Factor 2 
(|weight|  > 0.5) were hypo-methylated (negative weight) 
in SM group compared to HC group (Fig. 4K). For exam-
ple, the most important dMHB with largest absolute 
weight was chr29:32,080,542:32,080,599, which was 

nearly fully methylated in HC group but barely meth-
ylated in SM group (Fig.  4L). As shown in Fig.  4B and 
Fig. 4D–L, both Factors 1 and 2 are associated with the 
difference in the mammary gland health condition (SM 
or HC), which captures the significant variance of multi-
omics signatures. Interestingly and importantly, the 
combination of Factors 1 and 2 classified the cows into 
subgroups depending on the molecular profile of the four 
input omics, which was capable to separating SM cows 
from HC cows (Fig. 4 M).

In addition to identifying associated signatures per fac-
tor by individual weights discussed above, we also inves-
tigated the possible roles of Factors 1 and 2 by using gene 
set enrichment analysis (Fig. 5A, Table S4A–D). The DEGs 
with negative weights (up-regulated expression) in Factor 
1 were enriched in 264 BP-GO terms and 52 KEGG path-
ways, which are mostly related to immune functions and 
disease (Table S4A). For instance, the most significant gene 
sets are “regulation of defense response”, “cytokine medi-
ated signaling pathway”, “regulation of response to biotic 
stimulus”, “response to bacterium”, “leukocyte migration” 
and others (Fig.  5B  and C). Meanwhile, the DEGs with 
positive weight representing down-regulated expression 
in SM group were enriched in less gene sets, including 96 
BP-GO and 5 KEGG pathways, which are mostly related 
to metabolic processes and cell morphology (Fig.  5D). 
Similarly, the DEL with negative and positive weights in 
Factor 1 were significantly enriched in gene sets related 
to immune functions and morphogenesis/biosynthesis 
processes, respectively (Fig.  5E and F, Table S4B). This is 
consistent with the up-regulated activities of immune 
related gene sets and down-regulated activities of gene 
sets related to cellular activities and metabolic processes 
detected by MOGSA, revealing the detailed involvement 
of genomic and epigenomic signatures in the mammary 
gland responses to subclinical mastitis.

Moreover, the dMHBs negatively correlated with Fac-
tor 2 (hypo-methylated) were significantly enriched in 
gene sets, predominant of which were related to immune 
functions, such as “cell activation”, “lymphocyte activa-
tion”, “regulation of cell activation”, “leukocyte differentia-
tion”, and others (Fig.  5G–H, Table S4C). Most of these 
gene sets were also enriched for by up-regulated DEGs 
and DELs in Factor 1. Meanwhile, the dMHBs positively 
associated with Factor 2 (hyper-methylated) were sig-
nificantly enriched in gene sets which are important for 
developmental processes, such as “gland morphogenesis”, 
“salivary gland development” and “exocrine system devel-
opment” and others (Fig. 5I).

Intriguingly, we observed the involvement of multi-
omics signatures associated with Factors 1 and 2. For 
instance, the involvement of upregulated DEGs and DELs 
negatively correlated with Factor 1 and hypo-methylated 
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dMHBs negatively correlated with Factor 2 were found 
in 78 gene sets, including 72 GO terms and 6 KEGG 
pathways, most of which were related to immune func-
tions (Table S4E). Moreover, the significant altered activi-
ties of 64 out of these 78 gene sets (60 GO terms and 4 
KEGG pathways) were also detected by MOGSA, further 

suggesting the integration of multi-omics signatures in 
the regulation of important biological processes dur-
ing subclinical mastitis. For example, Fig.  6 showed the 
multi-omics signatures involved in the KEGG pathway 
“Natural killer cell mediated cytotoxicity”. In addition to 
DEGs, dMHBs, DELs and DEMs possibly regulating the 

Fig. 5 Gene sets enriched for by Factors 1 and 2. A Number of enriched gene sets, including KEGG pathways and biological process GO terms, 
per omics of Factors 1 and 2. “+” and “‑” mean the signatures with positive (+) and negative (−) weights in corresponding factors. B, D–G, I The 
top 10 most significant gene sets enriched for by DEGs with negative (B) and positive weights (D) in Factor 1, DELs with negative (E) and positive 
weights (F) in Factor 1, and dMHBs with negative (G) and positive weights (I) in Factor 2. The KEGG pathways are marked in italic with blue 
color, while the GO terms are in regular font and black color. C and H Details of top 5 significant gene sets enriched for by DEGs with negative 
weights in Factor 1 (C) and dMHBs with negative weights in Factor 2 (H) where n and P represent the number of involved signatures and P value 
of the corresponding gene set. GO: Gene Ontology; DEG: Differentially expressed gene; DEL: Differentially expressed lncRNA; DEM: Differentially 
expressed miRNA; dMHB: Differential methylation haplotype block
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corresponding DEGs, were demonstrated, suggesting 
that the DNA methylation and non-coding RNAs may 
serve as the regulatory mechanisms governing the gene 
expression alterations, thereby affecting the activities 
of natural killer cell mediated cytotoxicity during sub-
clinical mastitis. Amongst them, the up-regulated CD48 
harbored 2 hypo-methylated dMHBs (chr3:8,902,020–
8,902,136 and chr3:8,916,776:8,916,809) at its regula-
tory region and is targeted by 3 down-regulated DEMs 
(bta-miR-3431, bta-miR-2285t, and bta-miR-455-3p), 
which is consistent with the classic repressive effects of 
DNA methylation and miRNAs on the expression of cor-
responding gene. Similarly, the up-regulated FCGR3A 
and IFNG (interferon gamma) were targeted by down-
regulated DEMs (bta-miR-320a and bta-miR-3431 target 

FCGR3A and bta-miR-143 targets IFNG, and up-regu-
lated FCER1G (Fc epsilon receptor Ig) harbored hypo-
methylated chr3:8,289,091:8,289,130 at its first exon. 
Besides, we also found the hyper-methylated dMHBs and 
up-regulated DELs associated with the corresponding 
DEGs, such as the presence of hyper-methylated dMHBs 
at the regulatory region of up-regulated PYK2 (protein 
tyrosine kinase 2 beta) and multiple up-regulated DELs 
target up-regulated FAS (Fas cell surface death receptor). 
This suggests other possible effects of DNA methylation 
and lncRNAs on the gene expression which deserves fur-
ther investigation.

Furthermore, the involvement of multi-omics sig-
natures has also been observed in the “Staphylococ-
cus aureus infection” (Fig.  7), a crucial pathway for 

Fig. 6 Network of multi‑omics signatures involved in “natural killer cell mediated cytotoxicity” pathway during subclinical mastitis.  Log2FC 
 (Log2 Fold Change) is the mRNA expression level changes of corresponding genes (shown in square box) in subclinical mastitis group 
compared to healthy control group. Hyper(hypo)‑dMHB: hyper‑/hypo‑methylated differential methylation haplotype blocks; up(down)‑DEM: 
up‑/down‑regulated differentially expressed miRNA; up(down)‑DEL: up‑/down‑regulated differentially expressed lncRNA. The comparison 
of multi‑omics signatures between groups were processed by comparing subclinical mastitis group to healthy control group
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subclinical mastitis. This pathway was significantly 
enriched by up-regulated DEGs negatively associated 
with Factor 1, where dMHBs, DELs, and DEMs are also 
involved in. Notably, the up-regulated IL10 (interleu-
kin 10), an important gene for inflammation harbored a 
hypo-methylated dMHB (chr16:4,555,707:4,555,760) at 

its promoter region. IL10 was also found to be predicta-
bly targeted by an up-regulated DEL (LOC104974370), an 
up-regulated DEM (bta-miR-6119-5p) and a down-regu-
lated DEM (bta-miR-378). This provided possible post-
transcriptional mechanisms governing the expression 
alteration of IL10 during subclinical mastitis. Similarly, 

Fig. 7 Network of multi‑omics signatures involved in “Staphylococcus aureus infection” pathway during subclinical mastitis.  Log2FC  (Log2 Fold 
Change) is the mRNA expression level changes of corresponding genes (shown in square box) in subclinical mastitis group compared to healthy 
control group. Hyper(hypo)‑dMHB: hyper‑/hypo‑methylated differential methylation haplotype blocks, up(down)‑DEM: up‑/down‑regulated 
differentially expressed miRNA, up(down)‑DEL: up‑/down‑regulated differentially expressed lncRNA. The comparison of multi‑omics signatures 
between groups were processed by comparing subclinical mastitis group to healthy control group
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a hypo-methylated dMHB (chr18:54,314,202:54,314,226) 
was found in the first intron of C5αR1 (complement C5α 
receptor 1), which play roles in the inhibition of chemo-
taxis and phagocyte activation. Besides, 3 up-regulated 
DELs, including LOC10906460, LOC104971388 and 
LOC112443724, were observed to target the up-reg-
ulated DF. Although significant differences where not 
found in the expression levels of ITGAL (integrin subu-
nit alpha L) and ITGB2 (integrin subunit beta 2) between 
SM and HC groups, many dMHBs were found in their 
regulatory regions, which may play roles in regulating the 
host response to subclinical mastitis in other ways. The 
identified multi-omics signatures could provide a more 
comprehensive view of the S. aureus infection processes 
of the mammary gland, which may contribute to the 
development of related control strategies.

In summary, the up-regulated DEG, DEL and DEM 
associated with Factor 1 and the hypo-methylated dMHB 

associated with Factor 2 were crucial for the immune 
functional processes, while the down-regulated DEG, 
DEL and DEM and hyper-methylated dMHBs were more 
involved in the metabolic and developmental processes. 
This is consistent with the known repressive effects of 
DNA methylation on transcriptional activities. This also 
suggests that the multi-omics signatures associated with 
Factors 1 and 2 may provide a better network for under-
standing the regulatory mechanisms underlying subclini-
cal mastitis.

Discriminant signatures across omics for subclinical 
mastitis
We also used DIABLO method to integrate the four 
omics and investigate their relationship with the mam-
mary gland health condition (SM or HC), and to con-
sequently identify a short list of multi-omics candidate 
discriminant signatures for subclinical mastitis. The 

Fig. 8 Identification of candidate discriminant signatures. A Diagnostic plot reveals that the first component from all omics datasets were highly 
correlated. B Circos plot of identified discriminant signatures per omics. The plot represents the correlations greater than 0.7 between signatures 
of different omics. The color of internal connecting lines shows the positive (orange) and negative (green) correlations. The outer lines represent 
the expression levels of corresponding signatures in SM and HC groups, with the outer line representing a higher expression in the corresponding 
group. C Clustered heat map for all identified candidate discriminant signatures. D–G The loading weight of identified signatures from the omics 
datasets of dMHB (D), DEG (E), DEM (F), and DEL (G). The most important discriminant signatures with highest absolute loading weights are ordered 
from bottom to top. The color of the bar indicates the group for which the median expression value is the highest for corresponding signatures. 
SM: Subclinical mastitis, HC: Healthy control, DEG: Differentially expressed gene, DEL: Differentially expressed lncRNA, DEM: Differentially expressed 
miRNA, dMHB: Differential methylation haplotype block
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differential multi-omics signatures, including 4365 
dMHBs overlapping with regulatory regions, 2552 DEGs, 
1276 DELs and 57 DMEs were loaded into DIABLO, and 
only the 24 samples with all four omics data were used. 
As shown in Fig.  8A, the strong correlation structure 
between the four omics data sets were extracted on the 
first components (r ≥ 0.89), and the SM and HC cows 
were clustered separately for each omics indicating the 
discriminative power of these components. A total of 
14 dMHBs, 25 DEGs, 18 DELs and 5 DEMs were identi-
fied as the candidate discriminant signatures from each 
omics (Fig.  8B). The majority of the multi-omics candi-
date discriminant signatures were significantly strongly 
correlated with each other (Fig. 8B). We observed strong 
negative correlations (r < −0.7) between 6 hyper-meth-
ylated dMHBs with most of the other signatures, while 
the majority of strong positive correlations (r > 0.7) were 
observed between the other signatures (Fig.  8B). The 
average expression levels of identified discriminant signa-
tures were significantly different, indicating they are able 
to discriminate the SM and HC groups (Fig. 8B and C).

Among the candidate discriminant dMHB signa-
tures, 6 were hyper-methylated and 8 were hypo-meth-
ylated in SM group compared to HC group (Fig.  8D). 
The most important is chr3:19,656,072:19,656,166 
(loading weight = 0.46) which overlapped with the first 
intron of TNFAIP8L2 (TNF alpha induced protein 8 like 
2), followed by chr23:19,239,903:19,239,949 (loading 
weight = 0.38) and chr3:117,128,685:117,128,768 (loading 
weight = 0.33), which overlapped with the first introns of 
CLIC5 (chloride intracellular channel 5) and LRRFIP1 
(LRR binding FLII interacting protein 1), respectively. 
The dMHB chr3:117,128,685:117,128,768 is also one of 
the top 10 dMHBs strongly negatively associated with 
Factor 2. The signature chr3:8,902,020:8,902,136 over-
lapped with the promoter and first exon of CD48 (CD48 
molecule) harboring the transcription start site. The 
other dMHB signatures were all overlapped with the 
first intron of corresponding genes (Table S5). All DEG, 
DEL and DEM signatures were down-regulated in SM 
group compared to HC group (Fig.  8E–G). TMEM53 
(transmembrane protein 53), bta-miR-151-3p and 
LOC107133302 with loading weights 0.51, 0.87 and 0.48, 
respectively are the most important discriminant signa-
tures from the omics of DEG, DEM and DEL (Fig. 8E–G). 
Notably, the DEGs ACOT4 (acyl-CoA thioesterase 4) and 
HDDC3 (HD domain containing 3) were also identified 
as discriminant signatures for S. aureus subclinical mas-
titis in our previous study [15]. The third most impor-
tant DEM signature, bta-miR-99a-5p, also associated 
strongly and positively with Factor 1 (weight = 0.71), fur-
ther revealing its importance in representing the varia-
tion of miRNAs during subclinical mastitis. Although the 

identified DEG, DEL and DEM signatures were strongly 
correlated, unfortunately, no target relationship was 
observed amongst them.

Discussion
A plethora of studies have contributed to the exploration 
of the genetic architecture underlying bovine mastitis 
[12, 47–50], however, much of the intricate mechanisms 
still remain unexplained. One possible reason is that 
most previous studies considered single data types, such 
as RNA transcripts [48, 49], DNA sequence variants 
[51, 52], non-coding RNA transcripts [53, 54], and DNA 
methylation [18, 55]. These single-data based studies 
provide limited insights and assembled only fragmented 
pieces of the puzzle; which does not consider the inter-
connectedness and synergistic effects that arise from the 
integration of multiple data layers. Recently, multi-omics 
approaches that integrate and analyze diverse genomic 
data sets simultaneously have been identified as impera-
tive to fully unravel the complexities of the molecular 
mechanisms of disease conditions and the discovery of 
reliable biomarkers [56–58]. Hence, this study employed 
different multi-omics approaches to integrate four omics 
data sets, including the DNA methylation profile and 
the transcriptomes of mRNA, lncRNA and miRNA, to 
deepen our understanding of the molecular architecture 
of subclinical mastitis. To our best knowledge, this study 
is the first to integrate more than 3 omics data sets to 
unravel the genomic and epigenomic basis of mastitis. 
We provide deeper insights into the multi-level signa-
tures simultaneously involved in the regulation of mam-
mary gland response to subclinical mastitis. Our data 
is consistent with previous studies about bovine mas-
titis that focused on the integration of two omics data 
sets [26–28, 30–32, 50] and at the same time provided 
deeper insights into the molecular signatures of subclini-
cal mastitis.

This study identified the altered activities of biologi-
cal processes and pathways with the involvement of DNA 
methylation signatures, genes, lncRNAs and miRNAs, 
during subclinical mastitis. These multi-omics signatures 
served as reference for the construction of comprehensive 
regulatory networks of the crucial biological processes 
required for mammary gland defense against subclinical 
mastitis. For example, the “Staphylococcus aureus infec-
tion” pathway has been identified through many single-
omics studies as a pathway of interest for subclinical 
mastitis caused by S. aureus [15, 59]. The integration of epi-
genomic signatures (dMHBs, DELs and DEMs) with DEGs 
involved in this pathway were revealed in this study, which 
could provide more information to better understand the 
underlying regulatory mechanisms (Fig.  7). For instance, 
the hypo-methylated dMHB chr18:54,314,202:54,314,226 
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is found at the regulatory region of the upregulated C5αR1, 
which plays important roles in the inhibition of chemot-
axis and phagocyte activation. Moreover, a hypo-methyl-
ated dMHB chr16:4,555,707:4,555,760 overlapped with 
the promoter of up-regulated IL10, which is involved in 
the secretion of cytokine and synthesis of interferon in 
the inflammation process. The demethylation at regula-
tory regions has previously been identified as an important 
regulatory mechanism of the activation of corresponding 
genes [60–62]. Therefore, the hypo-methylation detected 
at the regulatory region of these genes (C5αR1 and IL10) 
may serve as a possible regulatory mechanism of their 
activation and thereby the corresponding immune pro-
cesses. Besides, IL10 was also potentially targeted by 3 
differentially expressed non-coding RNAs, including the 
down-regulated bta-miR-378 and the up-regulated bta-
miR-6119p and LOC104974370 (lncRNA) which may 
post-transcriptionally modulate the expression of IL10 
during subclinical mastitis. Notably, the altered expression 
of IL10 has been associated with subclinical mastitis in 
previous studies [19, 63, 64], highlighting its crucial role in 
regulating mammary gland inflammation. Therefore, the 
epigenetic signatures associated with IL10 may represent 
the molecular mechanisms regulating its altered expres-
sion in response to subclinical mastitis.

Unlike clinical mastitis, where the immune response 
triggers a visible inflammatory reaction, subclinical 
mastitis elicits a more subdued and prolonged immune 
response. The immune system upon recognizing the 
presence of the pathogen triggers the innate immune 
response by recruiting immune-related cells, particularly 
macrophages and neutrophils, into the mammary gland 
[65, 66]. Consistent with this immune response, many 
GO terms and KEGG pathways related to leukocyte 
activities, such as “Leukocyte cell cell adhesion”, “Neu-
trophil migration”, “Myeloid leukocyte migration”, “Leu-
kocyte mediated immunity” and others (Table S1), were 
detected with a higher overall active level in subclini-
cal mastitis group compared to healthy control group. 
However, due to the subdued immune response of the 
mammary gland and the development of biofilm which 
provides protection from host immune responses, patho-
genic bacteria (e.g., S. aureus) are capable of multiplying 
and colonizing mammary gland tissue leading to long-
term infection with no visible symptoms but elevated 
somatic cell count in milk [67, 68]. Also, when the innate 
immune response fails to eradicate the invading patho-
gens, the adaptive immune responses, such as antigen 
presentation, T cell and B cell activation, and antibody 
secretion, are activated for further defense of pathogen 
invasion [69]. Consistent with this, we found that the 
alterations of multi-omics signatures related to subclini-
cal mastitis were enriched in these processes, such as “T 

cell activation”, “Regulation of T cell activation”, “Adap-
tive immune response” and “B cell differentiation” among 
others (Table S4). It is worth noting that the multi-omics 
signatures showed concordant contributions to the up-
regulation of most immune-related processes and path-
ways in subclinical mastitis group (Fig. 5). This suggests 
that the hypo-methylation and enhanced DELs may 
mediate the up-regulated expression of DEGs thereby 
contribute to regulate the immune response to subclini-
cal mastitis. The association of epigenetic signatures to 
these important processes in this study provides a more 
holistic view of their regulatory networks. For instance, 
hypo-methylated dMHBs (chr3:8,902,020:8,902,136 and 
chr3:8,916,776:8,916,809) and the down-regulated DEMs 
(bta-miR-3431, bta-miR-2285t, and bta-miR-455-3p) 
may mediate the up-regulated expression of CD48 which 
is involved in the communication between target cells 
and natural killer cell in the “natural killer cell mediated 
cytotoxicity” pathway (Fig. 6). Moreover, down-regulated 
bta-miR-143 and bta-miR-205 potentially played roles in 
the up-regulated expressions of INFG and FAS, respec-
tively, which are involved in the cytokine-cytokine recep-
tor interaction pathway. Consistent with our results, 
the altered expression of bta-miR-143 and bta-miR-025 
have been previously associated with bovine mastitis 
[54, 70], further suggesting their regulatory roles in sub-
clinical mastitis. Besides, the abundant hyper-methylated 
dMHBs at the regulatory region of PYK2 and multiple 
DELs targeting FAS could potentially open new avenues 
for investigating the underlying regulatory mechanisms 
governing the abnormal expression of these genes and 
thereby the active level of the “natural killer cell mediated 
cytotoxicity” pathway during subclinical mastitis. In a 
similar manner, we believe that the involvement of multi-
omics signatures could provide valuable information to 
enhance our understanding of regulatory mechanisms 
underlying the important biological processes and path-
ways required for the mammary gland defense against 
subclinical mastitis.

Furthermore, mammary epithelial cells play a role in 
defending against invading pathogens causing subclinical 
mastitis by producing antimicrobial peptides and shed-
ding off infected cells [69, 71]. Consistently, we found 
that the biological processes related to epithelium devel-
opment, such as “positive regulation of mammary gland 
epithelial cell proliferation”, “epithelial cell maturation”, 
“mammary gland epithelium development” and “epi-
thelial structure maintenance” among others (Table S1) 
showed general higher activity in subclinical mastitis 
group according to all multi-omics signatures, which may 
contribute to the epithelial defense against the invasion 
of S. aureus and S. chromogenes. Nevertheless, we also 
observed the significant involvement of down-regulated 
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DEGs and DELs which negatively associated with Factor 
1 and hyper-methylated dMHBs which negatively asso-
ciated with Factor 2 in processes related to epithelium 
development, which may explain the impaired mammary 
gland homeostasis and functions during the long-term 
course of subclinical mastitis.

Consistently, the overall lower active level of some 
metabolic processes, such as “fatty acid catabolic pro-
cess”, “fatty acid derivative metabolic process” and “long 
chain fatty acid transport”, etc. (Table S1), were observed 
in cows with subclinical mastitis compared to healthy 
cows. This disparity in metabolic activity underscores 
the metabolic alterations that occur in cows experienc-
ing subclinical mastitis. Moreover, some of the meta-
bolic processes related to milk synthesis, such as “fatty 
acid metabolic process”, “lipid oxidation”, “fatty acid bio-
synthetic process” were also found to be significantly 
enriched by down-regulated DEGs that were positively 
associated with Factor 1 (Table S4A). This intrigu-
ing finding suggests a potential interplay between sup-
pressed gene expression and the modulation of these 
critical pathways, possibly influencing the reduced milk 
production observed in cows with subclinical mastitis. 
Adding a nuanced perspective to this scenario, the nega-
tive regulation of certain metabolic processes has been 
found to exhibit relatively higher activity levels in cows 
with subclinical mastitis, as highlighted by processes like 
“negative regulation of lipid metabolic process”, “negative 
regulation of calcium ion transport”, and “negative regu-
lation of fat cell differentiation” (Table S1). These elevated 
negative regulatory processes could indicate a concerted 
effort by the cow’s system to counterbalance the meta-
bolic disruptions brought about by the subclinical mas-
titis condition. Collectively, these observations unveil 
potential underlying regulatory mechanisms responsi-
ble for the compromised milk production performance 
in cows with subclinical mastitis. The evident altered 
active level of key metabolic pathways associated with 
milk synthesis, suggests a complex interplay of molecu-
lar events that contribute to the reduced milk production 
observed in subclinical mastitic cows. By elucidating the 
involvement of multi-omics signatures in these regula-
tory dynamics, we may gain a deeper understanding of 
the genetic and epigenetic basis behind the milk produc-
tion decline in cows affected by subclinical mastitis, pav-
ing the way for targeted interventions and management 
strategies to mitigate these effects and enhance overall 
dairy productivity.

Moreover, we report a high number of multi-omics 
signatures with significant alterations associated with 
subclinical mastitis, a small subset of which are identi-
fied as candidate discriminant signatures of subclinical 
mastitis. The discriminant signatures described the most 

variation between subclinical mastitis group and healthy 
control group and have the potential to be used as bio-
markers for improving mastitis control strategies. This 
study identified 5 Factors driving the principal variance 
from one or more omics related to subclinical mastitis. 
Interestingly, the significant signatures associated with 
Factors 1 and 2 are involved in biological processes and 
pathways related to the mammary gland response to 
subclinical mastitis, highlighting the regulatory roles of 
Factors 1 and 2. For instance, we observed the signifi-
cant involvement of the up-regulated DEGs and DELs 
negatively correlated with Factor 1 and hypo-methyl-
ated dMHBs negatively associated with Factor 2 in the 
immune-related processes. In addition, the combination 
of Factors 1 and 2 clustered the cows into subgroups 
consistent with their mammary gland health condition 
(subclinical mastitis or healthy) (Fig. 5M). This indicates 
that the combination of Factors 1 and 2 has the poten-
tial to predict if the cows have subclinical mastitis, and 
could be used to improve the genomic selection program 
to further improve dairy cows’ resistance to mastitis. The 
discriminant signatures—14 dMHBs, 25 DEGs, 18 DELs 
and 5 DEMs—are highly correlated and able to distin-
guish healthy cows from sick cows with subclinical mas-
titis (Fig.  8). Amongst the identified dMHB signatures, 
the hypo-methylated dMHB chr3:8,902,020:8,902,136 
harbored the TSS of up-regulated CD48, whose up-regu-
lated expression has also been detected in E. coli infected 
mammary gland tissue [72]. The CD48 is an important 
number of the signaling lymphocyte activation molecule 
family and participates in the adhesion and activation of 
immune-related cells [73] involved in communications 
between target cells and natural killer cells in the “natural 
killer cell mediated cytotoxicity” pathway. DNA methyla-
tion near TSS has been revealed to block the expression 
of corresponding genes [60], therefore, the hypomethyla-
tion of chr3:8,902,020:8,902,136 may activate the expres-
sion of CD48 during subclinical mastitis. Other identified 
dMHBs candidates which overlapped with the first intron 
of genes (TNFAIP8L2, CLIC5, LRRFIP1, TMEM229B 
(transmembrane protein 229B), PPP1R12A (protein 
phosphatase 1 regulatory subunit 12A), IDH2 (isoci-
trate dehydrogenase (NADP(+)) 2), CORO7 (coronin 7), 
USP47 (ubiquitin specific peptidase 47), PSAP (prosapo-
sin), KCTD1 (potassium channel tetramerization domain 
containing 1), FNBP1 (formin binding protein 1), RBMS1 
(RNA binding motif single stranded interacting protein 
1), and EHF (ETS homologous factor)), are being asso-
ciated with bovine mastitis for the first time. Three dis-
criminant DEG candidates, including TMEM53, ACOT4 
and HDDC3, have also been identified as discriminant 
signatures for S. aureus subclinical mastitis [15, 34]. Con-
sistent with our finding, ACOT4 has also been identified 
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as a significant gene for chronic subclinical mastitis in 
Norwegian Red cattle [74]. The up-regulated expression 
of TMEM53 has been identified in the blood of goats 
with a potential role in small ruminant lentiviruses infec-
tion [75]. The involvement of these DEGs in subclinical 
mastitis or other infectious diseases suggests their possi-
ble roles in immune responses and highlights their poten-
tial as biomarkers for subclinical mastitis which deserves 
further investigation. Among the 5 DEM discriminant 
candidates, bta-miR-99a-5p and bta-miR-499 have been 
associated with S. aureus mammary infection [76, 77], 
revealing their roles in subclinical mastitis. To the best of 
our knowledge, the discriminant signatures identified in 
our study are being associated to bovine mastitis for the 
first time. However, through our comprehensive multi-
omics integration, we have highlighted their potential 
utility as biomarkers for enhancing mastitis control strat-
egies. These findings warrant further investigation and 
validation to ascertain their clinical relevance and appli-
cability in improving dairy cow health and management 
practices.

Furthermore, we acknowledge the limitations of our 
study and propose potential solutions and further study 
directions to address these limitations. The limited sam-
ple size for certain omics data poses a constraint, poten-
tially impacting statistical power and generalizability. 
For instance, miRNA profiles were only available for 5 
out of the 10 healthy control samples, while other omics 
datasets included 10 samples for the healthy group. To 
strengthen the robustness and reproducibility of our find-
ings, our next step is to replicate the study with a larger 
cohort of cows, incorporating more healthy control cows. 
By expanding the sample size, we can enhance the reli-
ability and validity of our observations. In addition, while 
we successfully integrated RNA sequencing data, small 
RNA sequencing data, and DNA methylation sequencing 
data from milk somatic cells, the absence of other crucial 
omics datasets, such as DNA sequence (genome), pro-
teome, metabolome, and microbiome data, limits a com-
prehensive understanding of subclinical mastitis. To fully 
unravel the complexities of the disease, future studies 
that include these additional omics datasets will be indis-
pensable. Furthermore, we recognize the significance of 
functional studies and validation experiments to bridge 
the gap between our observational findings and the 
mechanistic aspects of the immune response to subclini-
cal mastitis. Despite these challenges, our investigation 
offers valuable insights into the genomic and epigenomic 
signatures of subclinical mastitis in milk somatic cells. 
Thus, more extensive studies and functional analyses, are 
necessary to contribute to a better understanding of the 
regulatory mechanisms underlying subclinical mastitis 
and its potential application in dairy cattle management. 

Our study therefore lays a foundation for future research 
on the genomic and epigenomic aspects of subclini-
cal mastitis, emphasizing the importance of addressing 
the limitations and pursuing further investigations to 
advance our understanding of this important dairy cow 
disease.

In summary, this study provided a more comprehen-
sive view of the regulatory network underlying bovine 
subclinical mastitis by using multi-omics approaches. 
Firstly, the important biological processes and functional 
pathways with the involvement of multi-omics signa-
tures (genes, lncRNA, miRNAs and DNA methylation) 
were identified, providing biological insights of subclini-
cal mastitis pathogenesis. Secondly, abundant multi-
omics altered signatures (30,846 dMHBs, 2552 DEGs, 
1276 DELs and 57 DEMs) were associated to subclinical 
mastitis. Thirdly, 5 Factors driving the principal variance 
in multi-omics signatures related to subclinical mastitis 
were revealed, and in particular, the important roles of 
Factors 1 and 2 in the regulation of immune defense and 
impaired mammary gland functions during subclinical 
mastitis were highlighted. The network of multi-omics 
signatures were also demonstrated for some important 
biological processes and pathways to present a relatively 
more comprehensive view of the regulatory mechanisms 
underlying subclinical mastitis. Fourthly, few highly cor-
related candidate discriminant signatures (14 dMHBs, 
25 DEGs, 18 DELs and 5 DEMs) were identified for 
subclinical mastitis, having the potential to be further 
developed as biomarkers for mastitis control strategies. 
Hence, the multi-omics integration offered a comprehen-
sive and integrated view of the genomic and epigenomic 
basis of subclinical mastitis thereby facilitating a deeper 
understanding of mastitis and identifying candidate 
biomarkers.

Conclusion
In conclusion, this study employed a multi-omics 
approach to unveil the intricate regulatory networks 
underlying bovine subclinical mastitis. By identify-
ing key biological processes and functional pathways 
through integration of four omics signatures (genes, 
lncRNA, miRNAs, and DNA methylation), we gained 
valuable insights into the pathogenesis of subclini-
cal mastitis. The extensive array of altered signatures 
associated with subclinical mastitis, spanning dMHBs, 
DEGs, DELs, and DEMs, further underscored the com-
plexity of the condition. Our findings highlighted 5 
principal factors steering the variance in multi-omics 
signatures linked to subclinical mastitis, with a par-
ticular emphasis on Factors 1 and 2 regulating immune 
defense and impaired mammary gland functions. The 
comprehensive network of multi-omics signatures 
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presented a holistic view of the regulatory mechanisms 
governing subclinical mastitis. Moreover, the identifi-
cation of a select few highly correlated candidate dis-
criminant signatures holds promise for their potential 
development into biomarkers for mastitis control strat-
egies. Through the integration of multi-omics data, this 
study provides a deeper understanding of the genomic 
and epigenomic basis of subclinical mastitis, paving the 
way for future research and the identification of tar-
geted interventions in mastitis management.
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