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Abstract 

Background Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study 
compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiologi-
cal characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength 
to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old 
Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) 
eggshell breaking strength group.

Results A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied 
with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell 
quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs 
and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed 
genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those 
in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein 
level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were 
seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells 
and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine 
tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocal-
cin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones 
and decreased ash were observed in femurs of the HBS.

Conclusion The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue 
damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport 
may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral 
and bone quality in the LBS.
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Graphical Abstract

Introduction
An increase in cracked eggs in the late phase of the lay-
ing period heavily reduces the economic benefits of egg 
farmers and hinders the implementation of an extending 
laying period [1, 2]. Eggshell breaking strength is the abil-
ity of an eggshell to resist damage under external forces, 
and each decrement of 1 N breaking strength is associated 
with a 1.33% breakage in a flock with a high egg produc-
tion (> 70%) [3]. As the age increased (30 to 80 weeks), the 
eggshell breaking strength declined from around 48 N to 
35 N and its coefficients of variation increased from 11.4 
to 17.2, leading to an increase in the proportion of indi-
viduals with low eggshell breaking strength in the Hy-line 
Brown laying hens [4, 5]. These hens laying weak-shelled 
eggs deserve special attention since they are responsible 
for a high breakage rate of eggs at the late laying period. 
Nutritional modulation strategies have been widely rec-
ognized as positive means of improving egg, especially 
eggshell, quality [6–9]. Comparison of eggshells and 
physiological characteristics of hens with high and low 
eggshell breaking strength could reveal the mechanism of 
increased egg breakage rate in aged laying hens, which is 
beneficial to develop more suitable products or measures 
for eggshell quality improvement.

Bone quality is receiving the same attention as egg-
shell quality in aged laying hens, and there may be a 
certain association between them since bone resorp-
tion provided approximately 20%−40% Ca for eggshell 
calcification [10, 11]. Medullary bone is considered as 
a Ca reservoir for eggshell calcification, which mainly 
exists within the marrow cavities of hind limbs (femur 
and tibia) in laying hens [12, 13]. Hens that did not lay 
eggs had more highly mineralized bones with significant 
amounts of medullary bone [14, 15], while high-laying 
hens underwent an increase in the bone fracture inci-
dence due to Ca depletion during eggshell calcification 
[14]. Kim et  al. [16] suggested that having poor-quality 
bones was linked to laying high-quality eggshells as high 
deposition of eggshell Ca was accompanied by high bone 
Ca transfer. Thus, the high Ca requirements of eggshell 
calcification may be a trigger for weakened bones, owing 
to intense medullary bone resorption [13, 17]. However, 
Alfonso-Carrillo et al. [3] concluded that the bone char-
acteristics and eggshell properties were independent 
because they found no significant correlations between 
the eggshell (breaking strength, thickness and weight 
ratio) and bone (geometric and mechanical characteris-
tics) quality of the hens at the end of laying period. Most 
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previous studies were mainly concluded from limited 
skeletal indicators, presenting difficulties in determin-
ing the detailed correlations between bone and eggshell 
qualities as well as in analyzing the mechanisms under-
lying the effect of eggshell calcification on bone quality. 
The bone quality was determined by the bone remode-
ling, and more bone resorption and/or less bone forma-
tion contribute to a reduced bone mass and an increased 
incidence of bone fracture [18]. During bone formation, 
mesenchymal stem cells differentiate osteoblasts, which 
synthesize and secrete the organic matrix such as col-
lagen type I (COL1), osteocalcin (OCN), osteopontin 
(OPN), bone sialoprotein (BSP) and osteonectin (ON), 
then deposit hydroxyapatite in the extracellular matrix 
and form mineralized bone, ultimately increasing bone 
mass [19, 20]. As for the process of bone resorption, bone 
minerals are dissolved and expose organic matrix to cath-
epsin K (Cts K) that degrades them, resulting in bone loss 
and structure damage [21, 22]. In the current study, we 
compared the bone quality and bone remodeling varia-
tion between hens with high and low eggshell breaking 
strength under the same feed and environment, which 
may contribute to a comprehensive understanding of the 
interaction mechanism of eggshell calcification and bone 
remodeling.

Eggshell formation takes about 18  h, and ultimately 
forms eggshell ultrastructure (including eggshell mem-
brane, mammillary layer, effective layer (palisade layer 
and vertical crystal layer) and cuticle) to resist external 
forces. The mammillary layer and effective layer are major 
structures that determine an eggshell’s mechanical prop-
erties, which are respectively formed during the initiation 
(5–10 h post-ovulation) and growth (10–22 h post-ovula-
tion) stages of eggshell calcification [23]. The eggshell Ca 
supply may have different adaptations due to the limita-
tion of the photoperiod on feed access [24]. Generally, in 
the initiation stage of eggshell calcification, the Ca neces-
sary is mainly derived from the intestinal absorption [24]. 
However, a considerable time of the growth stage of egg-
shell calcification typically occurs during the nocturnal 
fasting period [25]. At this period, medullary bone resorp-
tion becomes dominant in the supply for eggshell Ca as 
the residual Ca in the intestine is gradually consumed 
[24]. The increase in medullary bone resorption decreases 
bone minerals, induces osteoporosis, and affects the 
health of laying hens [26]. Previous research mainly tar-
geted skeletons with medullary bone, such as tibia and 
femur [3, 27]. The tibia is considered as a model bone for 
the skeletal health examination in poultry species, while 
the femur is the most labile source of medullary bone Ca 
[28, 29], thus the femur may be more suitable to explore 
the function of bone with medullary bone during eggshell 
calcification. Additionally, birds retained a special type 

of bones during evolution, that is a hollow bone such as 
the humerus adapted to fly [30]. Humerus and femur may 
be remodeled in a different manner that affect eggshell 
calcification due to a differential sensitivity to hormones 
[30, 31]. Exploring the metabolic characteristics of dif-
ferent bones during eggshell calcification could provide a 
more comprehensive panorama of the bone remodeling 
response to eggshell calcification.

This study compared the eggshell quality and bone 
parameters of hens with high or low eggshell breaking 
strength to analyze the correlations between eggshell and 
bone qualities of aged hens. Furthermore, their uterine 
transcription profiles, histological characteristics and 
bone remodeling processes during eggshell calcifica-
tion were explored to reveal the possible mechanism of 
eggshell and bone quality reduction and the interaction 
of the uterus and skeletons of aged hens. This study pro-
vides some new insights into the crosstalk between bone 
and uterus, which is conducive to explore the regulation 
of bone and eggshell quality.

Materials and methods
Birds and experiment design
Animal procedures were approved by the management of 
the Animal Care and Use Committee of Institute of Feed 
Research, Chinese Academy of Agricultural Sciences 
(approval No. AEC-CAAS-20200902). The present study 
design is depicted in Fig.  1. A total of 1,950 72-week-
old healthy Hy-line Brown laying hens were caged indi-
vidually, and the eggshell breaking strength of each hen 
was measured daily during a 2-week pre-trial period. 
The average egg production of this flock was 88.79%. 
The average eggshell breaking strength of the flock 
was 34.55  N, in which the hens with average breaking 
strength above 40 N and below 29 N accounted for 20%, 
respectively. After the pre-trial, 240 laying hens were 
selected and divided into high (> 40  N, HBS) and low 
(< 29 N, LBS) eggshell breaking strength groups accord-
ing to eggshell breaking strength. The egg production of 
the selected hens complied with 88.79% ± 5%, and their 
egg weight was in accordance with 55 to 70 g. The hens 
that were not selected were still raised in the commer-
cial hen house until elimination. The selected hens were 
transferred to another hen house with the same manage-
ment, and each group was sub-divided into 12 replicates 
with 10 hens each. All hens were caged individually and 
fed with the same basal diet (Additional file 1; Ca level: 
3.89%, the ratio of Ca and total P: 9.05:1) and received 
water ad libitum through the whole trial. All hens under-
went an acclimation period of 4 weeks and an observa-
tion period of 2 weeks. During the observation period, 
the oviposition time of each hen was recorded daily using 
an automatic-monitoring control system (IFR, CAAS, 
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Beijing, China) to determine the calcification periods 
[32]. All hens were subjected to a controlled photoperiod 
cycle of 16 h light:8 h dark (light: 5:30−21:30).

Sample collection
A total of 25 eggs from each replicate were collected on 
5 consecutive days of the observation period (5 eggs/
replicate/d) to detect eggshell measurements. At 80 
weeks of age, 12 birds (1 bird per replicate) in each group 
were selected at both 8.5  h post-oviposition (PO) and 
18.5  h PO, corresponding to the initiation and growth 

stages of eggshell calcification, respectively. The selected 
hens were collected blood samples first, then subjected to 
euthanasia and tissue sampling. Serum was immediately 
separated and stored at −80  °C after blood collection. 
The uterus morphology and the position of the egg were 
observed before the tissue was removed. Then uterus 
tissues were quickly removed and placed on ice. The 
uterine mucosa was removed immediately and stored 
at −80  °C until further analysis. An additional piece of 
uterine tissue was fixed in the 4% paraformaldehyde solu-
tion for uterine histomorphology. The egg was carefully 

Fig. 1 Trial design and sampling scheme. PO, post-oviposition
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transferred from the uterus, and the eggshell was slowly 
isolated from the egg and dried naturally at room tem-
perature. The humerus and femur on both sides of each 
bird were removed, and residual tissues were cleared. The 
right bones, after removing the cartilage, were stored at 
−80 °C until analysis. The left bones sampled at 18.5 h PO 
were truncated in the middle of the bone mid-diaphysis, 
with the proximal parts fixed in formalin. The remaining 
left bones were frozen at −20  °C for bone geometrical, 
mineral and compositional analysis.

Laying performance
During the observation period, egg number and egg 
weight were recorded daily by replicate, and total feed 
consumption for each replicate was weighed. The egg 
production rate, egg mass, average egg wight, average 
daily feed intake and feed conversion ratio were calcu-
lated. Egg production rate was calculated as the ratio of 
the number of eggs produced per day to the number of 
birds, expressed as a percentage. Egg mass was repre-
sented as the weight of egg production per laying hen 
per day. Feed conversion ratio was calculated as grams 
of total feed consumption/total egg weight for each 
replicate.

Eggshell quality
Eggshell mechanical properties
Eggshell quality (2 groups, 12 replicates per group, 25 
eggs per replicate) was determined according to the 
methods as described earlier [33]. The egg weight was 
weighed first. Then, the eggshell thickness was tested 
with the Egg Shell Thickness Gauge (Israel Orka Food 
Technology Ltd., Ramat Hasharon, Israel) and calcu-
lated as the mean of equator and both poles of the egg. 
Afterwards, eggshell breaking strength was detected by 
the Egg Force Reader (Israel Orka Food Technology Ltd., 
Ramat Hasharon, Israel). After removing the egg content, 
the eggshell was washed, dried and weighed. The eggshell 
weight ratio was calculated as the percent ratio of the 
eggshell weight over the total egg weight.

Eggshell ultrastructure
Five eggshells per replicate (collected on the observation 
period) were collected to assess eggshell ultrastructure 
(in total 60 eggshells per group). The eggshell was washed 
with distilled water to remove the dirt and residual albu-
men. After drying at room temperature, two pieces (~ 0.5 
 cm2 each) of each eggshell were taken from the equatorial 
region, fixed in the specimen stage, and coated with gold 
powder. The vertical profiles of eggshells were imaged 
using a scanning electronic microscopy (SU8020, Hitachi 
Co., Ltd., Tokyo, Japan). The thickness of effective and 
mammillary layers was measured with the SEM ruler 

according to a previous report [32]. Briefly, the mammil-
lary thickness was assessed by measuring the length from 
the top of the membrane to the lower edge of the palisade 
layer. The effective thickness was taken as the length from 
the top of the cuticle to the bottom of the palisade layer. 
The calcified layer referred to the combined effective 
and mammillary layers. The thickness ratio was defined 
as the percentage of each layer relative to the calcified 
layer. Each sample was measured 3 times at random. Two 
pieces of each eggshell, which were obtained at 8.5 h PO, 
were fixed at an aluminum plate to observe their verti-
cal and external surfaces. Eggshells (two pieces with ~ 0.5 
 cm2 each) collected at 18.5 h PO were similarly fixed to 
photograph the vertical profile. The thickness of effec-
tive, mammillary and calcified layers was determined as 
described above.

Eggshell components
Five eggshells per replicate, weighing close to the aver-
age eggshell weight, were collected on the observa-
tion period. The eggshells were first washed, dried and 
weighed (W1). Then, equal weights from each eggshell 
were taken, mixed and crushed into one sample for the 
determination of eggshell Ca and P content according to a 
previously reported method [33]. Briefly, 0.5 g of eggshell 
power was dissolved in 3 mL hydrogen peroxide and 3 
mL nitric acid then withheld for 2 h. A microwave diges-
tion system (MDS-10, Shanghai Xinyi Instrument Tech-
nology Co., Ltd., Shanghai, China) was used to further 
digest the samples. The Ca and P contents were deter-
mined as C1 and C2 by a flame atomic absorption spec-
trophotometry (Z2000, Hitachi Co., Ltd., Tokyo, Japan) 
and a spectrophotometer (UV-2700, Shimadzu Corp., 
Kyoto, Japan), respectively. Total Ca and P per eggshell 
were calculated using the following formula: total Ca per 
eggshell = W1/5×C1, total P per eggshell = W1/5×C2.

Bone quality
Bone geometrical characteristics
The left bones (1 bone per replicate) sampled at 8.5 h PO 
were thawed at 4  °C overnight and equilibrated at room 
temperature for 2 h. The whole bone was weighed (W2) 
first, then it was placed in a measuring cylinder with 
some water and the increased volume was recorded as 
bone volume (V). The density of bone was calculated 
according to the following formula: W2/V. The length and 
midpoint perimeter of the bone were measured using a 
string and a digital caliper. A digital caliper was used to 
determine the diameters of the incision site of the dis-
tal left bones collected at 18.5  h PO. The external and 
internal cortical bone diameters were defined as H and 
h in the horizontal (medial-lateral) plane and as B and 
b in the vertical (anterior-posterior) plane. The cortical 
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cross-sectional area, mean relative wall thickness and 
mean cortical index were calculated with equations as 
previously described [34, 35]: cortical cross-sectional 
area = π × [(H × B) − (h × b)]/4; mean relative wall thick-
ness = [(B − b)/b + (H − h)/h]/2; mean cortical index = 
[(B − b)/B + (H − h)/H]/2.

Bone mineral measurements
After the analysis of geometrical characteristics, the left 
bones (1 bone per replicate, sampled at 8.5 h PO) with-
out any soft tissues were used to determine bone mineral 
content (BMC) and bone mineral density (BMD) with a 
dual energy X-ray absorptiometry (DTX-200, Osteom-
eter MediTech, Hawthorne, CA, USA) according to pre-
vious studies [31, 36]. The air was used to calibrate the 
measurements. Three regions were tested: the proxi-
mal, middle and distal sections, each of which was 1 cm 
long. The detection regions were kept consistent for all 
samples.

Bone components
The bone (1 sample per replicate), after measuring BMC 
and BMD, was used to determine bone components. 
The bone was broken first, and at each subsequent step, 
all bone fragments from each sample were carefully col-
lected to ensure that all measurements were conducted 
on the whole bone. The samples were dehydrated in etha-
nol and defatted with petroleum ether, followed by dry-
ing in the oven overnight at 105 °C. The fat-free dry bone 
was weighed. Then, the determination of bone ash was 
carried out using a muffle furnace. The ash content of the 
bone sample was calculated via division of the ash weight 
by the fat-free dry weight. The bone Ca and P contents 
in ash were measured as described by the method above 
(“Eggshell Quality, Ultrastructure and Components”), 
followed by calculating the ratio of Ca and P. Total Ca/P 
per bone was the product of bone Ca/P content in ash 
and ash weight.

Bone histomorphometry
The method of Goldner’s Trichrome stain was carried 
out as previously reported [37]. The formalin-fixed speci-
mens (1 sample per replicate) were decalcified, dehy-
drated and embedded in paraffin. A microtome was used 
to slice the paraffin blocks into the sections that were 
4 μm thick. After dewaxing, Goldner’s Trichrome stain-
ing was performed with a commercial kit (Servicebio 
technology Co., Ltd., Wuhan, China) according to the 
manufacturer’s instructions. Pannoramic scanner system 
(3DHISTECH Ltd., Budapest, Hungary) was used to scan 
the images of the bones.

RNA extraction, library construction, sequencing and data 
analysis in the uterus
Total RNA of the uterus samples was extracted with 
TRNzol reagent (Tiangen Biotech Co., Ltd., Beijing, 
China), and its integrity was verified by the Agilent Bio-
analyzer 2100 system (Agilent Technologies, CA, USA). 
RNA Libraries were prepared using  NEBNext® Ultra™ 
RNA Library Prep kit for  Illumina® (NEB Inc., Ipswich, 
MA, USA). Briefly, the mRNA was enriched using mag-
netic beads (for eukaryotes) with Oligo (dT) and broken 
into short fragments of approximately 150 bp in fragmen-
tation buffer. Fragmented mRNA was used as a template, 
and first-strand cDNA was achieved using random hex-
amers. The second strand cDNA was subsequently syn-
thesized by adding dNTPs, RNase H, DNA polymerase I 
and buffer. The double-stranded cDNA was purified with 
AMPure XP beads, then terminal repair and 3′-end sin-
gle nucleotide A (adenine) addition were performed for 
adaptor ligation. Fragment size selection of library was 
also carried out using AMPure XP beads. The cDNA 
library was constructed by PCR amplification. AMPure 
XP system (Beckman Coulter, Beverly, USA) was used 
for the purification of PCR products, and Agilent Bio-
analyzer 2100 system was used to assess library quality. 
Finally, the TruSeq PE Cluster kit v4-cBot-HS (Illumina, 
San Diego, CA, USA) was used to perform the clustering 
of the index-coded samples on a cBot Cluster Generation 
System, and the libraries were sequenced on an Illumina 
platform (Illumina, San Diego, CA, USA). The sequence 
data have been submitted to the NCBI Sequence Read 
Archive under the accession numbers: PRJNA1000560.

The raw reads were filtered by removing low-qual-
ity reads with ambiguous ‘N’ base, adapter sequences, 
rRNA, and short reads (less than 20 nt) with FasTX clip-
per v0.0.13. The resulting clean reads were mapped using 
HISAT2 [38] with Gallus gallus GRCg6 as the reference 
annotation file. The expression levels of mapped genes 
were normalized as FPKM using StringTie. The differen-
tially expressed genes (DEGs) between the HBS and LBS 
groups were analyzed separately at 8.5 and 18.5  h PO. 
The analysis of DEGs was performed using the DESeq2 
software, with the following screening threshold: |Fold 
change| > 1.3 and the false discovery rate (FDR, adjusted 
with Benjamini and Hochberg’s approach) < 0.05. The 
DEGs were mainly obtained from 8.5 h PO, while there 
were only a few differences of transcriptional profiles at 
18.5  h PO between HBS and LBS. Thus, only DEGs at 
8.5 h PO were used for onward analysis. To elaborate on 
the activated pathways associated with the differences of 
mammillary knobs’ growth at 8.5 h PO, we analyzed for 
enriched Gene Ontology (GO) biological processes on 
DEGs using ClueGO.
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qRT‑PCR validation of RNA sequencing results
Twelve genes of each eggshell calcification stage were 
selected for qRT-PCR validation. The cDNA was syn-
thesized using reverse transcription with Easy Script 
First-Strand cDNA Synthesis SuperMix kit (TransGen 
Biotech Co., Ltd., Beijing, China) following manufac-
turer’s instruction. Each reverse transcription included 
1.5  µg RNA. Quantitative PCR assays were performed 
utilizing a CFX96 C1000TM thermal cycler (Bio-Rad, 
CA, USA). And each assay was done with 3 technical rep-
licates. Primer sequences are listed in Additional file  2. 
Primer efficiencies ranged from 91.08% to 109.70%.

Apoptosis‑related markers in the uterus
The p62, p53, LC3 and immunoglobulin A protein con-
tents of the uterus were quantified using an ELISA 
method. The kits of p62 and p53 were purchased from 
Shanghai Enzyme-linked Biotechnology Co., Ltd. (Shang-
hai, China), and those of LC3 and immunoglobulin A 
were obtained from Jiangsu Meimian Industrial Co., 
Ltd. (Jiangsu, China). The activities of caspase-3 and cas-
pase-8 were assessed using the caspase-3 and caspase-8 
activity assay kits (Beyotime, Shanghai, China) according 
to the manufacturer’s protocol. The protein concentra-
tions were measured with a Bradford protein assay kit 
(Beyotime).

Western blot analysis was performed to detect the 
relative expression of Bcl-2 and Bax proteins. Total pro-
teins were extracted by a commercial kit (Beyotime), 
supplemented with protease/phosphatase inhibitors 
(Beyotime). Lysis buffer contained 20 mmol/L Tris (pH 
7.5), 150 mmol/L NaCl, 1% Triton X-100 and a cocktail 
of protease inhibitors. The protein concentrations were 
measured with a BCA protein assay kit (Beyotime). A 
total of 20  µg protein was loaded in each lane. Follow-
ing electrophoresis, the protein samples were transferred 
to a PVDF membrane (Bio-Rad, CA, USA). The mem-
brane was blocked with 5% non-fat dry milk (TBS solu-
tion with 0.1% Tween) for 45 min with agitation at room 
temperature, followed by overnight incubation with 
primary antibodies for Bax (Abclonal, #A12009), Bcl-2 
(Abclonal, #A11025) and GAPDH (Abcam, #EPR16891), 
respectively. The membrane was then washed 3 times for 
10  min each time, and incubated with secondary anti-
body for 1 h at room temperature. After washing mem-
brane again, the blots were visualized with ECL reagent 
(Beyotime) in a dark room. Image analysis was conducted 
using Image-Pro Plus 6.0 software.

Hematoxylin‑eosin (HE) and TUNEL staining
Tissue samples of the uterus were fixed in formalin over-
night and embedded in paraffin blocks. The blocks were 
processed for routine microtome and stained by HE for 

histopathological observation. Another section was used 
to assay apoptosis with a fluorescein TUNEL assay kit 
(G1501, Servicebio Technology Co., Ltd., Hubei, China) 
based on manufacturer’s instruction. Firstly, tissue sec-
tions were deparaffinized and rehydrated. Proteinase K 
solution was then added to retrieve the antigen. Subse-
quently, membranes were disrupted, the TUNEL reac-
tion solution was added, and the nuclei were stained with 
DAPI solution. Finally, microscopic examination and 
image collection were conducted using a fluorescence 
microscope (Nikon Instruments Inc., Tokyo, Japan). Blue 
color indicates cell nucleus, and green color indicates 
positive apoptosis cells.

Quantification of bone remodeling‑related mRNA in bone
The humerus and femur samples without cartilage were 
removed from −80  °C. The sample was hammered into 
pieces and further ground manually with a mortar and 
pestle in the liquid nitrogen. Total RNA was extracted 
using EASYspin Plus Bone Tissue RNA kit (Aidlab Bio-
technologies Co., Ltd., Beijing, China) according to the 
kit instructions. Agarose gel electrophoresis was used to 
confirm RNA integrity, and a NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific, Waltham, MA, 
USA) was used to determine the purity and concentra-
tion of the RNA. The cDNA synthesis and quantification 
of target gene expression were performed as described 
in the “qRT-PCR validation of RNA sequencing results”. 
The primers are also supplemented in Additional file  2. 
Primer efficiencies ranged from 91.91% to 107.86%.

Calcium, phosphorus, bone remodeling‑related enzyme 
and hormone concentrations in serum
Serum was thawed at 4  °C and analyzed for Ca and P 
concentrations using a microplate reader with Ca and 
P assay kits (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China). The bone-specific alkaline phos-
phatase (BALP) level was detected using a commercial 
kit (Shanghai Meilian biological Technology Co., Ltd., 
Shanghai, China), and the tartrate resistant acid phos-
phatase (TRAP) activity were determined using a TRAP 
activity kit (Shanghai Meilian biological Technology Co., 
Ltd.). Radioimmunoassay (RIA) kits were purchased 
from Beijing Sino-UK Institute of Biological Technol-
ogy (Beijing, China) to determine parathyroid hormone 
(PTH), estrogen  (E2), 25-hydroxyvitamin  D3 (25(OH)D3) 
and 1,25-dihydroxyvitamin  D3 (1,25(OH)2D3) concentra-
tions in serum.

Statistical analysis
Replicates (n = 12) were the experimental units for all 
analysis. The normal distribution (Shapiro-Wilk test) 
and homoscedasticity (Levene’s test) of all data were 
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firstly checked using SAS 9.4 (SAS Inc., Cary, NC, USA). 
An unpaired two-tailed Student’s t-test was also con-
ducted in SAS 9.4 (SAS Inc., Cary, NC, USA) to ana-
lyze the significance of the difference between the HBS 
and LBS. Data are presented as mean ± SD (standard 
deviation). Differences were considered significant at a 
P-value < 0.05. The correlation between eggshell and bone 
qualities was analyzed using Origin software. Relative 
gene expression levels were calculated using the  2−∆∆Ct 
method and normalized to avian β-actin as housekeeping 
gene.

Results
Laying performance and eggshell quality
The results of laying performance as well as eggshell qual-
ity and components are shown in Table 1. No significant 
differences were found in the laying performance (egg pro-
duction rate, egg mass, average egg weight, average daily 
feed intake and feed conversion ratio) between HBS and 
LBS (P > 0.05). The eggshell breaking strength, thickness, 
weight and weight ratio were significantly lower in the LBS 
than those in the HBS (P < 0.05). HBS and LBS showed 
no significant difference in Ca and P contents of eggshell 
(P > 0.05). However, total Ca per eggshell and total P per 
eggshell were significantly reduced in the LBS (P < 0.05).

Scanning electron microscopy images in Fig. 2A show 
the eggshell ultrastructure of laying hens in HBS and 
LBS. Compared with the HBS, the LBS had a thinner 
thickness of calcified layer and effective layer (Fig.  2B, 
P < 0.05). The LBS significantly decreased the thickness 
ratio of effective layer while increasing that of mammil-
lary layer (Fig. 2B, P < 0.05).

Bone quality
The bone geometrical characteristics are presented in 
Table  2. The mean cortical index of both humeri and 
femurs were significantly higher in the LBS than in the 
HBS (P < 0.05). The mean relative wall thickness of femur 
in the LBS was thicker than that of the HBS (P < 0.05). 
No significant differences were observed between the 
two groups on the bone length, weight, volume, density, 
midpoint perimeter and cortical cross-sectional area 
(P > 0.05).

Table 3 compares bone mineral measurements between 
HBS and LBS. The humeral midshaft and proximal BMD 
of the LBS were significantly greater than those of the 
HBS (P < 0.05). The humerus in the LBS had significantly 
higher proximal BMC compared with that in the HBS 
(P < 0.05). However, there were no significant difference 
on mineral measurements of the femur between these 
two groups (P > 0.05).

Differences in the bone components between the 
HBS and LBS are presented in Table 4. The LBS had the 

humeri with higher fat-free dry weight, ash, organic mat-
ter, total Ca and P per bone in comparison with the HBS 
(P < 0.05). The ash and ash content of the femur were sig-
nificantly higher in the LBS compared with those in the 
HBS (P < 0.05), while Ca and P contents in ash were lower 
(P < 0.05).

Representative images of the humerus and femur 
stained with Goldner’s Trichrome are illustrated in Fig. 3. 
The lateral edge of the cortical bone was clear and flat 
in both groups, whereas its medial margin in the femur 
had indistinct borders with adjacent trabecular bone. 
The cortical thickness of both femur and humerus was 
thicker in the LBS than in the HBS. The medial edge of 
the humerus in the LBS was attached by a thick layer of 
spongy bone, while no similar structure was observed 
in the HBS. More irregular erosions and demineralized 
regions were seen in the femoral intracortical region in 
the HBS. In contrast, the endocortical surface was flatter 
in the femur of the LBS.

Correlations between eggshell and bone qualities
Figure  4 demonstrates the correlations between egg-
shell and bone quality. There were negative correlations 
between eggshell breaking strength and mean cortical 
index (r = −0.434), midshaft BMD (r = −0.556), proximal 
BMD (r = −509), proximal BMC (r = −0.465), fat-free 
dry weight (r = −0.501), ash (r = −0.507), organic matter 

Table 1 Differences in laying performance and eggshell qualities 
of the hens laying eggs with different eggshell breaking  strengtha

HBS High eggshell breaking strength group, LBS Low eggshell breaking strength 
group
a Data represent means with standard deviation based on 12 replicates (10 
birds/replicate for laying performance; 25 eggs/replicate for eggshell quality; 5 
eggshells for eggshell components)

Items HBS LBS P‑value

Laying performance

 Egg production rate, % 89.35 ± 2.75 86.37 ± 3.88 0.060

 Egg mass, g/hen/d 56.36 ± 2.54 55.36 ± 3.76 0.456

 Average egg weight, g 63.19 ± 1.69 64.16 ± 2.30 0.250

 Average daily feed intake, 
g/hen/d

107.74 ± 6.31 105.43 ± 5.78 0.360

 Feed conversion ratio, g/g 1.92 ± 0.16 1.91 ± 0.15 0.938

Eggshell quality

 Breaking strength, N 46.79 ± 2.56 25.99 ± 2.51 < 0.001

 Eggshell thickness, mm 0.35 ± 0.02 0.30 ± 0.03 < 0.001

 Eggshell weight, g 6.59 ± 0.42 5.85 ± 0.41 < 0.001

 Eggshell weight ratio, % 10.42 ± 0.42 9.13 ± 0.54 < 0.001

Eggshell components

 Ca content, mg/g 374.64 ± 7.32 378.27 ± 7.67 0.229

 Total Ca per eggshell, g 2.47 ± 0.10 2.19 ± 0.08 < 0.001

 P content, mg/g 0.96 ± 0.09 0.94 ± 0.11 0.619

 Total P per eggshell, mg 6.29 ± 0.57 5.49 ± 0.73 0.007
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(r = −0.483), Ca content in ash (r = −0.570), P content 
in ash (r = −0.453), total Ca per bone (r = −0.682), total 
P per bone (r = −0.670) of the humerus as well as ash 
content (r = −0.436), total Ca per bone (r = −0.479) and 
total P per bone (r = −0.481) of the femur (P < 0.05). Egg-
shell thickness, weight ratio, total Ca per eggshell and 
effective layer thickness were negatively correlated with 
midshaft BMD (r = −0.637, −0.665, −0.555, −0.530), 
total Ca per bone (r = −0.830, −0.717, −0.623, −0.508), 
total P per bone (r = −0.837, −0.710, −0.595, −0.489) 
of the humerus (P < 0.05). Eggshell weight ratio, total Ca 
per eggshell, calcified layer thickness and effective layer 
thickness were negatively correlated with femoral ash 
content (r = −0.590, −0.508, −0.433, −0.493, P < 0.05). 
Negative correlations were also observed between: total 
Ca per eggshell, total P per eggshell and total Ca per 
bone (r = −0.518, −0.458), total P per bone (r = −0.511, 
−0.467) of the femurs (P < 0.05).

Eggshell ultrastructure at the initiation (8.5 h PO) 
and growth (18.5 h PO) stages of eggshell calcification
As shown in Fig. 5D, at 8.5 h PO, images of vertical pro-
files identified the mammillary knobs were shorter in the 
LBS than in the HBS, indicating they grew more slowly 

in the LBS. Meanwhile, external ultrastructural analyses 
displayed the mammillary knobs were smaller and had 
less fusion in the LBS compared with the HBS. Addi-
tionally, at 18.5 h PO, the thickness of calcified layer and 
effective layer was thinner in the LBS compared to the 
HBS (P < 0.05). However, no significant difference was 
observed in the thickness of mammillary layer (P > 0.05).

Differentially expressed genes (DEGs) in uterus at initiation 
(8.5 h PO) and growth (18.5 h PO) stages of eggshell 
calcification
A total of 48 uterine samples were obtained in the cur-
rent study, of which two samples from the LBS at 8.5 h 
PO were rejected for further analysis, since they did 
not pass quality inspection. A total of 2,309,035,290 
clean reads were sequenced from 46 RNA libraries, over 
38.6 million reads for each sample (Additional file 3). Of 
these reads, 86.77%–89.66% were mapped to a unique 
position on the reference genome (Additional file 3). The 
Q30 (%) of all test samples were above 93.66%, and GC 
contents were stable at 48.43%–50.27%, indicating the 
sequence results were accurate and reliable. A total of 
130 DEGs were identified at 8.5 h PO between the HBS 
and LBS (Fig.  5B and Additional file  4), in which 122 

Fig. 2 Differences in the eggshell ultrastructure of hens laying eggs with different eggshell breaking strength. A Images of eggshell vertical profiles 
in high (HBS) and low (LBS) eggshell breaking strength groups under a scanning electron microscope. B Results of the eggshell ultrastructural 
characteristics. TT, total thickness; ET, effective layer thickness; MT, mammillary layer thickness. Data represent means with standard deviation based 
on 12 replicates with 5 eggshells each. An asterisk (*) indicates a significant difference (P < 0.05) between groups
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genes were upregulated and 8 genes were downregu-
lated in the LBS relative to the HBS. However, volcano 
plot showed only 1 DEG at 18.5 h PO between the two 

groups (Fig. 5C). Twelve genes of each calcification stage 
were selected for qPCR validation, and the gene expres-
sion patterns were in accordance with the transcriptome 
results (Additional file 5).

Functional enrichment analysis and gene network 
construction of DEGs at the initiation stage of eggshell 
calcification (8.5 h PO)
Functional enrichment analysis and gene network con-
struction of DEGs at 8.5 h PO (Fig. 6) revealed the strong 
representation of regulation of cell killing, regulation of 
hemopoiesis, negative regulation of hemopoiesis, regula-
tion of blood coagulation, as well as negative regulation of 
cell activation. Enrichment of DEGs that are active in posi-
tive regulation of immune effector process was also obvi-
ous. Twelve upregulated DEGs (BCL2L14, C1QA, C1QB, 
CARD11, CD3E, HCLS1, IL2RB, NCKAP1L, NFKBIA, 
PRKCB, SYK, TNFAIP8L1) were related to apoptosis and 
further annotated in the Additional file 6, which may sug-
gest an active apoptosis in the LBS. Seven upregulated DEGs 
(EDN2, IKZF1, PRKCB, UBASH3B, LCP1, MGP, SLC24A4, 
annotated in the Additional file 6) were associated with Ca 
transport. Of these, EDN2, IKZF1, PRKCB and UBASH3B 
involved the regulation of cellular Ca ion homeostasis.

Table 2 Differences in bone geometrical characteristics of the 
hens laying eggs with different eggshell breaking  strengtha

HBS High eggshell breaking strength group, LBS Low eggshell breaking strength 
group
a Data represent means with standard deviation based on 12 replicates with 1 
bird each

Items HBS LBS P‑value

Humerus

 Length, cm 7.96 ± 0.25 7.93 ± 0.14 0.712

 Weight, g 3.13 ± 0.09 3.36 ± 0.54 0.234

 Volume,  cm3 5.14 ± 0.71 5.21 ± 0.31 0.802

 Density, g/cm3 0.62 ± 0.09 0.64 ± 0.09 0.554

 Midpoint perimeter, cm 2.17 ± 0.14 2.08 ± 0.06 0.085

 Cortical cross-sectional area, 
 mm2

9.08 ± 0.80 9.91 ± 1.20 0.079

 Mean relative wall thickness 0.18 ± 0.02 0.22 ± 0.07 0.061

 Mean cortical index 0.15 ± 0.02 0.18 ± 0.04 0.045

Femur

 Length, cm 8.65 ± 0.09 8.78 ± 0.06 0.204

 Weight, g 9.05 ± 0.27 9.11 ± 0.14 0.829

 Volume,  cm3 7.16 ± 0.26 7.21 ± 0.12 0.875

 Density, g/cm3 1.27 ± 0.02 1.27 ± 0.02 0.976

 Midpoint perimeter, cm 2.61 ± 0.06 2.68 ± 0.03 0.313

 Cortical cross-sectional area, 
 mm2

12.11 ± 2.25 13.99 ± 2.59 0.087

 Mean relative wall thickness 0.15 ± 0.03 0.18 ± 0.04 0.042

 Mean cortical index 0.13 ± 0.02 0.15 ± 0.02 0.047

Table 3 Differences in bone mineral measurements of the hens 
laying eggs with different eggshell breaking  strengtha

HBS High eggshell breaking strength group, LBS Low eggshell breaking strength 
group, BMD Bone mineral density, BMC Bone mineral content
a Data represent means with standard deviation based on 12 replicates with 1 
bird each

Items HBS LBS P‑value

Humerus

 Distal BMD, g/cm2 2.83 ± 0.18 2.96 ± 0.20 0.096

 Midshaft BMD, g/cm2 2.89 ± 0.22 3.14 ± 0.30 0.028

 Proximal BMD, g/cm2 2.68 ± 0.22 2.99 ± 0.22 0.002

 Distal BMC, g 2.57 ± 0.14 2.62 ± 0.17 0.436

 Midshaft BMC, g 1.66 ± 0.19 1.73 ± 0.19 0.366

 Proximal BMC, g 2.35 ± 0.20 2.59 ± 0.18 0.005

Femur

 Distal BMD, g/cm2 2.75 ± 0.21 2.86 ± 0.19 0.218

 Midshaft BMD, g/cm2 3.04 ± 0.26 3.04 ± 0.35 0.959

 Proximal BMD, g/cm2 2.78 ± 0.26 2.80 ± 0.19 0.876

 Distal BMC, g 2.50 ± 0.18 2.55 ± 0.17 0.551

 Midshaft BMC, g 1.74 ± 0.14 1.68 ± 0.20 0.354

 Proximal BMC, g 2.44 ± 0.22 2.41 ± 0.18 0.732

Table 4 Differences in bone components of the hens laying 
eggs with different eggshell breaking  strengtha

HBS High eggshell breaking strength group, LBS Low eggshell breaking strength 
group
a Data represent means with standard deviation based on 12 replicates with 1 
bird each

Items HBS LBS P‑value

Humerus

 Fat-free dry weight, g 2.24 ± 0.12 2.53 ± 0.30 0.021

 Ash, g 1.39 ± 0.08 1.55 ± 0.17 0.022

 Ash content, % 62.07 ± 0.99 61.22 ± 1.66 0.203

 Organic matter, g 0.85 ± 0.05 0.98 ± 0.14 0.016

 Ca content in ash, % 36.75 ± 0.35 37.19 ± 0.57 0.137

 Total Ca per bone, mg 513.59 ± 17.49 586.49 ± 62.02 0.020

 P content in ash, % 16.28 ± 0.22 16.47 ± 0.31 0.249

 Total P per bone, mg 227.49 ± 7.77 259.75 ± 28.35 0.023

 Ratio of Ca and P 2.25 ± 0.01 2.26 ± 0.03 0.916

Femur

 Fat-free dry weight, g 5.32 ± 0.53 5.70 ± 0.52 0.099

 Ash, g 3.00 ± 0.35 3.40 ± 0.43 0.025

 Ash content, % 56.33 ± 3.17 59.45 ± 2.64 0.021

 Organic matter, g 2.32 ± 0.29 2.30 ± 0.14 0.848

 Ca content in ash, % 37.41 ± 0.37 36.63 ± 0.60 0.022

 Total Ca per bone, mg 1113.62 ± 94.55 1235.27 ± 137.7 0.105

 P content in ash, % 16.48 ± 0.17 16.07 ± 0.29 0.012

 Total P per bone, mg 490.46 ± 40.33 541.34 ± 54.71 0.097

 Ratio of Ca and P 2.27 ± 0.01 2.28 ± 0.03 0.509
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Identification of apoptosis‑related indicators in the uterus
As shown in Fig.  7, the level of p62 protein was signifi-
cantly higher in the LBS (P < 0.05). The activity of caspase-8 
was increased in the LBS (P < 0.05). The LBS significantly 
increased the relative protein expression of Bax, while 
reducing Bcl-2 expression and the ratio of Bcl-2/Bax 
(P < 0.05). Representative images of TUNEL assay are illus-
trated in Fig. 7H. The uterus of the LBS showed a significant 
increase in TUNEL-positive cells (P < 0.05, Fig. 7G). The HE 
staining (Fig. 7H) showed that the uterine tissue from both 
groups had an intact epithelial structure, with the epithelial 
cells arranging tightly. However, the uterine tissue in the 
LBS exhibited multiple interstitial edemas and loose con-
nective tissue with a few inflammatory cell infiltrations.

Quantification of bone remodeling‑related mRNA in bones 
at initiation (8.5 h PO) and growth (18.5 h PO) stages 
of eggshell calcification
Figure  8A demonstrates the relative expression lev-
els of bone remodeling genes. At 8.5 h PO, a significant 
increase of runt-related transcription factor 2 (Runx2) 
expression was shown in the humerus of the LBS com-
pared to that of the HBS (P < 0.05), while no significant 
differences were observed in the expression levels of 
other genes (P > 0.05). The expressions of humeral Runx2 
and OCN genes were significantly upregulated in the LBS 
compared with those in the HBS (P < 0.05). No signifi-
cant differences were observed in the expression of bone 

remodeling-related genes in femurs (Runx2, OCN, OPN, 
COL1, ALP, TRAP, Cts K, P > 0.05).

Changes of calcium, phosphorus, bone remodeling‑related 
enzymes and hormones in serum during eggshell 
calcification
The activity of TRAP and the levels of BALP, Ca, P, PTH, 
 E2, 1,25(OH)2D3 and 25(OH)D3 are presented in Fig. 8B–
D. Compared with the HBS, the LBS had a higher serum 
BALP level at 18.5 h PO (P < 0.05) while no difference was 
observed at 8.5 h PO (P > 0.05). No significant differences 
appeared in the activity of TRAP, nor in the levels of Ca 
and P between the HBS and LBS at both calcification 
periods (P > 0.05). The LBS significantly increased the 
level of serum PTH, but decreased that of 1,25(OH)2D3 
and 25(OH)D3 at 18.5  h PO (P < 0.05). At 8.5  h PO, the 
serum  E2 level was significantly higher in the LBS than in 
the HBS (P < 0.05), while there were no differences in the 
levels of PTH, 1,25 (OH)2D3 and 25(OH)D3 (P > 0.05).

Discussion
Eggshell breaking strength is an important egg quality 
trait. In the current study, the selected hens were from 
a flock with an average breaking strength of 34.55  N, 
and 20% of the hens in this flock laying eggs with egg-
shell breaking strength lower than 29 N. The eggs laid by 
these hens may be more prone to break and crack dur-
ing the collection and transportation [3]. Consistent with 

Fig. 3 Differences in bone histomorphometry of the hens laying eggs with different eggshell breaking strength. The insets (E–H) are the zoomed-in 
images of the black boxes in A–D. (A, B, E, F) in the humerus; (C, D, G, H) in the femur; (A, E, C, G) in the HBS; (B, F, D, H) in the LBS. Black arrows, 
cortical bones; red arrows, trabecular bones. HBS, high eggshell breaking strength group; LBS, low eggshell breaking strength group
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a previous study [39], the eggs with low eggshell break-
ing strength were accompanied by a thinner thickness, 
which was also reflected by an ultrastructural observa-
tion that LBS group showed a thinner effective layer and 
subsequently total calcified layer. The eggshell effective 
layer comprises about two thirds of the total calcified 

layer and plays crucial roles in resisting the inception 
and propagation of cracks [40]. The formation of egg-
shell ultrastructure is largely affected by the deposition 
of calcium carbonate during its calcification process [41]. 
As predicted, the eggshell of the LBS showed a lower 
weight, weight ratio and total Ca content. Taken together, 

Fig. 4 Correlation matrix for the eggshell and bone qualities. Item correlations are color graded. Red indicates positive correlations, and blue 
indicates negative correlations. *P < 0.05, **P < 0.01
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eggshell breaking strength reduction in late laying period 
may be related to the deterioration of ultrastructure 
(decreased effective layer) caused by the decrease of cal-
cium carbonate deposition.

The correlation between eggshell and bone quality may 
be different in various conditions since eggshell and bone 
quality were also influenced by diets and environmental 
factors [6–9, 31, 42]. Our previous study suggested that 

Fig. 5 Volcano plot of DEGs and eggshell ultrastructure at the initiation (8.5 h PO) and growth (18.5 h PO) stages of eggshell calcification. A shows 
a mimetic diagram of sampling, the uterus and eggshell were removed to determine the transcriptome and ultrastructure, respectively. B and D at 
the initiation stage of eggshell calcification; C and E at the growth stage of eggshell calcification. SM, shell membrane; MK, mammillary knob; TT, 
total thickness; ET, effective layer thickness; MT, mammillary layer thickness; PO, post-oviposition; HBS, high eggshell breaking strength group; LBS, 
low eggshell breaking strength group. Asterisk (*) denotes significant difference (P < 0.05) between the HBS and LBS
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eggshell quality exhibited simultaneous improvements 
with bone quality by changing a conventional caging 
system to an aviary system [31]. However, the present 
study exhibited negative correlations between bone and 
eggshell quality under the same feed and environmental 
factors, indicating that the HBS had higher risks for oste-
oporosis. This is in accordance with previous studies that 
reported hens with hard-shelled eggs or high production 
had poor-quality skeletons [3, 30]. The negative correla-
tions between eggshell and bone quality were mainly 
reflected in the components. It suggested that the bone 
remodeling tended to preserve bone mass in the hens 
with weak-shelled eggs, while it was prone to lose bone 
mass to address the Ca needs of eggshell calcification in 
the hens with hard-shelled eggs. Thus, under the same 
diet and environment, the negative correlations between 
eggshell and bone quality may be associated with the 
competition and delivery of Ca between the uterus and 
bones.

The uterus transports Ca to meet the Ca demands 
of eggshell calcium carbonate deposition at different 
stages of eggshell calcification. During the initiation 
stage of eggshell calcification, calcite crystals radially 
grow around the mammillary cones, then the adjacent 
mammillary knobs gradually come together and fuse at 

the spatial competition, forming the bases of palisade 
layer [43]. During this period, eggshell mammillary 
knobs grew slowly with few fusions in the LBS, indi-
cating a decreased deposition of calcium carbonate. 
However, such difference did not affect the frequency 
of abnormal mammillary knobs (Additional file  7) in 
the ultrastructural characterization of intact eggshells. 
During the growth stage of eggshell calcification, the 
eggshell effective layer thickness was thinner in the 
LBS, which was attributed to less early fusion of mam-
millary knobs at the initiation stage of eggshell calcifi-
cation as well as reduced calcium carbonate deposition 
at the growth stage of eggshell calcification. Thus, the 
eggshell ultrastructural deterioration (decreased effec-
tive layer thickness) was related to the decreasing of 
calcium carbonate deposition at both initiation and 
growth stages of eggshell calcification.

Uterus transports Ca and secretes matrix proteins to 
regulate the deposition of calcium carbonate during egg-
shell calcification. The uterine transcriptome analysis 
showed that the differences of calcium carbonate deposi-
tion were mainly caused by the transcriptional variations 
at the initiation stage of eggshell calcification, since only 
a few DEGs were observed at the growth stage, while 
130 genes were differentially expressed at the initiation 

Fig. 6 Functional enrichment analysis and gene network construction of DEGs at the initiation stage of eggshell calcification (8.5 h 
post-oviposition). Enrichment of DEGs that are active in regulation of cell killing, regulation of hemopoiesis, negative regulation of hemopoiesis, 
regulation of blood coagulation, negative regulation of cell activation, as well as positive regulation of immune effector process was noted. GO 
terms are presented as nodes in functionally grouped networks based on the GO cluster algorithm, where only the most significant term per group 
is labeled. The pie chart illustrates the percentage distribution of genes shown in the related functional groups
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stage. The mass transport of Ca in the uterus is required 
for the maintenance of eggshell calcification. In this 
study, 7 DEGs (EDN2, IKZF1, PRKCB, UBASH3B, LCP1, 
MGP, and SLC24A4) were associated with Ca transport, 
of which EDN2, IKZF1, PRKCB and UBASH3B involved 
cellular Ca ion homeostasis and positive regulation of 
cytosolic Ca ion concentration. Their upregulations in the 
LBS may induce a rise in cytosolic Ca ion concentration, 
which could lead to apoptosis due to the cellular Ca over-
load [44, 45]. In agreement with this, the upregulation of 
a GO cluster relevant for cell killing along with the genes 
related to apoptosis (BCL2L14, C1QA, C1QB, CARD11, 
CD3E, CSF1R, E2F8, HCLS1, IL2RB, NCKAP1L, NFK-
BIA, PRKCB, SPI1, SYK,  and TNFAIP8L1) suggested an 
excessive apoptosis, which may aggravate tissue damages 
in the LBS. MGP is a negative regulator for vascular calci-
fication [46], and its upregulation of gene expression may 

lead to a disorder in chickens via inhibiting Ca-depend-
ent function [47]. LCP1 is of great significance in the adi-
pogenesis and lipid metabolism, and the overexpression 
of LCP1 could suppress lipid catabolism and increase adi-
pogenesis and lipogenesis [48]. The lipid accumulation in 
the aged laying hens would hinder uterine function [49] 
and interfere eggshell calcification [50]. The SLC24A4 
family exports Ca out of the cell with the potassium via 
entry of sodium [51, 52]. However, its localization in the 
uterus and biological function in eggshell calcification 
were not clear and require further inquiry. Additionally, 
the enrichment of a GO cluster on hemopoiesis linked 
with tissue repair may contribute to the repair of tissue 
damage that result from apoptosis-mediated cell death 
[53]. The upregulation of NRG1 was concordant with 
this, which is involved in the development and regenera-
tion of the chicken reproductive tract through mediating 

Fig. 7 Identification of apoptosis-related indicators at the initiation stage of eggshell calcification (8.5 h post-oviposition). The protein contents 
of p53 (A), p62 (B), LC3 (C), immunoglobulin A (IgA, D); the activity of caspase-8 and caspase-3 (E); Western blot results and quantification of Bax 
and Bcl-2 (F); TUNEL-positive cells ratio (G); TUNEL staining (20 ×) and HE staining (H), interstitial edemas (black arrow), loose connective tissue (red 
arrow) and inflammatory cell infiltration (yellow arrow). HBS, high eggshell breaking strength group; LBS, low eggshell breaking strength group. 
Asterisk (*) denotes significant difference (P < 0.05) between the HBS and LBS
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 E2 [54]. The differences in the immune repones between 
the hens with different eggshell breaking strength, such 
as the positive regulation of immune effector process 
and regulation of blood coagulation, could be due to 
the phagocytic clearance of apoptotic cells. Overall, the 
hens with weak-shelled eggs may induce intracellular 
Ca overload to trigger excessive apoptosis and aggravate 
uterine tissue damages, and hematopoietic repair may be 
involved in the subsequent repair of injury.

Maintenance of tissue integrity is fundamental to 
transport Ca in the uterus. Although, as a compensatory 
mechanism, the hematopoiesis system was activated and 
exerted its repair property, the extents of uterine injury 
and repair were not understood. Thus, the apoptosis 
and tissue homeostasis indexes were further analyzed in 
the current study to assess the mechanism underlying 
the decrease in the eggshell Ca deposition. Autophagy, 
an evolutionarily conserved process among eukaryotes, 
plays a critical role in homeostasis in cells and tissues 
by the clearance of detrimental and damaged proteins 
and dysfunctional organelles [55]. The levels of p62 and 
LC3 identify the progression of autophagy induction, of 
which the former is an autophagy substrate, and the lat-
ter increases synchronously with increased autophagic 
flux [56]. An increased level of p62 with a constant LC3 
in the LBS hinted a disruption in the downstream steps 
of autophagy, that was unable to clear autophagosomes 
and degrade p62 [57]. On the one hand, this could lead 

to the cellular dysfunction and aggravate apoptosis [58]. 
On the other hand, autophagy defect may facilitate exces-
sive inflammatory responses and create tissue damages 
[59]. Apoptosis acts as an important defense mechanism 
of host against infection, in which caspase 8, caspase 3, 
Bcl-2 and Bax play key roles. The increased caspase 8 
activity in the LBS indicates the initiation of extrinsic 
apoptotic pathway, which could enhance the clearance of 
virus-infected cells [60]. Bcl-2 (anti-apoptotic) and Bax 
(pro-apoptotic) belong to Bcl-2 family that is a central 
regulator of apoptosis, the reduction in Bcl-2/Bax ratio 
of the LBS suggested cell death in the apoptosis response 
[61]. Activation of the pro-apoptotic effect in the LBS 
was further confirmed by an increase of TUNEL-posi-
tive cells in its uterus. Additionally, most apoptotic cells 
were localized at the inner of the uterine fold, which was 
consistent with the HE staining result that revealed the 
edema or dissolution in tubular glands. In general, the 
uterus of the LBS was more sensitive to apoptosis and 
tissue damages at the initiation stage of eggshell calcifi-
cation. Similarly, HE staining showed the LBS also had 
obvious tissue damage at the growth stage of eggshell 
calcification. Uterine tissue injury is bound to hamper Ca 
transport, reducing eggshell quality even inducing weak-
shelled and soft-shelled eggs [62, 63]. Thus, the breaking 
strength reduction and ultrastructural deterioration of 
eggshells may be attributed to a declined Ca transport 
due to uterine tissue damages.

Fig. 8 Differences in the bone remodeling markers and hormones of the hens laying eggs with different eggshell breaking strength. The 
quantification of bone remodeling related mRNA in bone (A), bone remodeling related enzymes (B) as well as calcium and phosphorus 
concentrations (C) and calcium metabolism related hormones (D) in serum. Runx2, runt-related transcription factor 2; OCN, osteocalcin; OPN, 
osteopontin; COL1, collagen 1; ALP, alkaline phosphatase; TRAP, tartrate-resistant acid phosphatase; Cts K, cathepsin K. HBS, high eggshell breaking 
strength group; LBS, low eggshell breaking strength group. Different superscripts in the adjacent cells indicate significant differences (P < 0.05). 
Asterisk (*) denotes significant difference (P < 0.05) between the HBS and LBS
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The blockage of Ca transport resulting from tissue 
damage may influence the deposition and release of skel-
etal Ca. Although the expression levels of genes related 
to bone remodeling did not differ significantly in the 
femur, the geometrical and compositional changes sug-
gested increased bone resorption in the femur of HBS. 
In the current study, femoral geometric metrics showed 
no difference in the midpoint perimeter, while significant 
decreases in the mean relative wall thickness and mean 
cortical index were observed in the HBS, leading to a 
larger endocortical bone diameter. Such enlarged diam-
eter and more structural damages of endocortical bones, 
such as irregular erosions in the endocortical surface and 
more demineralized regions in the intracortical region, 
are usually representative of endocortical resorption 
in human beings [64, 65]. Therefore, more resorption 
could occur in the femur of hens laid hard-shelled eggs to 
meet the Ca requirement during eggshell calcification, in 
return decreased bone quality.

Humerus exhibited similar variations as the femur 
manifested by enlarged endocortical diameter and the 
lower skeletal minerals and components in the HBS. 
However, unlike the femur, such difference in the 
humerus may be related to more endocortical forma-
tion in the LBS rather than more endocortical resorption 
in the HBS, since the LBS had a thicker layer of woven 
bone that lined the intracortical portion of the bone. The 
woven bone, an intermediate form of bone development, 
represented the initiation of intramembranous ossifica-
tion in the LBS [66]. Runx2 is involved in the regulation 
of genes responsible for the biosynthesis of bone-specific 
protein [66, 67]. At the growth stage of eggshell calcifica-
tion, increased Runx2 in the LBS appeared to upregulate 
OCN expression that would facilitate the biosynthesis of 
skeletal organic matrix [68] and the anchoring of Ca and 
phosphate [19], which is a prerequisite for the increment 
of the cortical bone formation. Additionally, BALP is a 
typical serum marker that reflects the rate of bone for-
mation in bone tissue [69], and increased serum BALP 
level in the LBS indicated a more intense osteogenesis in 
bones. Thus, the humerus of hens with weak shells had 
more bone formation at the growth stage of eggshell 
calcification. The coupling of bone formation and bone 
resorption maintain bone homeostasis. During eggshell 
formation, following the bone resorption, bone displays 
an intense osteoblastic activity that remodels new bone 
for the next cycle of eggshell calcification [70]. The uterus 
of the LBS did not require extensive Ca consumption 
due to its blockage of Ca transport, thus Ca redundancy 
obtained by bone resorption may be recovered to per-
form new bone formation. In contrast, in the HBS, bone 
formation may be inhibited in the humerus due to an 
increased acquisition of Ca in the uterus.

Blood Ca concentration and its regulatory factors may 
be the key signaling for the crosstalk between uterus and 
skeletons due to their highly dependence on the Ca. PTH 
and 1,25(OH)2D3 are two major calcium-regulating hor-
mones that involved in Ca homeostasis during eggshell 
calcification by directly and indirectly mediating bone 
remodeling and intestinal Ca absorption [71]. The effect 
of PTH on bones is contingent on the periodicity of the 
PTH signal [72], and the intermittent increase of the 
serum PTH level would result in an anabolic effect on 
rat metatarsal [73]. Thus, increased humerus formation 
in the LBS may be related to the temporary increase of 
serum PTH at the growth stage of eggshell calcification. 
Increased serum PTH may account for the enhancement 
of Runx2-dependent transcription via mediating Runx2 
protein expression in the LBS [74], thereby stimulating 
the synthesis of bone biomarkers associated with forma-
tion. The secretion of PTH is subject to a direct regula-
tion of calcium-sensing receptors and a negative feedback 
regulation by vitamin D receptors [75, 76]. In the LBS, the 
diminished serum active vitamin  D3 may maintain the 
PTH at a high level by attenuating negative regulation. 
Inflammation and immune response evoked with uter-
ine damages may be a possible reason for the reduction 
in the circulating levels of 25(OH)D3 and 1,25(OH)2D3, 
since inflammation could affect vitamin  D3 metabolism by 
mediating the downregulation of 1α-hydroxylase and the 
upregulation 24-hydroxylase [77]. Thus, the uterine dam-
age may affect bone remodeling through the regulation 
of vitamin  D3 metabolism and the PTH level. This study 
provides a possible pathway associated with hormones for 
the signal transmission between bone and uterus.

Conclusions
In conclusion, in aged laying hens, the lower eggshell 
breaking strength may be attributed to a declined Ca 
transport due to uterine tissue damages, which could 
affect eggshell calcification and lead to a weak ultrastruc-
ture. Impaired Ca transport in the uterus may result in 
reduced femoral bone resorption and increased humeral 
bone formation to maintain a higher minerals and 
bone quality in the LBS. Blood hormones such as PTH, 
1,25(OH)2D3 and 25(OH)D3 may be acting as mediators 
involved in signaling between bone and uterus.
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