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Abstract 

Oxidative stress has been associated with a number of physiological problems in swine, including reduced produc-
tion efficiency. Recently, although there has been increased research into regulatory mechanisms and antioxidant 
strategies in relation to oxidative stress-induced pig production, it remains so far largely unsuccessful to develop accu-
rate models and nutritional strategies for specific oxidative stress factors. Here, we discuss the dose and dose intensity 
of the causes of oxidative stress involving physiological, environmental and dietary factors, recent research models 
and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
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Introduction
Oxidative stress has been interpreted as an imbalance 
between oxidation and anti-oxidation (more oxidizing), 
which was first defined in 1985 [1]. Oxidative stress in 
pigs is often associated with other pathological factors, 
including metabolic disorders and placental dysfunc-
tion in sows [2], and poor growth performance in piglets 
[2, 3]. These factors have a direct impact on sow repro-
ductive performance and piglet growth. Therefore, it 
is crucial to address oxidative stress in pig production. 

Current research efforts are primarily focused on allevi-
ating oxidative stress in pigs by supplementing diets with 
antioxidants and free radical scavengers. However, the 
development of accurate models and nutritional strate-
gies for specific oxidative stress factors has been largely 
unsuccessful.

The basis for the definition of oxidative stress is reac-
tive oxygen species (ROS). ROS were the unregulated 
by-products of aerobic metabolism and other enzymatic 
processes that play a critical role in regulating cell func-
tion and biological processes. Uncontrolled production 
of ROS can overwhelm the ability of enzymatic and non-
enzymatic antioxidant defence mechanisms, leading to a 
state of oxidative stress and consequently damage many 
biological macromolecules such as lipids, DNA and pro-
teins [1]. The oxidative stress state can be measured, but 
find the specificity, has a strong correlation with physio-
logical and pathological status of pigs accurately respond 
stress markers for oxidative stress measurement, spe-
cific display certain conditions, has prognostic value and 
structure stability of cost-effective, is particularly impor-
tant to be used massively in pig production. In addition, 
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dose ranges for indicators of whether pigs are under 
oxidative stress at different stages are also not yet well 
understood.

Here, we discuss the dose and dose intensity of the 
causes of oxidative stress including physiological sta-
tus (pregnancy, lactation, neonatal or weaning stress), 
environmental factors (heat and cold stress) and dietary 
factors (dietary mycotoxins and lipid peroxidation) and 
regulatory metabolism in swine, the research models 
using different chemical compounds and also take into 
account the antioxidant strategies of nutritional regula-
tion to provide theoretical guidance for the subsequent 
oxidative stress research.

Causes of oxidative stress in swine
Oxidative stress in swine can be caused by various fac-
tors, including physiological factors, environmental fac-
tors, and dietary factors. These causes have been the 
focus of recent studies on stress responses and regulatory 
metabolism in swine [4]. In this section, we focus on the 
levels of different stress indexes and effects at different 
physiological stages and aim to provide a comprehensive 

understanding of the occurrence and mechanisms of oxi-
dative stress in swine.

Physiologically induced oxidative stress
Oxidative stress in sows—gestation and lactation
It is well known that pregnant sows had increased oxida-
tive stress during late gestation and lactation, which had 
an adverse effect on milk production, reproductive effi-
ciency, and ultimately sow longevity [5]. Low DNA dam-
age (21%) is present at d 30 of pregnancy (G 30), whereas 
increased DNA damage (38%–47%) is present through-
out the gestational and lactational periods. Furthermore, 
plasma retinol and α-tocopherol concentration were 
reduced at the end of gestation (G 110) compared with G 
30 [6]. Moreover, there is an increased systemic oxidative 
stress during late gestation and early lactation of sows, 
according to increasing levels of oxidative stress param-
eters, such as thiobarbituric acid reactive substances 
(TBARS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and 
ROS [7] (Data are shown in Fig.  1). However, there is 
still lack studies focus on the reference value of oxidative 
stress in sows cause by gestation and lactation.

Fig. 1 Overview of physiologically induced oxidative stress in swine. A The increased DNA damage and oxidative stress parameters were 
exhibited at the end of gestation and lactation in sows. B For neonatal piglets, the highest oxidative stress parameters levels were exhibited 
at 1 d after birth of neonatal piglets. After that the oxidative stress parameters were reduced by the activation of Nrf2 signaling, which were 
reduced at 7 d after birth. C For weaned piglets, the highest oxidative stress parameters levels were exhibited at 3 d after weaning of 14 d weaned 
piglets. After that, the oxidative stress parameters were reduced by the activation of Nrf2 signaling. SOD: superoxide dismutase; Gpx: glutathione 
peroxidase; CAT: catalase; T-AOC: total antioxidant capacity; MDA: malondialdehyde;  H2O2: hydrogen peroxide; ROS: reactive oxygen species; 
8-OHG: 8-hydroxyguanosine; 8-OHdG: 8-hydroxy-2 deoxyguanosine; TBARS: thiobarbituric acid reactive substances; RLU: relative light unit. The data 
in figure are come from the references [6–15]
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Oxidative stress in piglets—birth and weaning stress
Due to their underdeveloped antioxidant systems, neo-
natal piglets are unable to efficiently scavenge excessive 
free radicals, resulting in oxidative stress [8]. Oxidative 
stress parameters like plasma malondialdehyde (MDA), 
protein carbonyl, and total 8-hydroxyguanosine (8-OHG) 
and 8-OHdG levels were exhibited at very high level at 
1 d, while gradually decreased with increasing age. Fur-
thermore, compared with the 1 d, superoxide dismutase 
(SOD) and glutathione peroxidase (GPx) activities were 
significantly increased (P < 0.05) at d  7, 14, and 21 [9] 
(Data are shown in Fig. 1). In addition, piglets with intra-
uterine growth restriction (IUGR) exhibit oxidative stress 
characterized by lower antioxidant enzyme activities and 
increased lipid peroxidation in the liver compared to nor-
mal-birth piglets [10].

The effects of weaning stress on swine production 
have been well charactered [11–14], so this review will 
not describe them excessively. Generally, weaning stress 
could cause the changes in oxidative indictors that lead 
to oxidative stress in piglets (Fig. 1). For example, wean-
ing induced oxidative stress was deteriorated until d 3 of 
weaning in 14 d weaned piglets. After that, the activation 

of nuclear factor erythroid 2-related factor 2 (Nrf2) sign-
aling may contribute to the alleviation of weaning stress 
[15]. Additionally, mitophagy, a process of selective deg-
radation of damaged mitochondria, has been regarded to 
play a role in the feedback alleviation of oxidative stress 
after weaning [16]. Therefore, these pathways may be 
efficient targets for the nutritional regulation to allevi-
ate weaning stress in piglets. Unfortunately, these arti-
cles mainly determine whether oxidative stress occurs 
according to the control group, as there is little research 
on the reference value of oxidative stress in weaning 
stress based on age and weight.

Environmentally induced oxidative stress
Pigs in particular are highly sensitive to changes in 
ambient temperature [17–19]. Therefore, this part 
focuses on how different environmental temperature-
induced stresses of pigs, such as heat stress and cold 
stress, affect the performance of pigs at different stages. 
We also provide the thermoneutral zone for pigs at dif-
ferent stages with the aim of providing better regulatory 
strategies to alleviate environmentally induced oxidative 
stress in pigs (Fig. 2).

Fig. 2 Overview of environmentally induced oxidative stress in swine. A At mid gestation, heat stress causes the placental inefficiency of sows. 
At late gestation and farrowing, heat stress causes the decrease of antioxidant capacity, which prolong the delivery time of sows. B At lactation, 
the decrease of antioxidant capacity causes the decreased lactating performance of sows and further reducing the offspring performance. C 
Heat stress could lead to oxidative stress in skeletal muscle of growing pigs. D The thermoneutral zone and levels of oxidative indictors for pigs 
at different stage. E Cold stress could cause the increased diarrhea incidence of neonatal piglets. SOD: superoxide dismutase; Gpx: glutathione 
peroxidase; CAT: catalase; T-AOC: total antioxidant capacity; MDA: malondialdehyde;  H2O2: hydrogen peroxide; ROS: reactive oxygen species. The 
data in figure are come from the references [20–31]
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Heat stress
Sows that are metabolically stressed during the perinatal 
period are more susceptible to high temperatures, result-
ing in heat stress and reduced reproductive function 
[18]. The most suitable temperature for sows is 18–22 °C 
according to a previous study [20]. During mid-gestation 
(G 40–60), high summer temperatures (33  °C between 
0900 and 1700  h, and 28  °C between 1700 and 0900  h) 
could lead to placental inefficiency in sows compared 
to a thermoneutral environment (constant 20  °C) [21]. 
During late gestation, compared to spring temperatures 
(from March to May, approximately 15–24  °C), high 
summer temperatures (from July to September, approxi-
mately 27.5–30  °C) reduced the antioxidant activities 
of plasma at G 105 (Gpx decreased from 2,000 to 750 
U/mL) and colostrum at farrowing (Total antioxidant 
capacity (T-AOC) decreased from 2.3 to 0.3 mmol/L and 
Gpx decreased from 160 to 90 U/mL) in sows [22], which 
may prolong the parturition period of sows and result 
in poor growth performance of the offspring piglets [20, 
23]. Around farrowing, sows exposed to high ambient 
temperatures (around 25–30  °C) also have an unfavour-
able effect on sow reproductive performance [24, 25]. 
Furthermore, at high summer temperatures (27–30  °C), 
lactating sows showed lower plasma antioxidant capac-
ity (T-AOC decreased from 0.45 to 0.1 mmol/L and Gpx 
decreased from 2,000 to 500 U/mL) compared to those 
exposed to a thermoneutral environment (15–24  °C), 
which led to a decrease in lactation performance of sows, 
resulting in reduced performance of their offspring [22, 
26]. For growing pigs, previous studies described that 
heat stress (35  °C for 1 or 3 d) could induce oxidative 
stress in skeletal muscle of growing pigs (35 ± 4 kg), pos-
sibly by inhibiting mitophagy and accumulation of dam-
aged mitochondria in muscle cells [27, 28]. In addition, 
short-term heat stress (37 °C for 2–6 h) could induce oxi-
dative stress in the muscle of growing pigs (63.8 ± 2.9 kg) 
[29]. These results suggest that heat stress has different 
effects at different stages in pigs. Unfortunately, there are 
few studies on the effects of heat stress on the perfor-
mance of sows during early pregnancy and on neonatal 
and weaned piglets, and few studies focus on the value of 
oxidative stress in heat stress based on the stage of pigs, 
which needs further investigation.

Cold stress
Cold stress is another environmental challenge for swine, 
especially neonatal piglets. Previous research revealed 
that when exposed to a cold environment (10  °C) as 
opposed to a thermoneutral environment (36  °C), there 
was a decrease in the acquisition of colostral immuno-
globulin. This resulted in an increase in the incidence 
of diarrhea and may have contributed to preweaning 

mortality in newborn piglets at 14.5 h of age [30]. Piglets 
exposed to a cold environment (15  °C) for 21 d showed 
higher antioxidant activities (T-AOC increased from 
0.87 ± 0.05 to 1.25 ± 0.09 U/mL) than piglets exposed to 
a thermoneutral environment (26  °C), even though the 
animals’ growth performance was diminished [31]. This 
may be because the piglets have become more adapted 
to prolonged cold exposure, as evidenced by the growth 
of oxidative muscle and gut bacteria [32–34]. Unfortu-
nately, it is not yet known what temperature range causes 
cold stress in sows and weaned piglets. Furthermore, 
few studies have been conducted on the reference value 
of oxidative stress in piglets caused by cold stress. These 
should be prioritised in view of the rapid growth of the 
swine industry .

In conclusion, environmental challenges such as heat 
and cold stress may contribute significantly to oxidative 
stress in pig production. The possible thermoneutral 
zone and normal ranges of oxidative indicators for sows, 
neonatal and weaned piglets, and growing pigs are shown 
in Fig. 2.

Dietary‑induced oxidative stress                                                                                                   
Expect for physiologically  and environmentally induced 
oxidative stress in swine, the dietary factors such as die-
tary mycotoxins pollution and lipid  peroxidation could 
also cause oxidative stress in swine. In this section, the 
effects of different dose intensity of dietary  mycotoxins 
and lipid peroxidation on the oxidative factors in various 
swine models will be summarized (Table 1).
Dietary mycotoxins‑induced oxidative stress
The contamination of feed ingredients and complete 
feeds with these mycotoxins has been a major concern 
in China, especially in recent years [44]. Numerous stud-
ies have shown that the presence of these feed mycotox-
ins can lead to oxidative stress in pigs, reducing growth 
performance and meat quality [45–48]. In particular, the 
mycotoxin deoxynivalenol (DON) can induce oxidative 
stress and inflammation in the pig intestine, which has 
been extensively studied as a model of oxidative stress. 
Research has shown that supplementation of the basal 
diet of 28-day-old weaned piglets with 4  mg/kg DON 
resulted in a reduction in blood catalase (CAT) concen-
tration [35]. Moreover, our recent studies have shown that 
dietary supplementation with 3.8  mg/kg DON reduced 
the intestinal antioxidant capacity and induced intesti-
nal inflammation in 21 d weaned piglets [36, 37]. Dietary 
supplementation with 3–12  mg/kg DON could cause 
a decrease in antioxidant capacity in a dose-dependent 
manner, leading to oxidative stress in growing pigs [40, 
41]. These results indicate that the peroxidative effects 
of DON on pigs are dependent on the dose of DON, 
the stage and the body weight of the pigs. In addition, 
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exposure of piglets to 0.25  mg/kg ochratoxin A (OTA) 
reduced antioxidant capacity in the liver and kidney [38]. 
Moreover, dietary supplementation with 0.32 mg/kg afla-
toxin B1 (AFB1) decreased the antioxidant status in piglet 
mesenteric lymph nodes (MLNs) [39], which may contrib-
ute to intestinal barrier dysfunction [49]. However, future 
studies should focus on oxidative stress caused by dietary 
mycotoxins based on dosage and stage, age or weight of 
the pigs.

Dietary lipid peroxidative induced stress
Lipids are susceptible to be oxidized at high tempera-
tures and produce large amounts of lipid peroxides 
(e.g., MDA and 4-hydroxynonenal (4-HNE)), which 
could lead to lipid peroxidation in animals [50, 51]. 
Therefore, proper assessment of lipid peroxidation has 
been an important part of quality control for the pre-
vention of oxidative stress and performance loss in pigs 

[52]. Dietary supplementation with 60  g/kg oxidized 
soybean oil (MDA level = 4.5  mmol/L oil) increased 
lipid peroxidation (characterized by MDA levels rang-
ing from 35 to 54 μmol/g protein in the jejunal mucosa) 
of nursery pigs [42]. Our previous studies demon-
strated that dietary supplementation with 50  g/kg 
oxidized fish oil (peroxide level = 186.89 mmol/kg) sig-
nificantly increased the levels of MDA and glutathione 
oxidized (GSSG) in the jejunal mucosa of newborn 
piglets compared to those dietary added 50 g/kg fresh 
fish oil (peroxide level = 4.20  mmol/kg) [43]. Cellular 
models of 4-HNE-induced oxidative stress have also 
been used to study the peroxidative effects of a lipid 
peroxidation diet on pigs [53, 54]. These studies found 
that 4-HNE could induce an increase in cellular ROS 
generation and DNA damage in IPEC-1 cells [55, 56]. 
However, lipid peroxidation in swine diets has not yet 
been well studied.

Table 1 Dietary-induced oxidative stress in swine

CAT  Catalase, GPx Glutathione peroxidase, SOD Superoxide dismutase, MLNs Mesenteric lymph nodes, DON Deoxynivalenol, OTA Ochratoxin A, AFB1 Aflatoxin B1, ZEA 
Zearalenone

Swine models Body weight, kg Inducer and duration Changes in oxidative indicators References

Weaned piglets 12.36 ± 0.26 DON 4 mg/kg,
30 d
(From 28 to 57 days of age)

Serum: D 15:  H2O2 (12 → 23 mmol/L) ↑
MDA (1 → 6.2 mmol/L) ↑
D 30: CAT (5.5 → 3.5 U/mL) ↓
H2O2 (12 → 22 mmol/L) ↑
MDA (2 → 3 nmol/mL) ↑

[35]

6.97 ± 0.1 DON 3.8 mg/kg,
28 d
(From 21 to 49 days of age)

Serum: GSH (4.24 → 2.8 mg/L) ↓
T-AOC (2.31 → 1.56 U/mL) ↓
MDA (1.96 → 3.31 mmol/L) ↑
Ileum (μmol/g protein):
GSH (5.13 → 4.21) ↓, SOD (58.24 → 39.57) ↓
T-AOC (0.49 → 0.31) ↓, MDA (0.52 → 1) ↑
Jejunum (μmol/g protein):
GSH (10.93 → 10.02) ↓, SOD (63.66 → 49.95) ↓
T-AOC (0.4 → 0.29) ↓, MDA (0.61 → 0.8) ↑

[36, 37]

10.9 ± 0.77 OTA 0.25 mg/kg,
28 d

Liver: T-AOC (27 → 22 μmol/g tissue) ↓
TBARS (3.5 → 5.4 nmol/g tissue) ↑
Kidney: GPx (1.8 → 22 μmol/min/g tissue) ↓
T-AOC (23 → 19 μmol/g tissue) ↓
TBARS (0.8 → 1.2 nmol/g tissue) ↑

[38]

6.97 ± 0.1 AFB1 0.32 mg/kg,
30 d
(From 28 to 57 days of age)

MLNs: SOD (400 → 352 U/g tissue) ↓
CAT (4 → 2.92 μmol/min/g tissue) ↓
GPx (4.8 → 3.74 μmol/min/g tissue) ↓
T-AOC (11 → 8.75 μmol/g tissue) ↓

[39]

Growing pigs 16.3 ± 1.5 DON 3–12 mg/kg,
21 d
(From 67 to 88 days of age)

Serum (U/mL):
3 mg/kg: SOD (117.5 ± 6.26 → 100.88 ± 14.24) ↓
6 mg/kg: SOD (117.5 ± 6.26 → 84.48 ± 8.97) ↓
GPx (3,424.7 ± 147.5 → 2,967.3 ± 124.4) ↓
12 mg/kg: SOD (117.5 ± 6.26 → 79.94 ± 15.62) ↓
GPx (3,424.7 ± 147.5 → 2,521.3 ± 334.6) ↓

[40, 41]

Nursery pigs Average 6.5 Oxidized soybean oil 60 g/kg,
35 d
(From 21 to 66 days of age)

Jejunal mucosa:
MDA (35 → 54 μmol/g protein) ↑

[42]

Newborn piglets 1.8 ± 0.04 Oxidized soybean oil 50 g/kg,
21 d
(From 4 to 25 days of age)

Jejunal mucosa:
MDA (3.17 → 5.2 mol/L) ↑
GSSG (8.58 → 12.62 mmol/g protein) ↑

[43]
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Chemical compounds‑induced oxidative stress models 
in swine
Many chemical compounds (e.g., diquat, hydrogen per-
oxide  (H2O2) and lipopolysaccharide (LPS)) have also 
been used to investigate the underlying mechanism of 
oxidative stress in swine. Here, we will discuss the regula-
tory mechanisms of each of the oxidative stress models, 
and then compare their respective characteristics and 
assess their impact on the pig mode (Table 2).

Diquat‑induced oxidative stress models
Diquat is a herbicide that is commonly used to induce 
oxidative stress in animal models due to its duration 
[65], making it a suitable model to study how oxidative 
stress affects physiological changes in swine [66]. Injec-
tion of 10  mg/kg diquat for 7 d reduced T-AOC levels 
and increased MDA levels, causing intestinal damage 
and reducing growth performance in weaned piglets [57]. 
Furthermore, 35-day-old weaned piglets treated with 

10  mg/kg diquat for 7 d showed a significant decrease 
of antioxidant capacity and increased MDA levels [58], 
which could lead to mitochondrial dysfunction and fur-
ther impairment of intestinal barrier function [59]. Even-
tually, diquat leads to an excess of oxygen radicals and 
aminotransferase in pigs, which disturbs the redox bal-
ance in the liver or gut. In conclusion, models of diquat-
induced oxidative stress are focused on weaned piglets 
between 9–10  kg, and the dose of diquat is 10  mg/kg 
(Table 2).

H2O2‑induced oxidative stress models
H2O2-induced oxidative stress in porcine intestine epi-
thelium cells, as shown by elevated ROS levels, resulting 
in reduced cell viability [67]. Intragastric or intraperito-
neal treatment with 100  μmol/L  H2O2 caused oxidative 
stress in intestinal epithelial cells through the blockade 
of T-AOC [68]. 1  mg/kg  H2O2 increased serum MDA 
and  H2O2 levels in piglets by activation of the nuclear 

Table 2 Chemical compounds-induced oxidative stress models in swine

BW Body weight, CAT  Catalase, SOD Superoxide dismutase, GPx Glutathione peroxidase, MDA Malondialdehyde, ROS Reactive oxygen species, H2O2 Hydrogen 
peroxide, GSH Glutathione, T-AOC Total antioxidant capacity, LPS Lipopolysaccharide

Swine models Body weight, kg Inducer and duration Changes in oxidative indicators References

Weaned piglets 9.92 ± 0.3 Diquat 10 mg/kg,
7 d

Serum:
T-AOC (2.5 → 2.1 U/L) ↓
MDA (2.8 → 4.5 nmol/L) ↑

[57]

10.63 ± 1 Diquat 10 mg/kg,
7 d
(From 35 to 42 days of age)

Serum:
SOD (74.8 ± 1.5 → 56.14 ± 1.58 U/mL) ↓
CAT (10.35 ± 0.53 → 8.97 ± 0.34 U/mL) ↓
GPx (493.62 ± 30.95 → 313.56 ± 48.67 U/mL) ↓
MDA (2.76 ± 0.07 → 3.32 ± 0.11 mmol/L) ↑

[58]

Average 9.6 Diquat 10 mg/kg,
7 d
(From 35 to 42 days of age)

Jejunum:
SOD (100.32 ± 11.29 → 60.06 ± 8.01 U/mg protein) ↓
GPx (99.35 ± 8.31 → 57.88 ± 6.4 U/mg protein) ↓
MDA (0.54 ± 0.07 → 1.91 ± 0.1 nmol/g protein) ↑
Mitochondrial ROS (9 times higher than control) ↑

[59]

10.96 ± 0.61 H2O2 1 mg/kg,
7 d

Serum:
MDA (3.8 → 4.5 ng/mL) ↑
H2O2 (20 → 28 mmol/L) ↓

[60]

11.58 ± 0.26 LPS 100 μg/kg,
3 h
(On 35 days of age)

Serum:
SOD (110.6 ± 6.9 → 98.3 ± 5.8 U/mL) ↓
CAT (4.75 ± 0.51 → 4.1 ± 0.36 U/mL) ↓
GPx (396.6 ± 18.5 → 359.4 ± 36.8 U/mL) ↓
H2O2 (51.28 ± 8.09 → 65.05 ± 8.46 mol/L) ↑
MDA (5.63 ± 0.46 → 6.59 ± 1 mmol/L) ↑

[61]

Average 9.8 LPS 100 μg/kg,
7 d
(From 35 to 42 days of age)

Jejunum:
SOD (95.85 ± 3.13 → 63.12 ± 2.97 U/mg protein) ↓
GPx (72.11 ± 3.51 → 53.99 ± 3.26 U/mg protein) ↓
MDA (0.95 ± 0.16 → 1.51 ± 0.25 nmol/g protein) ↑
Mitochondrial ROS (8 times higher than control) ↑

[62]

6.65 ± 1.19 LPS 100 μg/kg,
5 d
(From 31 to 36 days of age)

Serum:
T-AOC (0.21 ± 0.008 → 0.16 ± 0.025 mmol/L) ↓
SOD (27.73 ± 1.19 → 24.73 ± 1.59 U/mL) ↓
GPx (317.2 ± 28.96 → 245.63 ± 21.37 U/mL) ↓

[63]

100-day-old male 
miniature pigs

21.73 ± 0.43 CTX 50 mg/kg,
7 d

Serum:
SOD (27 → 8 U/L) ↓
GPx (420 → 220 μmol/L) ↓
MDA (12 → 1.51 ± 24 μmol/L) ↑

[64]
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factor-κB (NF-κB) and Nrf2 signaling pathways and 
induction of the autophagic response in the jejunum [60, 
69]. Furthermore, high doses  H2O2 (10 mg/kg for piglet 
model (11.29 ± 0.32  kg) or 100  μmol/L for cell model) 
promoted mitochondrial dysfunction, whereas low doses 
 H2O2 (5  mg/kg for piglet model or 50  μmol/L for cell 
model) showed a feedback regulatory mechanism against 
mitochondrial oxidative damage by increasing uncou-
pling protein 2 (UCP2) expression and mitochondrial 
proton leak [70]. Mitophagy may be involved in the above 
feedback control to improve oxidative stress (induced by 
600 μmol/L  H2O2)-induced intestinal barrier degradation 
[71]. In conclusion,  H2O2 is the direct inducer of cellu-
lar oxidative stress. However, the  H2O2-induced oxidative 
stress model has significant limitations in its application 
to pigs because pigs must first undergo surgery, which 
can easily lead to gastrointestinal ulceration in pigs, 
reducing their survival rates.

LPS‑induced oxidative stress models
LPS, a lipid and polysaccharide endotoxin, has been used 
to induce an inflammatory response in most animal stud-
ies [72]. However, because of the link between the inflam-
matory response and oxidative stress [73], the LPS model 
has also been used as a model of oxidative stress in por-
cine research. For example, LPS at 100 mg/kg (intraperi-
toneal injection) caused intestinal oxidative stress in 
weaned piglets, as indicated by decreased jejunal T-AOC 
and GSH levels and increased MDA levels [74]. Piglets 
exposed to LPS also showed impaired intestinal barrier 
and mitochondrial function, as well as facilitated intesti-
nal mitophagy [62]. In addition, after continuous low-dose 
induction of LPS, weaned piglets may have developed 
tolerance to endotoxin. LPS-induced oxidative stress was 
observed at an early stage (within 5 d of LPS stimulation), 
but was attenuated at a later stage (after 5 days of LPS 
stimulation) [63]. Overall, LPS induces oxidative stress in 
animals, mostly through the induction of inflammatory 
responses. Therefore, the LPS-induced oxidative stress 
paradigm is excellent for studying nutrients that have both 
antioxidant and anti-inflammatory properties, although 
individual studies of oxidative stress are less effective.

Other chemical compounds induced oxidative stress models
Other chemicals (including D-galactose and cyclophos-
phamide (CTX)) have been used in pigs. In IPEC-J2 
cells, treatment with 500 µmol/L CTX resulted in a sig-
nificant decrease in the activity of antioxidant enzymes 
and a significant increase in the MDA level [75]. Further-
more, dietary treatment with 50 mg/kg CTX dramatically 
decreased antioxidant enzyme activities while signifi-
cantly increasing MDA levels [64]. Dietary D-galac-
tose at 10  g/kg BW significantly increased blood MDA 

levels while decreasing intestinal antioxidant capacity 
in weaned piglets [76]. Although few studies have been 
conducted in porcine models, these findings suggest that 
CTX and D-galactose may be potential inducers of oxida-
tive stress. In addition, the specific doses of the chemical 
compounds in pigs at different stages of oxidative stress 
should also be taken into consideration.

Nutritional regulation strategies for oxidative 
stress in swine production
Recently a number of nutrients have been in use for the 
reduction of oxidative stress in pig production [77–79]. 
In this section, we mainly review current research on 
polyphenols and functional amino acids to reduce oxida-
tive stress in pig production.

Polyphenols
Polyphenols, the secondary plant metabolites with anti-
oxidant properties, are attractive feed additives for nutri-
tional management in pig production [80, 81]. In this 
section, we review current research on polyphenols for 
the reduction of oxidative stress in pigs (Table 3).

Daidzein
Daidzein is commonly used in pigs for its antioxidant 
properties [98]. Dietary supplementation with 50  mg/kg 
daidzein improved growth performance, increased SOD 
activity and decreased plasma MDA in weaning pigs [82]. 
Dietary supplementation with a high dose of daidzein 
(640 mg/kg) increased the antioxidant capacity of the lon-
gissimus muscle, but had a pro-oxidant effect on the back 
fat, abdominal fat, liver and plasma of finishing pigs [83]. 
Moreover, 40 mol/L of daidzein increased the expression 
of the Nrf2, CAT, and occludin genes in  H2O2-stimulated 
IPEC-J2 cells [82], suggesting that dietary daidzein may 
have a beneficial role in the health of the intestine in pigs.

Daidzein is also a type of active phytoestrogen that is 
beneficial to reproductive performance in sows. In our 
previous studies, dietary supplementation with 40 mg/kg 
daidzein from G 75 to L 21 markedly increased the activi-
ties of antioxidant enzymes in sow colostrum, while had 
no effect on serum antioxidant capacity in pregnant sows 
[84]. Notably, dietary supplementation with 200  mg/kg 
daidzein may increase serum antioxidant capacity in preg-
nant sows [85]. We speculated that daidzein is needed 
more during pregnancy than during lactation to support 
placenta development.

Resveratrol and its derivatives
Resveratrol (3,4’,5-trihydroxystilbene) is known for its 
antioxidant properties in livestock, particularly pigs 
[99]. For example, dietary resveratrol at 90 mg/kg effec-
tively reduced diquat-induced oxidative stress in piglets 
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Table 3 The antioxidant effects of polyphenols on swine

Polyphenols Dosages and duration Swine models Antioxidant effects References

Daidzein 50 mg/kg
72 d

Weaned piglets
23-day-old
7.35 ± 0.14 kg BW

Plasma:
D 14: MDA (2.52 → 2.31 mmol/L) ↓
D 42: SOD (18.19 → 20.54 U/mL) ↑

[82]

640 mg/kg
64 d

Finishing pigs
Average 57 kg BW

Liver (U/mg protein):
CAT (79.5 → 96.3) ↑, SOD (285 → 358) ↑
longissimus muscle (U/mg protein):
T-AOC (0.036 → 0.063) ↑, SOD (14.71 → 17.56) ↑

[83]

40 mg/kg
G75 to L21

Sows Colostrum (U/mL):
SOD (119.2 ± 4.14 → 154.8 ± 8.99) ↑
CAT (2.4 ± 0.58 → 18.73 ± 1.1) ↑
GPx (155.3 ± 9.76 → 201.4 ± 18.73) ↑
T-AOC (2.15 ± 0.15 → 2.72 ± 0.12) ↑

[84]

200 mg/kg
G1 to G114

Sows (3 to 5 parity,
226.18 ± 1.09 kg BW on G35
239.64 ± 0.83 kg BW on G85)

Serum (U/mL):
G35: GPx (1,169.9 → 1,486.8) ↑
SOD (94.39 → 99.92) ↑; CAT (12.21 → 14.5) ↑
T-AOC (6.03 → 7.12) ↑
G85: SOD (62.28 → 69.58) ↑, T-AOC (5.53 → 7.7) ↑

[85]

Resveratrol 90 mg/kg
21 d

Diquat-challenged weaned piglets
28-day-old
7.25 ± 0.13 kg BW

Jejunal mucosa (U/mg protein):
CAT (5.56 → 6.68) ↑, SOD (50.33 → 74.48) ↑
GPx (46.25 → 59.64) ↑
MDA (0.96 → 0.5 nmol/g protein) ↓

[86]

100 mg/kg
14 d

Diquat-challenged weaned piglets
35-day-old
9.35 ± 0.26 kg BW

Jejunum:
T-AOC (0.18 → 0.33 U/mg protein) ↑
H2O2 (20.43 → 15.61 mmol/g protein) ↓
MDA (1.05 → 0.59 nmol/mg protein) ↓

[87]

300 mg/kg
28 d

DON-challenged weaned piglets
21-day-old
6.97 ± 0.1 BW

Serum: GSH (2.8 → 3.38 mg/L) ↑
T-AOC (1.56 → 2.01 mg/L) ↑
MDA (3.31 → 2.58 nmol/mL) ↓
Ileum (μmol/g protein):
SOD (39.57 → 50.77) ↑, T-AOC (0.31 → 0.44) ↑, MDA 
(1 → 0.68) ↓
Jejunum (μmol/g protein):
GSH (10.02 → 11.17) ↑, SOD (49.95 → 57.76) ↑
T-AOC (0.29 → 0.37) ↑

[36, 37]

Oxidized soybean oil challenged piglets
Average 34.43-day-old
10.19 ± 0.1 kg BW

Plasma  H2O2 (82.99 → 70.11 mmol/L) ↓ [88]

300 mg/kg
G75 to L21

Sows at high temperatures
(average parity 3)

Plasma:
L14: T-AOC (0.1 → 0.15 mmol/L) ↑
MDA (2.1 → 1.6 nmol/mL) ↓
Colostrum: MDA (3.8 → 2 nmol/mL) ↓

[22]

300 mg/kg
G20 to L21

Sows
(average parity 4.4)

Plasma:
G110: CAT (12 → 14 U/mL) ↑, GPx (2,200 → 2,800 U/
mL) ↑
MDA (2.5 → 1.5 nmol/mL) ↓,  H2O2 (50 → 38 mmol/L) ↓
L14: SOD (80 → 120 U/mL) ↑; CAT (2.5 → 4 U/mL) ↑
MDA (1.6 → 1.2 nmol/mL) ↓,  H2O2 (18 → 15 mmol/L) ↓
L21: SOD (80 → 120 U/mL) ↑; MDA (1.7 → 1.4 nmol/
mL) ↓
Placenta (U/mg protein):
CAT (28 → 40) ↑, SOD (28 → 48) ↑, GPx (75 → 90) ↑, 
MDA (5.8 → 3) ↓,  H2O2 (18 → 15 mmol/g protein) ↓

[89]

Pterostilbene 300 mg/kg
15 d

DON-challenged weaned piglets
21-day-old
6.57 ± 0.32 kg BW

Liver:
MnSOD (25.5 ± 4.96 → 53.75 ± 5.39 U/mg protein) ↑
GSH (63.11 ± 6.95 → 88.78 ± 6.34 nmol/100 mg wet 
weight) ↑

[90]

300 mg/kg
14 d

IUGR piglets
21-day-old
4.91 ± 0.06 kg BW

Jejunum: SOD (60 → 90 U/mg protein) ↑
GSH (1.8 → 2.8 μmol/100 mg wet weight) ↑
T-GSH (3 → 4 μmol/100 mg wet weight) ↑
MDA (0.6 → 0.45 nmol/mg protein) ↓

[91]
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through activation of Nrf2 pathways [86]. Resveratrol 
(15  mol/L) was also found to reduce intracellular ROS 
accumulation and increase cell viability in IPEC-J2 cells 
through activation of the Nrf2 pathway [100]. Both 
in  vivo and in  vitro experiments show that resveratrol 
modulates mitophagy in DON-injured piglets [101]. 
Dietary resveratrol (100  mg/kg) increased intestinal 
redox status by inducing intestinal mitophagy in diquat-
challenged piglets [87]. Furthermore, dietary resveratrol 
(300 mg/kg) can also ameliorate oxidative stress induced 
by oxidized soybean oil [88] or DON [36, 37] by altering 
the intestinal microbiota. These results suggest that dif-
ferent doses of resveratrol may alleviate oxidative stress 
in weaned piglets through different pathways.

Previous research found that dietary 300 mg/kg resver-
atrol during pregnancy and lactation increased antioxi-
dant capacity in sows [89]. Similarly, our recent studies 
found that maternal resveratrol at 300 mg/kg during late 
gestation and lactation significantly increased sow plasma 
T-AOC from lactation and decreased sow plasma 
and colostrum MDA at high summer temperatures, 

influenced by gut microbiota [22]. However, there is 
still a lack of studies focusing on the antioxidant effects 
of other doses of resveratrol in sows, which is in need of 
further investigation.

Pterostilbene is a methylated derivative of resveratrol, 
which has recently been used in pig production because 
of its superior antioxidant effects compared to resveratrol 
[90, 91, 102]. However, while resveratrol has been under 
investigation in pig production for almost 10 years [103], 
pterostilbene has only been under investigation for 3 
years [90]. Further studies are needed to investigate the 
antioxidant effects of pterostilbene and other resveratrol 
derivatives in pig production.

Curcumin
Curcumin, a natural lipophilic polyphenol derived from 
the turmeric rootstock, has been shown to possess 
antioxidant properties in swine [104]. Dietary supple-
mentation with 400  mg/kg curcumin increased hepatic 
antioxidant capacity by increasing the expression of Nrf2 
and Hmox1, resulting in improved growth performance 

BW Body weight, SOD Superoxide dismutase, Gpx Glutathione peroxidase, CAT  Catalase, T-AOC Total antioxidant capacity, MDA Malondialdehyde, H2O2 Hydrogen 
peroxide, GSH Glutathione, GR Glutathione reductase

Table 3 (continued)

Polyphenols Dosages and duration Swine models Antioxidant effects References

Curcumin 400 mg/kg
24 d

IUGR piglets
26-day-old

Serum: T-AOC (1.03 ± 0.37 → 1.89 ± 0.57 U/mL) ↑
CAT (1.77 ± 0.43 → 3.59 ± 1.27 U/mL) ↑
GPx (355.29 ± 50.57 → 376.87 ± 25.39 U/mL) ↑
GR (21.47 ± 1.38 → 30.14 ± 1.24 U/L) ↑
Liver: T-AOC (0.88 ± 0.14 → 1.21 ± 0.22 U/mg protein) ↑
GPx (36.23 ± 2.04 → 58.30 ± 5.17 U/mg protein) ↑
GR (16.11 ± 1.22 → 18.94 ± 3.36 U/g protein) ↑

[92]

200 mg/kg
89 d

IUGR piglets
26-day-old
5.76–6.05 kg BW

Jejunum:
SOD (15.82 ± 3.04 → 28.65 ± 4.83 U/mg protein) ↑
MDA (2.01 ± 0.15 → 1.23 ± 0.13 nmol/mg protein) ↓
Leg muscle (U/mg protein):
SOD (16.69 ± 0.23 → 17.83 ± 0.28) ↑
GPx (13.65 ± 0.53 → 15.50 ± 0.82) ↑
CAT (14.18 ± 0.32 → 18.21 ± 0.97) ↑
MDA (4.65 ± 0.32 → 3.42 ± 0.19 nmol/mg protein) ↓

[93, 94]

Polyphenols Dosages and duration Swine models Antioxidant effects References

Curcumin 200 mg/kg
169 d

IUGR piglets
26-day-old

longissimus dorsi muscle
GSH (27.99 ± 2.21 → 40.43 ± 1.80) ↑
CAT (10.56 ± 0.58 → 12.59 ± 0.83) ↑
T-AOC (0.32 ± 0.04 → 1.22 ± 0.38) ↑
MDA (2.57 ± 0.17 → 1.08 ± 0.08 nmol/mg protein) ↓

[95]

Eucommia 
ulmoides 
flavones

100 mg/kg
21-d feeding

DON-challenged weaned piglets
21-day-old
6.50 ± 0.29 kg BW

Serum (U/mL):
D 14: SOD (73.51 ± 6.31 → 94.87 ± 3.37) ↑
GPx (335.21 ± 4.14 → 360.85 ± 2.49) ↑
CAT (5.73 ± 0.38 → 6.97 ± 0.38) ↑
T-AOC (0.54 ± 0.01 → 1.14 ± 0.1) ↑
D 21: GPx (314.49 ± 5.68 → 334.15 ± 4.41) ↑

[96]

100 mg/kg
14-d feeding

Jejunum:
SOD (7.678 ± 2.068 → 13.263 ± 1.67 U/mg protein) ↑
MDA (1.698 ± 0.164 → 3.356 ± 0.546 nmol/mg protein) 
↓

[97]
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in weaned piglets with IUGR [92]. Similarly, dietary cur-
cumin supplementation at 200 mg/kg can improve redox 
status by activating the Nrf2 signaling pathway in leg 
muscles, longissimus dorsi and jejunum [93–95], which 
may improve the meat quality or reduce intestinal dam-
age respectively in growing IUGR pigs. Curcumin sig-
nificantly reduced oxidative stress-induced intestinal 
damage and mitochondrial dysfunction in piglets by 
promoting Parkin-dependent mitophagy [105]. Moreo-
ver, curcumin reduced diquat-induced intestinal oxida-
tive damage and mitochondrial dysfunction by reducing 
endoplasmic reticulum stress and inhibiting apoptosis 
[106]. These results suggest that curcumin alleviates oxi-
dative stress in pigs by ameliorating mitochondrial dys-
function, endoplasmic reticulum stress and apoptosis, 
and by activating the Nrf2 signaling pathway. The recom-
mended dose of curcumin for pigs is (200 to 400 mg/kg 
body weight).

Eucommia ulmoides flavones
Eucommia ulmoides flavones (EUFs) are secondary 
metabolites from Eucommia ulmoides (a Chinese herb 
with various medicinal properties [107]) which have 
recently been shown to have potent antioxidant activities 
in pigs. Dietary supplementation with 100  mg/kg EUF 
attenuated diquat-induced oxidative stress, inflammatory 
response and impaired growth in piglets [96]. The Nrf2 
signaling pathway has been shown to play a critical role 
in EUF-mediated alleviation of intestinal oxidative stress 
in diquat-treated piglets. [97]. These findings may have 
implications for the investigation of EUFs as potential 
antioxidants in pig production. However, further studies 
are needed to investigate whether and how EUFs exert 
antioxidant effects in pigs at other stages of life, such as 
in finishing pigs and in perinatal sows.

Taken together, dietary supplementation with polyphe-
nols may have good antioxidant effects in pigs. However, 
the underlying mechanism by which polyphenols exert 
antioxidant effects is in need of further investigation.

Functional amino acids
Functional amino acids and their bioactive precursors 
such as nitric oxide (NO), polyamines and GSH could 
reduce oxidative stress and improve pig growth, repro-
duction and health (Fig. 3) [108, 109]. For example, sup-
plementation with 1% arginine dramatically increased 
antioxidant capacity in serum and skeletal muscle to 
improve meat quality in growing pigs [110]. Dietary 
supplementation with 0.8% and 1.6% arginine signifi-
cantly increased plasma and liver GPx and SOD activi-
ties in diquat-challenged weaned piglets to alleviate 
oxidative stress responses [111]. It is interesting to note 
that arginine could be metabolized to NO to alleviate 

oxidative stress in sows [112–114]. Furthermore, our 
previous studies showed that arginine administration 
significantly increased GPx activity and reduced ROS 
and MDA production via the arginase-1 pathway in 
LPS-stimulated IPEC-J2 cells [115].

Cysteine, glutamate and glycine are precursors of GSH 
synthesis. Therefore, these three amino acids may influ-
ence antioxidant function [116]. Cysteine supplemen-
tation increased intestinal CAT, SOD, GPx and GSH 
activities for maintenance of intestinal integrity in LPS-
challenged weaned piglets [117]. Supplementation with 
1.2 g/kg N-acetylcysteine (NAC) (a precursor of cysteine) 
increased GSH levels and decreased MDA levels in the 
liver of IUGR suckling piglets [118]. Dietary supplemen-
tation with 500  mg/kg NAC increased liver antioxidant 
capacity in weanling piglets to attenuate LPS-induced 
liver injury [61]. Treatment with 800  μmol/L NAC 
increased the antioxidant capacity to reduce cell apop-
tosis in  H2O2-induced IPEC-J2 cells [68], suggesting that 
NAC could rescue  H2O2-induced intestinal oxidative 
damage in piglets. Moreover, treatment with 5  mmol/L 
NAC attenuated 4-HNE-induced cell death in intesti-
nal epithelial cells through activating the Nrf2 signaling 
pathway [53]. Furthermore, increased supplementation 
of cysteine in the diet (from 0.3% to 0.4% and 0.5%) 
could reduce plasma MDA levels to reduce oxidative 
stress in sows during late gestation and lactation [119]. 
Dietary NAC supplementation (500 mg/kg) significantly 
increased serum and placental antioxidant capacity (e.g., 
GSH levels) and activated the STAT3/occludin/ZO-1 
pathway in the placentas of sows to attenuate DON-
induced placental oxidative stress and barrier damage, 
further reducing the incidence of stillbirths and low birth 
weight piglets [120].

Glutamate also possesses antioxidant properties 
[121]. Dietary supplementation with 2% glutamate 
increased plasma SOD and GPx activity and promoted 
intestinal epithelial cell proliferation in DON-chal-
lenged piglets [122]. Furthermore, glutamate supple-
mentation reduced MDA production and ameliorated 
diquat-induced oxidative stress in piglets by increasing 
SOD, T-AOC and NO levels while decreasing MDA 
production [57]. Furthermore, dietary supplementation 
with glutamine (a precursor of glutamate) can increase 
intestinal antioxidant capacity [123] and the expres-
sion of genes involved in GSH synthesis (e.g., glutamate 
cysteine ligase catalytic (GCLC), glutamate cysteine 
ligase modifier (GCLM), and glutathione reduc-
tase (GSR)) and 4-HNE metabolism (e.g., glutathione 
S-transferase A 1 (GSTA1) and GSTA4) to attenuate 
4-HNE-induced oxidative stress [55].

Glycine, one of the key components of GSH, is of 
great importance in the treatment of oxidative stress in 
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pigs. Dietary 0.5%–2% glycine supplementation linearly 
increased plasma and intestinal glycine and GSH levels 
in milk-fed piglets [124]. Dietary supplementation with 
1% glycine improved intestinal mucosal morphology and 
antioxidant capacity (e.g., GSH and GPx activities), and 
inhibited the ferroptosis through regulating key proteins 
(e.g., transferrin receptor 1, SLC7A11 and GPx4) in intes-
tinal mucosa of diquat-challenged weanling piglets [125]. 
Furthermore, treatment with 1  mmol/L glycine signifi-
cantly increased GSH activity, protein synthesis and cell 
proliferation, and decreased cell apoptosis in the 4-HNE-
induced oxidative stress model of IPEC-1 cells [126]. 
These results suggest that glycine may inhibit lipid per-
oxidation and intestinal epithelial ferroptosis by reducing 
oxidative stress in piglets through the production of GSH 
and GPx.

Taurine is an amino acid derived from converting 
sulphur-containing amino acids. Dietary taurine lev-
els of 0.3% to 0.6% increased the activity of antioxidant 
enzymes (e.g., T-SOD and GPx) and reduced the lev-
els of oxidative indicators (ROS, 8-OHdG and MDA) 
by increasing and activating the Nrf2 signaling system 

in weaned piglets [127]. Besides, dietary supplementa-
tion with 1% taurine from G 75 to lactation significantly 
increased the antioxidant capacity in the gilts’ milk and 
the intestinal antioxidant effects in the piglets [128]. Fur-
thermore, pre-treatment with 2 mmol/L taurine reduced 
 H2O2-induced oxidative stress in PMECs by increasing 
SOD activity and decreasing intracellular ROS [129]. 
These results suggest that dietary taurine supplementa-
tion may improve antioxidant capacity and milk perfor-
mance via the Nrf2 pathway in lactating sows.

In conclusion, dietary supplementation with functional 
amino acids has potential antioxidant effects in pigs, but 
this requires further investigation using different models 
of oxidative stress, functional amino acids, and dietary 
levels or proportions of functional amino acids.

Conclusions and perspectives
In this review, we focused on research into the dose and 
dose intensity of the causes, models and nutritional strat-
egies for oxidative stress in pigs. However, there are still 
many pressing issues that need to be addressed in the 
field of oxidative stress models and nutritional regulation 

Fig. 3 The proposed molecular mechanisms by which functional amino acids improve the antioxidant capacity of swine. Arginine 
supplementation in swine can be catalyzed to ornithine, and then transfer into glutamate, which conjugates cysteine to generate γ-glutamyl 
cysteine that finally conjugates glycine to form GSH to improve the antioxidant capacity. Supplemented with glutamate, cysteine and glycine, 
or its precursors glutamine and NAC in swine can also improve the antioxidant capacity via GSH synthesis. Arginine, taurine and NAC can perform 
antioxidant effects through the activation of Nrf2 pathway, and arginine can also improve antioxidant capacity of swine via NO synthesis stimulated 
by NOS. NAC: N-acetylcysteine; ARG: arginase; NOS: oxide synthase; NO: nitric oxide; GS: synthase; GSH: glutathione; Nrf2: nuclear factor erythroid 2 
(NF-E2)-related factor 2; Keap1: Kelch-like ECH-associated protein 1; Cul3: Cullin3; ARE: antioxidant responsive element; GPx: glutathione peroxidase; 
SOD: superoxide dismutase; CAT: catalase; GCLC: glutamate cysteine ligase catalytic; GCLM: glutamate cysteine ligase modifier; HO-1: heme 
oxygenase; NQO1: NAD(P)H:quinone oxidoreductase 1
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in pigs: (1) Ideal levels of ROS are essential for maintain-
ing animal health, so we should first find the ranges of 
ROS levels in pigs that are most beneficial to their health 
before determining the appropriate amount of antioxi-
dants in the diet; (2) At present, the main method used 
to determine whether pigs are under oxidative stress 
is to compare the relevant indexes of oxidative stress in 
the control group. In the future, existing data and new 
approaches should be used to determine the reference 
range of oxidative indexes; (3) A systemic comparison of 
the effects of different causes of oxidative stress should be 
carried out in the future; and (4) Nutritional strategies for 
oxidative stress in pigs should be thoroughly investigated. 
It is important to note that oxidative stress can reduce 
feed intake in pigs and it is unclear whether increasing 
nutrient density or changing the proportion of nutrients 
in the diet can eliminate the negative effects of oxidative 
stress. We hope that this review will serve as a theoretical 
basis and reference for the development of accurate mod-
els and nutritional strategies for specific oxidative stress.

Abbreviation
AFB1  Aflatoxin B1
BW  Body weight
CAT   Catalase
CTX  Cyclophosphamide
DON  Deoxynivalenol
EUFs  Eucommia ulmoides flavones
G  Gestation
GCLC  Glutamate cysteine ligase catalytic
GCLM  Glutamate cysteine ligase modifier
GPx  Glutathione peroxidase
GSH  Glutathione
GSR  Glutathione reductase
GSSG  Glutathione oxidized
GSTA  Glutathione S-transferase A
4-HNE  4-Hydroxynonenal
HO-1  Heme oxygenase 1
H2O2  Hydrogen peroxide
IPEC  Intestinal porcine epithelial cell line
IUGR   Intrauterine growth restriction
L  Lactation
LPS  Lipopolysaccharide
MDA  Malondialdehyde
MLNs  Mesenteric lymph nodes
NAC  N-Acetylcysteine
NF-κB  Nuclear factor-κB
NO  Nitric oxide
NQO1  NAD(P)H:quinone oxidoreductase 1
Nrf2  Nuclear factor erythroid 2-related factor 2
8-OHG  8-Hydroxyguanosine
8-OHdG  8-Hydroxy-2 deoxyguanosine
OTA  Ochratoxin A
PMECs  Porcine mammary epithelial cells
RLU  Relative light unit
ROS  Reactive oxygen species
SOD  Superoxide dismutase
STAT   Signal transducer and activator of transcription
T-AOC  Total antioxidant capacity
TBARS  Thiobarbituric acid reactive substances
UCP2  Uncoupling protein 2
ZO-1  Zonula occludens-1
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