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Abstract 

At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess 
the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare out-
comes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare 
can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes 
and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. 
In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological 
markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can 
be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological mark-
ers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful 
to assess the experience of an animal in real-life.
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Introduction
The welfare of animals has been a concern to some seg-
ments of society for centuries [1, 2]. In Western societies, 
debate about animal welfare moved toward center stage 
from the middle of the last century and has continued 
to do so, while the issue became globally widespread in 
the 2000’s [3]. During these decades of debate, a recur-
rent premise has been that non-human animals (here-
after “animals”) experience the events in their life in a 
similar way to humans, and therefore people should treat 
animals with care and have respect for their welfare [1]. 
Along with the growing societal demand for better wel-
fare for animals, a scientific approach to better under-
stand and assess animal welfare has emerged. Progress 
in animal welfare science has laid the foundation for sev-
eral frameworks that can be used to assess the welfare 
of animals that are under human care [1]. The nature of 
the experience that an animal has is central in all of these 
frameworks with diverse levels of importance [4]. Several 
behavioural and physiological indicators have been devel-
oped that are informative in the assessment of welfare 
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[4]. For example, motor activity and body posture, cor-
tisol, and heart rate can change in animals in response 
to a life event. Animal biologists have shown that these 
behavioural and physiological changes are controlled via 
modulation of the autonomic nervous system and the 
hypothalamic–pituitary–adrenal (HPA) axis [4]. While 
they are useful to assess the response of an animal to an 
experience, these indicators provide little information on 
the experiential process itself. In this review, we propose 
several biomarkers that may better reflect the experience 
of an animal during its lifetime. While most of the bio-
markers that we identify are suitable primarily for mam-
mals, further research may support their utility in other 
taxa. First, we briefly illustrate the use and limitations of 
existing indicators to assess animal experience. We then 
discuss several proposed biomarkers from the human 
biomedical sciences by outlining their relevance and their 
limitations to assess animal experience. After reflecting 
on the inherent difficulties of the validation of biomark-
ers of experience in animals, we offer some strategies to 
circumvent these difficulties. In conclusion, we describe 
the necessary features that a meaningful biomarker, or 
system of biomarkers, would require to estimate the 
experiential state of an animal.

Where are we now?
At present, animal-based indicators can be divided into 
behavioural, physiological, and neurobiological indi-
cators. They all provide valuable information on the 
mental state of an animal. The next section reviews 
biomarkers that are used currently and stresses how 
closely they are related to the experiential state. We 
deliberately focus mainly on the limitations that have 
been identified for each biomarker to demonstrate 
the potential gaps that new biomarkers could fill. The 
reader is encouraged to consult the cited references to 
appreciate the extent and the usefulness of the previous 
60  years of work in this field in assessing animal wel-
fare. We could not possibly cover that entire history in 
the present review.

Behavioural indicators
Behavioural observation and several behavioural tests 
have been used extensively in the assessment of animal 
welfare [4]. Behavioural indicators are non-invasive, 
can be used on individual animals within groups, and 
are adaptable to many settings. Despite their practical-
ity, the major limitations of behavioural indicators in 
the assessment of animal welfare are that they are either 
non-specific or too species-specific, affected by indi-
vidual differences, and can be influenced by past and 
learned experiences (Table  1). Behaviours can be used 
as indicators of the experiential state of an animal on the 

assumption that certain behaviours are more likely to 
occur when an animal is in a positive or negative mental 
state [5]. However, behavioural changes are often indica-
tive only of an extreme welfare state and mainly associ-
ated with a negative welfare state [6, 7]. Importantly, the 
behavioural indicators that are associated with a positive 
welfare are not very discriminative because they are usu-
ally essential behaviours, such as feeding and maternal 
behaviours [8, 9]. While behaviour can provide valuable 
information on how an animal is responding and coping 
in its environment, it does not necessarily provide insight 
into the experiential state of an animal.

Physiological indicators
Physiological indicators of animal welfare (Table  2) 
have focused on the assessment of biological function-
ing rather than the experiential state of an animal [48–
50]. The interpretation of any change in a physiological 
marker can be challenging because most physiological 
indicators respond to both positive and negative stimuli 
[51]. Variation in the method of measurement of a physi-
ological response can hinder interpretation when sam-
ples derive from different sources, such as blood, saliva, 
hair, or feces [52]. The concentration of a hormone in 
different types of samples are not always correlated due 
to differences in time between synthesis, secretion, trans-
port, metabolism, and action [48–50]. Moreover, it is 
difficult to establish the point where a physiological indi-
cator reflects an adaptive response to a life event from the 
point where it reflects that an animal is no longer coping 
with that life event. Importantly, physiological indicators 
can reflect negative or neutral welfare states, but rarely a 
positive welfare state, which is a major limitation when 
trying to understand the full spectrum of experiential 
states of an animal.

Neurobiological indicators
There have been several attempts to develop neurobio-
logical indicators to assess animal welfare. Measuring the 
activity of systems of neural circuity and neurochemical 
reactions could offer a unique insight into the processes 
that are occurring in the brain of an animal [86–88]. As 
with behavioural and physiological indicators, neurobio-
logical indicators have targeted mostly the negative expe-
riential state, such as pain, fear, and stress, and to a lesser 
extent the circuits that are known to be associated with 
positive experience, such as anticipation and reward [29]. 
The activity of the neural circuits has been assessed by 
measuring specific neurochemicals (e.g., dopamine, ser-
otonin, and endogenous opioids) in cerebrospinal fluid 
or neural tissue [89]. Neurochemical indicators are very 
valuable as they interrogate the communication networks 
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with the brain, but they are not practical because the 
sampling techniques are invasive (e.g., to access cerebral 
spinal fluid or neural tissue) and the markers are often 
measured at a single time point. There are less invasive 
techniques that can be used to localize and measure 
the neurochemical and electrical activity of the brain, 
including neuroimaging techniques, such as functional 
magnetic resonance imaging, functional near infrared 
spectroscopy, and electroencephalography [90, 91], but 
these techniques also have limitations. While electroen-
cephalography can measure brain activity in real time, 
the technique is not easily used in environments where 
most animals live, such as paddocks on a farm, and it 
cannot be used to assess many animals simultaneously. 
Beyond the research setting, the available neuroimaging 
techniques are impractical because they require special-
ized equipment and an animal needs to be restrained and 
sedated or anesthetized to be assessed, which can influ-
ence the results. Similarly, the available neurobiological 
indicators require extensive validation to become mark-
ers of the experiential state of an animal because levels 
of a mediator can be involved in different brain pathways 
and their activities are context dependent. For example, 
dopaminergic pathways are involved in several functions 
including pain, cognition, and personality, and can be 
modulated by several endogenous factors including oxi-
dative stress [92, 93].

In the above sections, we have briefly argued that the 
available behavioural and physiological biomarkers, while 
informative, are proxies for the brain mechanisms that 
generate the experiential state. Neurobiological markers 
are a step closer to the neuronal activation that is linked 
to experience, but they are either too generic or impos-
sible to measure in real-time or during real-life events. 
As pointed out in the introduction, an experiential state 
results from brain processes, so it seems obligatory to 
direct the search for relevant indicators using knowledge 
from the field of neuroscience [4].

Where to go?
Concepts and methodologies from human neuroscience 
may offer some understanding of the experiential state of 
an animal [88]. In the following sections, we will discuss 
several candidate biomarkers (Fig. 1) by providing a short 
description of their biology and then a concise review of 
their association with either mental experience or men-
tal dysfunction in humans. The selected biomarkers are 
either markers of cellular function or markers involved in 
the control of gene expression. The candidate biomarkers 
have been shortlisted based on their localization in areas 
of the brain that are involved in emotion, personality, and 
cognition and their involvement in psychiatric disorders 
such as mood and personality disorders, schizophrenia, 

anxiety, and stress-related disorders using first the lit-
erature in humans and additional information from ani-
mal models [89, 94]. We will briefly discuss the media 
in which the biomarkers can be found and the methods 
of detection. The list of proposed biomarkers is catego-
rized according to the main function of each biomarker 
and comprises of endocrine, oxidative stress, non-coding 
molecular, and thermobiological markers.

Endocrine makers
Each of the endocrine markers that is discussed below 
can be part of a complex control system and can affect 
downstream signals and/or effectors. We have chosen 
to target the main endocrine signals because the down-
stream effectors are often, if not always, under the influ-
ence of other endocrine or non-endocrine systems which 
might not react to the experiential state.

Oxytocin
Oxytocin is a nonapeptide hormone that is produced in 
the supraoptic and paraventricular nuclei of the hypo-
thalamus. It is released by the posterior pituitary into the 
bloodstream from where it perfuses the body [95], and in 
the central nervous system (e.g., ventral tegmental area, 
frontal cortex, and brainstem) [96]. Oxytocin is known 
for its role in the contraction of smooth muscle that is 
associated with parturition and milk let-down, and its 
role in stimulating maternal behaviours in humans and 
other mammals [97]. Oxytocin receptors are found in 
several regions of the brain that are involved in the con-
trol of maternal behaviour, including the medial preop-
tic area, ventral tegmental area, and nucleus accumbens 
[97]. In humans, similar to other mammalian species, the 
cell bodies of neurons with oxytocin receptors are found 
in cortical regions and limbic structures, but not in the 
hippocampus [96]. A role for oxytocin in mood and per-
sonality disorders, schizophrenia, and autism has been 
established via studies that have investigated the plasma 
and CSF levels of oxytocin, mutations in the genes for 
oxytocin or oxytocin receptors, and responses to the 
administration of oxytocin [98]. Interestingly, in humans, 
comfortable physical contact increases the endogenous 
secretion of oxytocin [99]. Oxytocin has an apparent role 
during the expression of anxiety and stress because levels 
increase in those situations, but it might act as a circuit-
breaker rather than as a direct correlate of the negative 
affective state. There is an interaction with the HPA axis 
[100, 101]. In response to an acute or a chronic psycho-
logical stressor, cortisol and oxytocin both increase in 
blood and saliva, but following that initial co-activation, 
during the recovery period indicated by changes in other 
stress makers, such as heart rate variability, oxytocin 
seems to have an anxiolytic effect and is associated with 
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a reduction of cortisol synthesis [102–104]. Altogether, 
structural and functional studies in humans support a 
role for oxytocin in attenuating negative experiences 
such as anxiety and stress, as well as in eliciting positive 
experiences.

The intranasal or intracerebral administration of oxy-
tocin attenuates the increase in cortisol concentration 
that occurs in response to various stressors, including 
social isolation, in humans and other animals [105, 106]. 
So, oxytocin seems to be related to positive life events. 
The serum concentration of oxytocin is correlated with 
positive social behaviours in cattle, rats, and primates, 
while there is no correlation between oxytocin and 
antagonistic behaviours [107]. The apparently anoma-
lous involvement of oxytocin with the HPA axis could 
be an indication that oxytocin provides a measure of the 
stress resilience or coping capacity of an animal, rather 
than being a direct correlate of the stressor itself [101, 
107–109].

Despite the apparent role of oxytocin in positive expe-
rience, validation is still necessary before oxytocin can 
be used as a reliable biomarker of the experiential state 
of an animal. It would be important to demonstrate a 
strong correlation between levels obtained centrally, in 
cerebrospinal fluid or by microdialysis in neural tissue, 
and peripherally in the blood (serum and plasma), urine, 
or saliva samples [95, 107, 109]. There may be some delay 
between the response observed centrally and levels in 
peripheral samples [109].

Growth hormone (GH), insulin‑like growth factor one (IGF‑1), 
and insulin‑like growth factor binding proteins (IGFBPs)
Insulin-like growth factor one (IGF-1) is under the con-
trol of growth hormone (GH) and regulates growth and 
metabolism in the body [110]. To a large extent, the cir-
culating levels of GH and IGF-1 depend on nutrient 
intake as well as the action of hormones that act on the 
hypothalamus, such as cortisol [111]. IGF-1 is produced 

Fig. 1 Schematic summary of potential biomarkers of the experiential state of an animal. These biomarkers are potentially involved in the shift 
to a more positive experiential state. The blue and red arrows represent the full spectrum of experiential state from negative (red end) to positive 
(blue end). The biomarkers were selected because they have been associated with neurobiological disorders (mood instability, anxiety, 
or depression) or psychological processes involved in emotion, temperament, or personality. Several of the candidate biomarkers of experience 
act in the central nervous system and are also present in the peripheral circulation, such as orexins, BDNF, oxytocin, IGF-1, and endocannabinoids. 
However, only peripheral levels of IGF-1 and endocannabinoids have been associated with changes in central processes that are linked to emotion 
or neurobiological disorders (illustrated by the orange arrows). MicroRNAs, glycoRNAs, and NEAT1 could be efferent signals that are associated 
with experiential state and therefore could be measured in biological fluids such as serum, plasma, or saliva (green arrows). The experiential state 
of an animal could also affect its level of thiol oxidation, SIH, and CRT (green arrows) which could then be used as biomarkers (green arrows). The 
HPA axis and the stress response are not good biomarkers of experiential state because they are modulated by a large array of internal and external 
factors. Telomere attrition could be a long-time marker of experiential state, with a more positive experiential state resulting in less attrition. In 
addition of being produced in the brain tissue, BDNF is also produced in the peripheral tissue such as plasma and saliva. Abbreviations: BDNF: 
brain-derived neurotrophic factor, CRT: circadian rhythm of core body temperature, ECBs: endocannabinoids, HPA axis: hypothalamic–pituitary–
adrenal axis, IGF-1: insulin-like growth factor 1, SIH: stress-induced hyperthermia
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in the liver, muscle, and fat and crosses the blood–brain 
barrier by active transport where it can impact on sev-
eral brain functions, and is expressed in neurons and glial 
cells [110]. The paracrine and endocrine actions of IGF-1 
in the central nervous system are modulated by insulin-
like growth factor binding proteins (IGFBPs) which are 
also expressed in neurons and astrocytes [112].

IGF-1 is involved in general cellular growth, neural 
development, and neural protective mechanisms in the 
brain [110]. Dysregulation of the IGF-1 system has been 
associated with neurodegenerative diseases, such as Alz-
heimer’s, Parkinson’s, and Huntington’s disease [112]. In 
Parkinson’s disease, lower circulating levels of IGF-1 are 
associated with poor cognition [113], poor mood, and 
high anxiety [114]. Mice with knockout of both the insu-
lin receptor and the IGF-1 receptor in the hippocampus 
and central amygdala present with anxiety-like disorders 
and impaired cognition, demonstrating that the IGF-1 
signaling is involved in cognition and personality [115].

The GH/IGF-1 axis is affected by acute and chronic 
exposure to stressors. The expression of IGF-1 and 
IGFBPs is lower after exposure to stress, and both IGF-1 
and IGFBPs respond dynamically to glucocorticoids, 
which could result in changes in cellular and neural func-
tioning [110, 116, 117]. Overall, changes in the circulating 
levels of IGF-1 and possibly IGFBPs, could be correlated 
with changes in the experiential state in response to 
internal and external events [118]. Although their utility 
in that respect might be limited because they are secreted 
in pulsatile patterns and, as described above, they have 
complex interactions.

Brain‑derived neurotrophic factor (BDNF)
Brain-derived neurotrophic factor (BDNF) is a very well-
studied neurotrophin. BDNF plays an important role in 
the development and maintenance of brain function by 
mediating neuron survival and function. BDNF mRNA 
expression and BDNF immunoreactivity have been 
measured in the cortex, hippocampus, and amygdala of 
humans and rodents (for review see [119]). In humans, 
there is evidence for a role of BDNF in the pathophysi-
ology of brain-associated illnesses. Patients with depres-
sion have lower expression of BDNF in brain tissue and 
lower levels in peripheral blood. Treatment of those 
patients with antidepressants can normalize those lev-
els [120]. While the serum concentrations of BDNF are 
lower than normal in female patients with generalized 
anxiety disorder, the levels are not strongly related to 
anxiety disorders in general [120].

Similarly, in rodents, low levels of serum BDNF have 
been correlated with emotional and depressive-like 
behaviours [121, 122], and the level decreases follow-
ing acute and chronic stress [123]. Like in humans, the 

administration of antidepressants increases the level of 
BDNF in the rat brain and the administration of BDNF 
into the hippocampus of rats produces antidepressant 
effects [124, 125]. BDNF, possibly by acting on synaptic 
plasticity, has been proposed to have a fundamental role 
in mediating changes in the central nervous system that 
are induced by experience and behavioural learning (for 
review see [126]). In rats, increases in the expression of 
BDNF mRNA and levels of BDNF in the medial fore-
brain, cerebral cortex, hippocampal formation, and hind-
brain are associated with more play behaviour, improved 
spatial learning, and increased exploratory behaviour 
following environmental enrichment [127–130]. Impor-
tantly, increases in the level of BDNF mRNA in the hip-
pocampus in response to a spatial memory test (Morris 
water maze) was not observed when rats were kept either 
in isolation or in a poor environment, suggesting that life 
situations that are perceived positive, such as enrichment 
or social contact, impact central BDNF [127–129]. Over-
all, evidence in humans and animal models suggests that 
the central expression of BDNF and potentially serum 
concentrations could be a biomarker of both the positive 
and the negative experiential state.

While the level of BDNF can be measured both cen-
trally and peripherally, the usefulness of peripheral 
measures to assess the experiential state remains to be 
demonstrated. In pigs and rats, there was a moderate 
correlation between plasma and whole blood concen-
trations of BDNF and hippocampal BDNF (r2 = 0.41 
to 0.44; [131]). Other studies have found no correla-
tion between the peripheral and central level of BDNF, 
and to complicate matters further, the concentration of 
BDNF in saliva does not always reflect the concentra-
tion of BDNF in plasma [131–134]. The lack of correla-
tion between the central and peripheral concentration 
of BDNF could be due to any of the multiple factors 
that are known to affect BDNF production such as sex, 
energy status and, as described above, the impact of 
life experiences. In addition to its expression in neural 
tissue, BDNF is produced centrally and peripherally in 
nonneuronal tissues [120], and at least in humans, the 
storage of BDNF in platelets contributes to up to a 200-
fold difference between the concentration of BDNF in 
serum and plasma [135]. Importantly, different iso-
forms of BDNF have different biological functions, at 
least during neurodevelopment, that are influenced by 
serotonin [136]. The development of BDNF as a reliable 
marker of the experiential state will require demonstra-
tion of the biological relevance of the isoforms of BDNF 
and will also need to validate the type of sample, sam-
pling technique, processing of samples, and storage that 
are all known to affect the peripheral concentration of 
BDNF [137, 138].
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Orexins
Orexins, also known as hypocretins, are neuropep-
tides that are produced centrally [139]. The two orex-
ins, orexin-A and orexin-B (also known as hypocretin-1 
and hypocretin-2) are produced in neurons of the lateral 
hypothalamus, perifornical area, and dorsomedial hypo-
thalamus [139]. Orexinergic neurons project throughout 
the central nervous system including the prefrontal cor-
tex and other areas of the cortex and the amygdala [140].

Orexins play an important role in energy homeostasis, 
sleep, arousal, and reward processing [139]. In humans, 
lower concentration of orexins in either CSF or serum 
has been associated with a deficit in cognition and a 
higher incidence of neurodegenerative diseases such as 
Alzheimer’s, Huntington’s, and Parkinson’s disease [141]. 
A role for orexin in emotion and cognition has been sug-
gested by studies that have applied one of the few antag-
onists and agonists of orexins [142]. In rodent models, 
orexins are involved in the modulation of mood, motiva-
tion, reward, and stress responses [143–145]. The central 
administration of orexins has an anti-depressant effect 
in mice and rats and thus supports a role for orexin in 
the modulation of mood and the coping capacity of an 
animal [146, 147]. In addition, the orexinergic pathways 
modulate several networks of neurotransmitters, includ-
ing those that use dopamine, serotonin, and GABA, 
which are all involved in mental states including positive 
and negative emotions [142]. Recently, the reliability of 
the immunoassays that are used to measure orexins in 
serum, plasma, and CSF have been questioned, mean-
ing that the established relationship between central and 
peripheral orexins will need to be validated with new 
analytics before they can be considered as a biomarker of 
experience in animals [148, 149].

Endocannabinoids
The endocannabinoid system includes the endocannabi-
noids, the enzyme that degrades them, and the endo-
cannabinoid receptors [150]. Endocannabinoids are 
lipid-derived neurotransmitters, the most studied being 
N-arachidonylethanolamine (AEA) and 2-arachidonoyl-
glycerol (2-AG). Both are synthesized in the peripheral 
and the central nervous system [151]. At the brain level, 
the endocannabinoids act via the cannabinoid receptor 
subtype 1 (CBR1) and those receptors are located mainly 
in regions of the brain involved in emotional behav-
iour, such as the prefrontal cortex in rodents [150]. The 
CBR1 receptor is expressed in GABAergic, dopaminer-
gic, glutaminergic, and serotoninergic neurons in the 
medial prefrontal cortex [150]. Because the CBR1 recep-
tor can be found in the neuron body, the axon, and the 
dendrites, the activity of the receptor can modulate the 
activity of those other neurotransmitters in several ways 

[150]. The endocannabinoid system has been implicated 
in the neuromodulation of several physiological systems, 
including pain [152], the stress response [153], anxiety 
[154], cognitive processing, and general homeostasis 
[155]. Interestingly, acute exposure to a stressor reduces 
the level of AEA in the synaptic space of neurons by 
increasing the activity of the enzyme that degrades AEA 
(i.e., fatty acid amide hydrolase) [153]. The endocan-
nabinoid system is affected by stress and modulates the 
stress response [153].

A higher concentration of circulating endocannabi-
noids has been associated with reduced anxiety, less 
depressive behaviours, and elevated mood [156]. In 
rodents, studies using either antagonists of CBR1, CBR1 
knockouts, or injection of endocannabinoids have dem-
onstrated that the endocannabinoid pathway is involved 
in the behavioural expression of emotions, such as anx-
iety-like behaviours, during an elevated maze test [150]. 
While endocannabinoids have been measured in plasma 
and serum, they can also be measured in saliva, urine, 
milk, and hair [156]. In ruminants, the endocannabi-
noid system has been studied for its role in the control 
of reproduction [157–159], lipid metabolism and food 
intake [160], and the immune system [160]. However, 
to date no study has investigated the role of endocan-
nabinoids in brain processes that are related to emotion 
reactivity. All of the data above suggests that endocan-
nabinoids could be markers of the positive experiential 
state in animals, most probably linked to food intake and 
resilience to stress. The study of such associations will 
require well designed experiments because food intake 
can affect the level of circulating endocannabinoids by 
changing the activity of the microbiome [161].

Markers of oxidative stress
Oxidative stress occurs when the homeostasis of oxida-
tion–reduction activity is no longer maintained. A redox 
imbalance can be triggered by challenges that increase 
the production of reactive oxygen species (ROS) and 
reactive nitrogen species (RONS) and non-radical reac-
tive derivatives (oxidants), or decrease the intake or 
synthesis of antioxidants, or increase the antioxidant 
turnover [162, 163]. Several types of challenge have been 
associated with an increase in oxidative stress including 
sepsis, mastitis, enteritis, pneumonia, metabolic disor-
ders, and neurodegenerative disease [164]. The central 
nervous system is particularly sensitive to oxidative 
stress because of the high consumption of oxygen by 
neurons, the susceptibility of the lipid membrane of neu-
rons to RONS, and the relative paucity of enzymes that 
reduce RONS [165]. RONS have been implicated in the 
neuronal death that is associated with the development 
of neurogenerative diseases, such as Parkinson’s and 
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Alzheimer’s disease [166]. Interestingly, oxidative stress 
seems to interact with both IGF-1 and BDNF in the cog-
nitive decline that is linked to neurodegeneration [166, 
167]. In additional studies, 8-hydroxy-2-deoxyguanosine 
a marker of oxidative DNA damage, is used as a marker 
of cellular stress and supports a link between oxidative 
stress and depression. People with clinical depression 
have higher serum concentrations of 8-hydroxy-2-de-
oxyguanosine than controls [168, 169]. Long-term yoga 
practice had a positive impact on the mood state in peo-
ple with clinical depression, but only tended to decrease 
levels of 8-hydroxy-2-deoxyguanosine in the urine [169]. 
The impact of oxidative stress on neurogenerative dis-
eases seems to be related to a long-term imbalance in 
redox, suggesting that markers of oxidative stress could 
be useful indicators of long-term changes, rather than 
short-term changes, in the experiential state.

External environmental factors play a significant role in 
the prevention and mitigation of oxidative stress, mainly 
by increasing the level of antioxidants. In humans, nutri-
tional antioxidants reduce the impact of neurogenerative 
and cognitive disorders [166]. In animals, in addition to 
dietary supplementation, the antioxidant status can be 
improved when environmental conditions induce a posi-
tive experiential state. Such environments include pas-
ture-based systems for cattle, enriched housing systems 
for piglets, and protection from the cold for lambs [170–
172]. Whether environmental enrichment causes the 
production of fewer oxidants, or improves antioxidant 
protection, remains unknown. Because of that associa-
tion, the level of oxidative stress could serve to evaluate 
the positive experiential state of an animal. That could 
be achieved by assessing the redox balance by measuring 
reactive species and antioxidants [162, 164, 173].

The assessment of redox balance can be complicated 
because of the large number of biomarkers that are used 
to assess oxidative stress and antioxidants, their sensitiv-
ity to any metabolic change, and limitations of the detec-
tion technique [174]. Glutathione is a low molecular 
weight thiol-containing compound that is produced in 
the brain and has a neuroprotective role against oxidative 
stress via its role as a critical antioxidant [175]. Low lev-
els of glutathione, centrally and peripherally, are indica-
tive of oxidative stress, and those low levels correlate well 
with the severity of several neurodegenerative diseases 
and cognitive impairment [176]. Because thiol-redox 
homeostasis can have a significant role in neurodegener-
ative disease [175], the measurement of thiol-oxidation in 
biological media could be used to assess the experiential 
state. It is possible to measure the oxidation of cysteine 
in plasma albumin using the oximetric method [177]. 
The oximetric detection of thiol oxidation requires only 
a drop of blood and is highly sensitive. Measures of thiol 

oxidation are sensitive enough to detect changes in oxi-
dative stress in response to exercise and muscle damage 
in humans and in response to a change in water quality in 
fish [178, 179]. The oximetric method, however, has not 
been validated in other species as a method of assessing 
oxidative stress.

Non‑coding molecular markers
Non-coding molecular markers, such as long noncoding 
RNAs (lncRNAs) and microRNAs (miRNAs), are found 
in many tissues including the brain. Non-coding RNAs 
can influence all types of cellular activity, from the gen-
eral activity of neurons to complete cell apoptosis. LncR-
NAs and miRNAs could be relevant biomarkers of the 
experiential state since both have been linked to neuronal 
activity, neurodegenerative disease, and in some cases, 
associated with deficits in cognition [180].

In this section we discuss the potential of miRNAs, and 
one lncRNA, as biomarkers of experience. The lncRNA, 
the nuclear paraspeckle assembly transcript 1 (NEAT1), 
appears very promising as a biomarker of experience. 
GlycoRNAs, a modified RNA, will also be considered 
very briefly. Aside from the RNA-based biomarkers, we 
will also discuss the relevance of telomere length, since 
the attrition of telomeres has been linked to neurogen-
erative disease and cognitive decline [181, 182].

Micro‑ribonucleic acid (miRNA)
MicroRNAs (miRNAs) are small noncoding RNAs (19–
23 nucleotides) that influence gene expression by inter-
acting with messenger RNAs (i.e., coding RNAs) [183]. 
MiRNAs play an important role in physiological and 
psychological functioning at a cellular and genetic level 
in higher organisms. MiRNAs, and other non-coding 
RNAs, also play a role in epigenetic changes that impact 
on gene expression and can be inherited, at least in the 
case of paternal stress (for review see [184]). In humans 
and other animals, the expression of miRNAs in the brain 
changes in response to changes in the external environ-
ment, such as sensory changes and dietary modifications, 
and has been associated with experiential states such as 
stress, depression and anxiety, and brain processes such 
as reward and decision making [183].

Negative mental states and psychological disorders 
have been associated with changes in miRNAs in brain 
tissue [185]. Changes in several miRNAs in the amyg-
dala have been observed in mice that display anxiety- 
and depressive-like behaviours, as well as in mice that 
experience chronic social defeat [186, 187]. Acute and 
chronic stress causes alterations in the level of miRNAs 
in areas of the brain that are important in behaviour, 
emotion, and cognition [183]. In addition, changes in 
specific miRNAs are observed after the administration of 
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antidepressant drugs (miR-16; [188]). MiRNAs have been 
implicated in the modulation of serotonergic (miR-135 
and miR-16; [186, 189]) and dopaminergic reward path-
ways (miR-504; [189]).

In humans, circulating miRNAs have been proposed 
as informative biomarkers for mood disorders and as 
predictors of suicidal behaviour (for review see [190]). 
In rodents, miRNAs in the brain have been associ-
ated with human-like psychological disorders, but such 
associations have not been extensively studied in larger 
animals. Consequently, there is little information on 
the identification and annotation of miRNAs between 
humans and laboratory rodents, and other larger ani-
mals such as farm animals. The reference database for 
microRNA (release 22.1, accessed 16 July 2023, https:// 
www. mirba se. org/) contains 2,654 mature miRNAs for 
humans, 1,998 for mice, but only has 1,025 mature miR-
NAs for cattle, 457 for pigs, and 10 for sheep [191]. It 
is unlikely that those numbers reflect differences in the 
biology of the species, but rather reflect the intensity of 
study. In addition, in farm animals, studies of miRNAs 
have focused mainly on miRNAs associated with pro-
duction traits such as meat quality [192]. While miRNAs 
have been proposed to be potential biomarkers of animal 
welfare and health in livestock and poultry [193], most 
efforts toward the identification of specific miRNAs have 
focused on the ability of the animal to cope with external 
challenges and the associated stress response rather than 
experience [183].

Although the identification of miRNA biomarkers that 
might be associated with the experiential state of an ani-
mal remains a work in progress, the miRNAs offer a very 
promising avenue. Their measurement could be practical 
and highly specific. Even if they do not perfectly reflect 
brain activity, patterns of several miRNAs have been cor-
related between the blood and the brain suggesting that 
blood-based miRNAs can be used as a proxy for activity 
in the brain of certain miRNAs [194]. Further, the level 
of miRNAs in several biological fluids including blood, 
saliva, and urine, have been correlated [195], suggesting 
that it should be possible to assess the level of miRNAs 
in the brain with a non-invasive measurement method 
using easily accessible biological fluids, such as saliva. 
Moreover, recent advances in miRNA point-of-care 
technology will simplify the use of miRNAs as biomark-
ers [196]. To prove the utility of miRNAs as biomarkers 
of positive and negative experiences will demand several 
validation steps, not only to check the relevance of the 
miRNAs to the experiential status of animals, but also 
to confirm the robustness of the correlation between 
changes in the brain with changes in an accessible fluid 
for any miRNA of interest.

Nuclear paraspeckle assembly transcript 1 (NEAT1)
Nuclear paraspeckles are small cellular bodies that are 
found within the interchromatin space of the cell nucleus 
[197]. The structural core of a nuclear paraspeckle is 
nuclear paraspeckle assembly transcript 1 (NEAT1), a 
long noncoding RNA that binds together the other pro-
teins that make up a paraspeckle [198–200]. As well as 
acting as a scaffold for the paraspeckle, NEAT1 can alter 
the expression of many genes by impacting on the trans-
lation, transcription, and maturation of the microRNAs 
of those genes [197, 198]. NEAT1 plays a role in cellular 
defence mechanisms by contributing to the maintenance 
of mitochondrion homeostasis [201]. NEAT1 is impor-
tant for neural development and functioning and has been 
associated with psychiatric diseases including Alzhei-
mer’s, Huntington’s, and Parkinson’s disease [200, 202].

When NEAT1 is knocked out in mice, and those mice 
are exposed to psychological stress during specific tests, 
such as the resident-intruder test and elevated plus 
maze test under bright light, they show abnormal behav-
ioural responses including hyperlocomotion, an altered 
panic escape response, deficient social interactions, 
and impaired rhythmic patterns of activity [203]. These 
observations in NEAT1 knockout mice suggest that 
changes in NEAT1 could reflect the capacity of an animal 
to cope with psychological challenge and thus it may hold 
potential in the assessment of the associated mental state. 
Interestingly, the level of NEAT1 increases in the periph-
eral blood of patients with Parkinson’s disease com-
pared to non-affected patients [204] and could reflect 
the overexpression of NEAT1 in the sustancia nigra of 
patients with Parkinson’s disease [205]. Levels of NEAT1 
in peripheral blood have been proposed as a biomarker 
of immune and liver diseases [206], and cancer [207]. It 
seems possible that levels of NEAT1 in blood could serve 
as a biomarker of the experiential state.

Glycosylated ribonucleic acid (glycoRNAs)
GlycoRNAs were recently discovered in mammals and 
consist of RNA that has been modified with glycans that 
contain sialic acid [208, 209]. The majority of glycoRNAs 
are present on the cell surface and facilitate interactions 
such as intercellular trafficking and signaling via interac-
tion with cell surface receptors [209, 210]. Amongst the 
small non-coding RNAs, the Y-RNAs (Y because they are 
found in the cytoplasm) are glycoRNAs [211]. Y-RNAs 
are essential for chromosomal DNA replication in ver-
tebrates and are involved in the RNA stability and cel-
lular functioning in response to stress [209, 212]. It has 
been proposed that glycoRNAs can modify cellular func-
tioning and gene expression because they can interact 
with other cell surface molecules, such as the sialic acid 

https://www.mirbase.org/
https://www.mirbase.org/
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binding-immunoglobulin lectin-type (Siglec) receptor 
[213]. In humans, genome wide association studies have 
identified variants in the gene encoding for Siglec recep-
tors that are associated with neuropsychological condi-
tions such as schizophrenia, bipolar disorder, and autism 
[213]. Since glycoRNAs bind Siglec receptors they could 
also be associated with neuropsychological disorders in 
addition to their involvement in the response to cellular 
stress. It could therefore be suggested that changes in the 
circulating level of glycoRNAs could reflect changes in 
the experiential state, most probably the negative state.

Telomere attrition
Telomeres are repetitive sequences (e.g., TTA GGG ) 
within the DNA sequence at the end of chromosomes. 
Telomeres protect the coding regions of DNA from dam-
age during normal cellular division and replication, and 
over time they become progressively shorter through tel-
omere attrition [214, 215]. The rate and distribution of 
telomere attrition depends on the tissue and varies over 
time but overall, the average telomere length is correlated 
between different tissues within an individual [216].

The length of a telomere and its rate of attrition could 
reflect the cumulative lifetime experience of an animal and 
could also impact on the capacity of the animal to respond 
to challenge [217]. When the length of telomeres in white 
blood cells were monitored over a long term, an increase in 
the rate of shortening was associated with higher levels of 
psychological stress such as depression, anxiety, and social 
isolation in humans, and environmental stress such as 
lameness and hot weather in cattle [218–221]. In humans, 
factors such as optimism, physical activity, and positive 
social relationships have been suggested to slow the rate of 
telomere attrition [222–225]. In addition to causing DNA 
damage, telomere attrition may influence gene expres-
sion and therefore affect the capacity to generate a proper 
response after exposure to a stimulus. The influence of tel-
omere attrition on gene expression could also impact brain 
functioning and therefore reflect the effect of cumulative 
exposure to stressors [226, 227]. A meta-analysis has con-
cluded that telomere length is associated with neuropsy-
chological conditions, with shorter telomeres reflecting the 
conditions [227]. Changes in telomere length and the rate 
of attrition are likely to be involved in persistent and long-
term changes in positive and negative mental state.

Practically, telomeres can be measured in blood and 
tissue samples to assess relative telomere length at a sin-
gle time point, or longitudinal sampling can be used to 
assess the rate of telomere attrition over time [226, 228]. 
When a method of measurement to assess telomere attri-
tion is selected, and the results of tests are interpreted, 
factors such as cell type, animal age, and inter-individual 
differences need to be considered carefully [229].

Thermobiological markers
Rhythmic changes in core body temperature
The core body temperature  (Tc) of endotherms, such as 
mammals and birds, varies in a circadian manner follow-
ing a predictable pattern from day to night [230, 231]. 
For diurnal (awake and active during the day) endo-
therms, the core body temperature is typically higher 
during the day (active period) and is lower at night (rest 
period), creating a repetitive wave-like pattern over 
time. In contrast, the opposite is observed in nocturnal 
endotherms, with the temperature higher at night and 
lower during the day [232]. The pattern persists when an 
animal is deprived of environmental information about 
the time of day (such as light/dark cues or variation in 
environmental temperature), confirming that it is an 
endogenous circadian rhythm of  Tc (CRT) [232]. The 
changes in  Tc appear to be primarily under the control 
of the circadian system, which has input to the homeo-
static thermoregulatory control system that activates 
thermoregulatory effectors [232].

A cosinor analysis of the CRT can be used to extract 
parameters that summarize the characteristics of the 
rhythm: the mesor (Midline Estimating Statistic Of the 
Rhythm), the amplitude (difference between the mesor 
and the peak or trough), and the acrophase (time of the 
peak) [233]. The parameters of the CRT change predict-
ably with various biological factors such as body size, age, 
sex, activity level, and environmental factors such as feed 
availability and ambient temperature, in addition to some 
variation between species and individuals [232–234]. 
Changes in the physiology and behaviour of an animal 
can affect the circadian rhythm of its  Tc [232]. For exam-
ple, in sheep, changes in feed intake induce changes in 
the amplitude of the circadian rhythm of  Tc, and in lions, 
rabbits, and rats, the mesor of the circadian rhythm of  Tc 
is affected by pregnancy [235].

Importantly for the subject of this review, the endog-
enous circadian system not only coordinates bodily func-
tions with each other and with the external environment, 
but also integrates the zeitgebers and the psychological 
state in humans and other animals [236]. Disorders of the 
circadian rhythm in sleep patterns, mainly phase shifts, 
have been linked to bipolar disorder and seasonal affec-
tive disorder [237, 238]. In humans, a phase delay in the 
CRT has been linked to Alzheimer’s disease [239], while a 
reduced amplitude of the CRT and irregular shape of the 
CRT has been observed during episodes of depression, 
but not altered during manic phases [240].

Stress‑induced hyperthermia
Stress-induced hyperthermia (SIH) is an acute response 
of  Tc, involving a rapid and transient increase in  Tc in 
response to psychological stress [241, 242]. The SIH 
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response is usually transient with a rapid increase in  Tc 
after exposure to a stressor which gradually returns to 
normal once the stressor is removed. The HPA axis and 
brain areas including the glutaminergic, GABAergic, 
dopaminergic, and serotonergic pathways are involved in 
increasing thermogenic activity, which contributes to the 
observed increase of  Tc during SIH [242, 243]. In rodents, 
the response involves the activation of brown adipose tis-
sue and its associated metabolic heat production, as well 
as peripheral vasoconstriction [242]. In larger animals, 
the heat storage that is required for the increase in  Tc 
cannot be achieved by peripheral vasoconstriction and 
must involve an increase in metabolic heat production, 
but the source of that heat remains unknown [244]. Dur-
ing the response to some challenges, it is impossible to 
dissociate the role of the psychological stress, per se, from 
other activity that involves an increase in metabolic heat 
production, such as the increase of muscular activity dur-
ing flight from a predator. However, some psychological 
stressors do not induce an increase in muscular activity, 
so the response is independent of exercise hyperther-
mia. For example, SIH has been observed in response to 
handling, shearing, restraint, and social defeat in animals 
[242, 245–249]. Anxiety-like and depressive-like behav-
iours have also been shown to activate a SIH response 
[249]. Repeat or chronic psychological stress associated 
with more depressive-like behaviours has been shown to 
lead to anticipatory or learned SIH, changes in the CRT 
(e.g., hyperthermic response during active hours), and an 
exaggerated SIH to novel stressors [242, 250, 251].

The CRT and the SIH response both are sensitive sys-
tems and the parameters of the rhythms (especially the 
amplitude) and the SIH (the size) can be affected by 
positive or negative cues. These systems could be used to 
assess the experience of an animal since they are modi-
fied during psychological disorders, as described above. 
Infrared thermography has some potential in the assess-
ment of negative experiential states but the results are 
not always conclusive or consistent (for review see [252]). 
Amongst the different parts of the body, the thermal 
imaging of lacrimal caruncle seems to be the most prom-
ising [252]. Infrared thermography could become a reli-
able biomarker of experience, but the technology might 
only be useful in a setting where the animal and the IRT 
device can be in proximity to each other with minimal 
environmental interference [252].

While to be truly informative of the CRT and SIH, 
body temperature needs to be measured deep in the body 
(the “body core”), the circadian rhythm of skin tempera-
ture in humans can be affected by mood [253], suggesting 
that variation in skin temperature could provide informa-
tion that might be informative of the experiential state. 
There is a need to develop smart technology before the 

CRT or SIH can be used to assess experience in animals. 
However, changes in the CRT and the SIH response are 
still good research tools since experimental animals can 
be instrumented to collect the required data without any 
need to handle an animal during an experiment.

Challenges in the search for biomarkers 
of the experiential state in animals
Challenges during the identification phase
Any novel biomarker will need to be validated in a stand-
ardized experimental setting as well as controlled real-life 
situations before it can be used to assess animal welfare in 
a real-world setting. During experimental validation, any 
confounding variables that could interfere with the novel 
biomarker would need to be identified and controlled. 
For example,  Tc can be affected by infection, exercise, 
and feed intake as well as the experiential state. Ideally, 
an experimental setting should, where possible, be rel-
evant to in-field conditions to ensure that the results 
can be transferred from the experimental setting to the 
real-world setting [254]. It will be critical to validate any 
biomarker during both positive and negative experiential 
states. Except for the CRT, no other candidate described 
in this review seems to provide the capacity to vary in 
response to the entire range of experience. Therefore, it 
is likely that multiple biomarkers will be needed to assess 
changes in the experiential state of an animal.

Other challenges in the development of biomarkers will 
be the design of experimental paradigms that induce a 
range of experience and the establishment of thresholds 
for a negative, neutral, and positive experiential state. The 
range of experience, as perceived by an animal, will need 
to be based on other indicators, such as behavioural indi-
cators, rather than a translation of the experience as per-
ceived by a human to a given situation. It seems realistic 
to first adopt a categorical approach to the classification 
of experience (positive, neutral, and negative).

Challenges during the implementation stage
For biomarkers to provide meaningful information on 
the complex dynamics of brain function over time, their 
measurement will need to be reliable, repeatable, and 
able to be collected from one of the biological matrices 
(blood, saliva, urine, etc.) using standardized protocols. 
Ideally, biomarkers of experience should be measurable 
when an animal is in its normal setting. The protocol 
to measure the biomarkers would require minimal or 
no disturbance to an animal, because if the procedure 
of sampling induces a change in the state of the animal, 
then the level of any biomarker will be confounded. For 
example, it would be preferable to measure biomarkers 
in easy-to-access matrices to avoid triggering any physi-
ological responses to the sampling technique that may 
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have an influence on the experiential state. Several tech-
niques have been developed to measure biological sam-
ples in matrices other than blood and saliva, including in 
urine, feces, and hair. Moreover, the measurement of any 
biomarker of experience in a normal setting will require 
the techniques of sampling and analysis to be commer-
cially feasible and practical for measuring both at an indi-
vidual and group level [254, 255].

The case of glucocorticoids provides a good illustration 
of the need for the development of technology and careful 
sampling strategies. Glucocorticoids have been routinely 
measured to assess the response to stress and are commonly 
considered as an indicator of a negative welfare state. While 
glucocorticoids are often measured in plasma and serum in 
an experimental setting, it is commonly considered prefera-
ble to measure glucocorticoids or their metabolites in other 
biological matrices including saliva, urine, feces, and hair 
because these matrices can be sampled without the risk of 
inducing a glucocorticoid response [256–258]. The collec-
tion of a saliva sample can be achieved using some forms of 
environmental enrichment (for example toys), as has been 
done in pigs using cotton ropes to measure miRNAs in 
saliva for viral detection at a herd level [259] and chewable 
silicone sticks to measure saliva cortisol [256]. Saliva sam-
ples can also be used to measure other markers discussed 
in this review, such as the ratio of cortisol to DHEA in pigs 
and BDNF in rats [260, 261]. The measurement of gluco-
corticoids in each type of sample provides different infor-
mation on the physiology of an animal due to differences in 
time between synthesis, transport, deposition in the matrix, 
and metabolism [49, 50, 54]. For example, the measurement 
of cortisol in saliva is often used to provide information on 
acute stress in response to an event, whereas hair samples 
capture information on chronic stress over weeks, months, 
or longer [257, 262].

There are many settings where it would be useful to 
measure biomarkers remotely with minimal need for 
interaction between humans and an animal. Techniques 
such as the bioacoustic analysis of vocalizations, analysis of 
facial expressions from video, or belts that transmit heart 
rate, although still limited in their application in the field, 
show promise for the automated assessment of animal 
welfare and perhaps the experiential state [41, 45, 46, 263, 
264]. Technology is already available to remotely measure 
body temperature, heart rate, and locomotor activity in 
animals in the field, but these technologies remain expen-
sive and rely on infrastructure to transfer data that could 
be used to assess the emotional state in real-time.

Challenges to the practical use of biomarkers of mental 
state
In an ideal world, biomarkers of the experiential state of 
an animal could be used to develop a model that could 

predict the experiential state of an animal in a given situ-
ation. The development of such a model would involve 
the measurement of multiple indicators of brain func-
tion over short and long periods. The volume and vari-
ety of the data obtained from such an exercise would far 
outstrip the capacity of a simple analytical algorithm. 
To obtain a reliable and predictive model of experien-
tial state from the complex dynamics of brain function, 
meaningful datasets must be acquired. To achieve mean-
ingful datasets, repeated measurements should be taken 
from multiple replicates. Ideally, the samples that will 
form the training dataset of the model should be meas-
ured from experiments conducted across multiple facili-
ties using a standardized protocol.

To be meaningful in a practical sense, the data on bio-
markers of experiential state in animals must be relevant 
to the decisions that people need to make about the ani-
mals under their care. Models of biomarkers that reflect 
the experiential state of animals must provide the deci-
sion makers with actionable outputs that are compat-
ible with the procedures and settings within which the 
animals are being kept. One strategy that has been tri-
aled for the development of meaningful models of com-
plex, real-world dynamics in other domains has been to 
involve non-scientist decision-makers and stakeholders 
in the modelling project [265]. Such a participatory mod-
elling approach is thought to facilitate the integration 
of knowledge and ensure the ‘‘social robustness’’ of the 
outputs of the model and decision supports [266]. In the 
context of animal welfare, the term “stakeholders” goes 
beyond people with animals under their direct care to 
include anyone who is concerned about the welfare of the 
animals, including customers, auditors, regulators, and 
members of the public. Substantive approaches to par-
ticipatory deliberation are based on the conviction that 
the quality of a decision is improved if such stakehold-
ers are involved in the decision making process [267]. To 
ensure that information about the experience of animals 
is meaningful in practice, a collaborative approach should 
be used, such that the research process is designed and 
conducted with all stakeholders on equal footing under-
standing that there will be various degrees of participa-
tion [268].

Once a meaningful training dataset for biomarkers of 
the experiential state of an animal has been collected, 
the dataset should be pre-processed to remove any irrel-
evant data before a predictive model can be produced. 
In large and complex datasets, data pre-processing is the 
most critical stage in ensuring that only relevant infor-
mation is retained without bias [269]. The cleaning step 
is challenging, as many factors, such as insufficient data, 
technical errors, and inaccuracies during data entry, can 
hinder the production of a clean and relevant dataset. 
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Once that pre-processing is complete, then a predictive 
model can be produced using multivariate algorithms 
that use machine learning and/or deep learning tech-
niques. The predictive model is produced by “learn-
ing” from the training sets that are acquired earlier in 
the process through either a supervised or an unsuper-
vised approach. During supervised learning, the model is 
trained using a dataset that has been assigned with many 
observations, each containing several features and clini-
cal outcomes for an animal. Conversely, an unsupervised 
learning model aims to identify patterns from the data 
without having access to classifications, such as a pheno-
type. As a final step, the model requires rigorous valida-
tion against an external dataset that was collected from 
an independent cohort of animals to address any poten-
tial selection bias. It is only after these time-consuming, 
and costly, steps are completed that the establishment 
of an accurate and predictive model can be achieved to 
make predictive and meaningful decisions about the 
experiential state of an animal.

Conclusion
Although the behavioural, physiological, and neurobiologi-
cal indicators that are currently available can provide valu-
able information on the welfare state of an animal, they do 
not provide the best assessment of the experiential state of 
that animal. We have proposed several candidate biomark-
ers that, based on their main function, include endocrine, 
oxidative stress, non-coding molecular, and thermobiologi-
cal markers that may be correlates of the experiential state 
of an animal because they have been found to be affected by 
psychological or neurophysiological disorders in humans or 
in animal models of those same disorders. There is a need 
for further research to validate and improve our under-
standing of these biomarkers of experiential state and their 
dynamics. It seems unlikely that any single biomarker will 
cover the full spectrum of experience from negative to posi-
tive. Aside from validating these biomarkers, the assessment 
of experiential state will be most relevant to the assessment 
of animal welfare if the assessment can be conducted in real-
time and anywhere. Therefore, further technological devel-
opment is needed to facilitate the adoption of these novel 
biomarkers by the end users with animals under their care.
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Glossary
Animal welfare  The transient state within an ani-

mal that relates to what the animal 
experiences, and mental state is the 
experience of an animal influenced 
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Animal experience or experiential state 
  
Central processes integrate the per-
ception of the environment with 
internal signals from bodily systems 
and cognitive inputs to generate a 
subjective state that includes, but is 
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tional experiences. Animal experi-
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