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Abstract 

Background This study investigated the effects of inorganic and organic minerals on physiological responses, oxida‑
tive stress reduction, and rumen microbiota in Holstein bull calves (123.81 ± 9.76 kg; 5 months old) during short‑term 
heat stress (HS) and recovery periods. Eight Holstein calves were randomly assigned to four treatment groups: no min‑
eral supplementation (Con), inorganic minerals (IM), organic minerals (OM), and high‑concentration organic miner‑
als (HOM) and two thermal environments (HS and recovery) using 4 × 2 factorial arrangement in a crossover design 
of four periods of 35 d. Calves were maintained in a temperature‑controlled barn. The experimental period consisted 
of 14 d of HS, 14 d of recovery condititon, and a 7‑d washing period.

Results Body temperature and respiration rate were higher in HS than in the recovery conditions (P < 0.05). Sele‑
nium concentration in serum was high in the HOM‑supplemented calves in both HS (90.38 μg/dL) and recovery 
periods (102.00 μg/dL) (P < 0.05). During the HS period, the serum cortisol was 20.26 ng/mL in the HOM group, which 
was 5.60 ng/mL lower than in the control group (P < 0.05). The total antioxidant status was the highest in the OM 
group (2.71 mmol Trolox equivalent/L), followed by the HOM group during HS, whereas it was highest in the HOM 
group (2.58 mmol Trolox equivalent/L) during the recovery period (P < 0.05). Plasma malondialdehyde and HSP70 
levels were decreased by HOM supplementation during the HS and recovery periods, whereas SOD and GPX levels 
were not significantly affected (P > 0.05). The principal coordinate analysis represented that the overall rumen micro‑
biota was not influenced by mineral supplementation; however, temperature‑induced microbial structure shifts were 
indicated (PERMANOVA: P < 0.05). At the phylum level, Firmicutes and Actinobacteria decreased, whereas Fibrobacte‑
res, Spirochaetes, and Tenericutes increased (P < 0.05), under HS conditions. The genus Treponema increased under HS 
conditions, while Christensenella was higher in recovery conditions (P < 0.05).

Conclusion HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status 
in Holstein bull calves, suggesting that high organic mineral supplementation may alleviate the adverse effects of HS.
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Background
The global temperature continues to rise; the hot and 
humid summer climate of Korea can cause heat stress 
(HS) in cattle. Beef cattle are particularly vulnerable to 
HS because they are unable to dissipate heat [1, 2]. Cat-
tle exposed to HS consume less feed to prevent further 
increases in body temperature from metabolic heat gen-
eration [3, 4]. The loss of energy to maintain body tem-
perature results in a lack of nutrients for growth and 
production [5], thereby maintaining cattle homeothermy 
at the expense of productivity and profitability [2]. Addi-
tionally, external indicators such as respiration rate and 
core body temperature are commonly used to deter-
mine HS damage [6, 7]. HS alters the gut microbiome, 
resulting in dysbiosis, impaired barrier and transport 
functions, and intestinal microstructures [8]. Moreo-
ver, at high temperatures, numerous reactive oxygen 
species (ROS), such as superoxide, hydrogen peroxide, 
and hydroxyl radicals, are generated in the body as by-
products of the respiratory metabolic process [9]. ROS 
are capable to damage the antioxidant system in cattle 
and induce oxidative stress [10, 11]. At the cellular level, 
oxidative stress is an imbalance between oxidant spe-
cies and antioxidants; cellular proteins, lipids, and DNA 
can be damaged by reactive oxygen, nitrogen, and other 
species formed from a compromised oxidative balance 
[12]. Various substances, such as minerals and vitamins, 
are known antioxidants that prevent oxidative cell dam-
age; selenium, an antioxidant, affects the production of 
glutathione peroxidase, an antioxidant enzyme that pre-
vents damage to cell membranes and peroxidation of 
fats and prevents cell function damage [13]. Zinc is also 
a component of superoxide dismutase, which scavenges 
superoxide, a component of ROS, in immune cells and 
affects protein and gene expression, animal reproduc-
tion, growth, and the immune system [14, 15]. Iron (Fe), 
a component of heme, is found primarily in hemoglobin 
and myoglobin; these proteins require iron as a cofactor 
for enzymes in the electron transport chain, specifically 
for myeloperoxidase, catalase, and cytochrome P-450. 
Iron deficiency results in hypochromic microcytic ane-
mia due to failure in hemoglobin production, and the 
iron requirement is higher in young cattle than in mature 
cattle [16]. Iron also plays a beneficial role against oxida-
tive stress in ruminants [17]. Traditionally, trace minerals 
have been supplied in the form of inorganic salts such as 
chlorides, sulphates, carbonates and oxides in ruminant 
diets, but their absorption rates are low and their excre-
tion rates are high, which can cause environmental con-
cerns [18, 19]. Supplying organic minerals can produce 
stable soluble molecules with high bioavailability and are 
better intestinal absorbed than inorganic minerals, due to 
the fact that organic form minerals are metal ions bound 

to organic substances such as peptides, amino acids, or 
polysaccharides and are then absorbed [20, 21]. Although 
the National Research Council (NRC) has advised the 
dose of the aforementioned minerals under normal cir-
cumstances [22], the ideal dose needed to counteract 
the negative effects of HS has not yet been established, 
which is a significant barrier for calf-raising. We hypoth-
esized that high-concentration organic minerals (HOM) 
with antioxidant potential—as long as they don’t exceed 
the maximum permissible concentration advised by the 
NRC—can effectively and sustainably mitigate the nega-
tive effects of HS in calves during HS and the time after-
wards. Our earlier study found that dairy steers with 
dietary higher mineral concentrations had lower levels 
of metabolic changes and oxidative damage related to HS 
[23]. Therefore, the objective of the present study was to 
evaluate the effect of inorganic and organic mineral sup-
ply on the rumen microbial community, blood oxidation 
state, and heat shock protein levels under stressful and 
non-stressful temperature conditions.

Materials and methods
Animal care
The study was conducted at the animal farm of the Sun-
chon National University (SCNU) and in the Ruminant 
Nutrition and Anaerobe Laboratory of the Department 
of Animal Science and Technology at SCNU, located in 
Jeonnam, South Korea. The handling of all experimen-
tal animals and relevant protocols were performed in 
accordance with the guidelines of the SCNU Institutional 
Animal Care and Use Committee (IACUC approval 
number: SCNU-IACUC-2020-06).

Animals, experimental design, and diet
The experimental design was a 4-period crossover 
with a 4 × 2 factorial arrangement involving 4 treat-
ment groups (Con, IM, OM, and HOM) and two ther-
mal environments (HS and recovery). The experiment 
trial was conducted for 140 d (July 2021 to November 
2021) with each period lasting 35  d, including 14 d of 
HS, 14 d of recovery (thermal neutral) condition and 
a 7-d washing period  (Fig. 1). Eight Holstein bull calves 
(123.81 ± 9.76 kg; 5 months old) were used in the study. 
The calves were randomly distributed into four groups 
of 2 calves each to evaluate the four treatments. Calves 
were kept in individual pens in a temperature-controlled 
barn. Calves were fed once daily (0900 h) with Timothy 
hay and concentrate feed (CJ Feed & Care, Korea) sepa-
rately at a ratio of 6:4 and had free access to water. The 
treatments included a control (without mineral supple-
mentation), inorganic minerals (IM), organic minerals 
(OM), and high-concentration organic minerals (HOM), 
and the top dressing was performed at 0.4% of the basal 
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diet (Table 1). Inorganic minerals used were  ZnSO4 and 
 MnSO4 (Seoan Chemtec Co., Ltd., Korea),  FeSO4,  CuSO4 
and  Na2SeO3 (TMC Co., Ltd., Korea), Ca(IO3)2 and 
 CoSO4 (Innobatech Co., Ltd., Korea), while the organic 
minerals used were amino acid complex Zn, Mn, Fe, Cu, 
I, Co, and Se (Prochem Co., Ltd., Korea). The ingredients 
and chemical composition of the basal diet are listed in 
Table  2 which were formulate according to NRC  [22]. 
Feed intake was determined daily by weekly collection of 
feed residues and ingredients. The chemical composition 
of the basal diet was analyzed using standard methods 
[24]. Neutral detergent fiber (NDF) and acid detergent 

fiber (ADF) contents were determined according to the 
protocols described by Van Soest et  al. [25] and Van 
Soest [26], respectively.

The ambient temperature (°C) and relative humidity 
(%) of the experimental shed were recorded throughout 
the experimental period using a Testo 174H Mini data 
logger (West Chester, PA, USA) and are shown in Fig. 2. 
The temperature humidity index (THI) was calculated as 
THI = (0.8 × ambient temperature) + [(% relative humid-
ity/100) × (ambient temperature − 14.4)] + 46.4 [27].

Sample collection and measurements
Body weight before feeding was measured on d 14 
and 28 of each period, and 15  mL of blood was col-
lected from the jugular vein of each calf 2 h after feed-
ing. The collected blood was immediately transferred 
to 3 vacutainers (SSTTM II Advance, Trace Element 
serum, K2 EDTA; BD vacutainer®) of 5  mL each and 
centrifuged at 3,000 r/min for 15 min, and the serum 
and plasma samples were transferred into 2-mL 
microtubes and stored at −80  °C until analysis. After 
blood collection, rumen fluid samples were collected 
using a stomach tube, and pH was immediately meas-
ured using a pH meter (Seven CompactTM pH/Ion 
meter S220, Mettler Toledo, Switzerland). Simultane-
ously, the rumen fluid was transported to the labora-
tory using dry ice and stored at −80 °C until ammonia 
nitrogen  (NH3-N), volatile fatty acids (VFAs), and 
rumen microbiota could be analyzed. In addition, the 
respiration rate, rectal temperature, and body temper-
ature were measured twice a day (09:00 and 15:00) for 
three consecutive days starting from d 11 and 25 in 
the HS and recovery periods, respectively. The respi-
ration rate was converted to the respiration rate per 
minute by multiplying by 2 after observing the move-
ment of the flank for 30 s. The rectal temperature was 
recorded 30  s after the digital thermometer (WPT-1; 
CAS, Korea; accuracy ± 1 ºC) was inserted into the 
rectum, and the body temperature was measured 
using an infrared thermometer (SO-20-01; Apollo, 
Korea; accuracy ± 0.2 ºC).

Fig. 1 Timeline describing overall study design, data, and sample collection for each period. IBW, Initial body weight; RR, Respiration rate; RT, Rectal 
temperature; BT, Body temperature; ADG, Average daily gain

Table 1 Composition of mineral supplementation

IM Inorganic minerals supplementation, OM Organic minerals 
supplementation, HOM Higher organic minerals supplementation

Ingredient composition IM OM HOM

Zinc, mg/kg 50 50 100

Manganese, mg/kg 24 24 24

Iron, mg/kg 50 50 100

Copper, mg/kg 15 15 15

Iodine, mg/kg 0.8 0.8 0.8

Cobalt, mg/kg 0.4 0.4 0.4

Selenium, mg/kg 0.3 0.3 2

Table 2 Chemical composition of the Timothy hay and concentrate 
percentage

DM Dry matter, NDF Neutral detergent fiber, ADF Acid detergent fiber

Item, % (as DM basis) Timothy hay Concentrate

DM (fresh basis) 91.11 89.62

Crude protein 8.96 17.92

Crude fiber 36.4 14.62

Crude fat 3.41 3.24

Crude ash 7.10 7.69

Calcium 0.22 1.29

Phosphorus 0.22 0.58

NDF 65.26 36.19

ADF 38.23 18.87
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Sample analysis
Analysis of serum biochemistry, mineral concentrations, 
cortisol, total oxidant status, total antioxidant status, 
and oxidative stress index
Serum calcium (Ca), magnesium (Mg), phospho-
rus (P), blood urea nitrogen (BUN), total protein 
(TP), aspartate aminotransferase (AST), total biliru-
bin (TBIL), and cholesterol (CHOL) levels were ana-
lyzed using a biochemical analyzer (IDEXX Catalyst 
One, USA). Serum glucose levels were analyzed using 
a portable glucose test meter (FreeStyle Optium Neo 
H Blood Glucose and Ketone System; Abbott Diabe-
tes Care Ltd., UK). Serum concentrations of Zn and 
Se were analyzed using an inductively coupled plasma 
mass spectrometry (ICP-MS) system (ELAN DRCe, 
PerkinElmer, Germany), and Fe was analyzed using a 
Cobas 8000 (Roche, Germany). Serum cortisol levels 
were measured using a bovine cortisol enzyme-linked 
immunosorbent assay (ELISA) kit (cat. MBS2608983, 
Mybiosource), and total oxidant status (TOS) and 
total antioxidant status (TAS) were measured using 
the Rel Assay kit (Rel Assay Diagnostics, Turkey) fol-
lowing the manufacturer’s instructions. The oxida-
tive stress index (OSI) was calculated according to 
the formula OSI = [(TOS, mol/L)/(TAS, mmol Trolox 
equivalent/L) × 100] [28].

Analysis of plasma superoxide dismutase, glutathione 
peroxidase, malondialdehyde, and heat shock proteins
Plasma superoxide dismutase (SOD, Item # 706002) and 
glutathione peroxidase (GPX, Item # 703102) levels were 
measured using an ELISA kit (Cayman Chemical Company, 
Ann Arbor, USA) following the manufacturer’s instruc-
tions, and malondialdehyde (MDA) was measured using 

an MDA Assay kit (ab238537, Abcam) according to the 
manufacturer’s instructions. HSP levels (HSP27, HSP70, 
and HSP90) were measured using MyBioSource (San Diego, 
CA, USA) bovine ELISA kits (MBS011935, MBS2882245, 
and MBS094979) following the manufacturer’s instructions.

Analysis of  NH3‑N and VFA concentrations
The  NH3-N concentration was measured colorimetri-
cally using a Libra S22 spectrophotometer (CB40FJ; 
Biochrom Ltd., Cambourne, UK), following the protocol 
described by Chaney and Marbach [29]. VFA concentra-
tion was measured according to the method described 
by Han et  al. [30]. and Tabaru et  al. [31] using high-
performance liquid chromatography (HPLC; Agilent 
Technologies 1200 series, Waldbronn, Germany). A UV 
detector (set at 210  nm and 220  nm), METACARB87H 
column (Varian, Palo Alto, CA, USA), and buffered sol-
vent (0.00425 mol/L  H2SO4) at a flow rate of 0.6 mL/min 
were used to perform HPLC.

DNA extraction and PCR amplification and 16S rRNA 
amplicon sequencing
All rumen fluid samples were sent to Macrogen, Inc. 
(Seoul, Korea) for DNA extraction and metataxo-
nomic analysis of the rumen microbiota. Briefly, DNA 
was extracted using a DNeasy PowerSoil kit (Qiagen, 
Hilden, Germany), following the manufacturer’s pro-
tocol [32]. The quality and quantity of the DNA were 
assessed using PicoGreen and NanoDrop, respectively. 
Sequencing libraries were prepared according to the 
Illumina 16S Metagenomic Sequencing Library proto-
cols to amplify the V3 and V4 regions. The PCR assay 
was performed with 2 ng of gDNA, 1× reaction buffer, 
1  nmol/L of dNTP mix, 500  nmol/L of each of the 

Fig. 2 Recorded ambient temperature, relative humidity, and temperature humidity index during study periods. RH, relative humidity; THI, 
temperature humidity index



Page 5 of 14Son et al. Journal of Animal Science and Biotechnology          (2023) 14:156  

universal F/R PCR primers, and 2.5 U of Herculase II 
fusion DNA polymerase (Agilent Technologies, Santa 
Clara, CA, USA). The cycle condition for  1st PCR was 
3 min at 95 °C for heat activation, and 25 cycles of 30 s 
at 95  °C, 30  s at 55  °C, and 30  s at 72  °C, followed by 
a 5  min final extension at 72  °C. The universal primer 
pair with Illumina adapter overhang sequences used for 
the first amplification were as follows: V3-F: 5′-TCG 
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG 
CCT ACG GGN GGC WGC AG-3′, V4-R: 5′-GTC 
TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA 
GGA CTA CHV GGG TAT CTA ATC C-3′. AMPure 
beads (Agencourt Bioscience, Beverly, MA, USA) 
were used to purify the products of the first and sec-
ond PCR. Individual amplicon libraries were normal-
ized after quantification using PicoGreen. They were 
then size-verified using a TapeStation DNA ScreenTape 
D1000 (Agilent Technologies), pooled at an equimolar 
ratio, and sequenced on a MiSeq system (Illumina, San 
Diego, CA, USA) using a 2 × 300 bp kit.

Sequence data processing and metataxonomic analysis
After sequencing, the raw Illumina MiSeq data were 
classified by sample using an index sequence, and a 
paired-end FASTQ file was generated for each sample. 
Sequencing adapter and F/R primer sequences of the tar-
get gene region were removed using Cutadapt (v3.2) [33].

The DADA2 (v1.18.0) [34] package of R (v4.0.3) was 
used for error correction in the amplicon sequencing 
process. For paired-end reads, the forward sequence 
(Read1) and reverse sequence (Read2) were cut to 
250  bp and 200  bp, respectively, and sequences with 
expected errors of two or more were excluded. An 
error model was established for each batch to remove 
noise from each sample. After assembling the paired-
end sequence corrected for sequencing errors into one 
sequence, the chimeric sequence was removed using the 
DADA2 Consensus method to form amplicon sequence 
variants (ASVs). In addition, for a comparative analysis 
of the microbial community, the QIIME (v1.9) [35] pro-
gram was used for normalization by applying subsam-
pling based on the number of reads of the sample with 
the minimum number of reads among all samples.

For each ASV sequence, BLAST + (v2.9.0) [36] was 
performed using the reference database (DB; NCBI 16S 
Microbial DB), and the taxonomic information for the 
organism of the subject with the highest similarity was 
assigned. At this time, if the query coverage of the best-
hit matching in the DB was less than 85% or the identity 
of the matched area was less than 85%, taxonomy infor-
mation was not allocated.

Various microbial communities were comparatively 
analyzed using QIIME with the aforementioned ASVs 
abundances and taxonomic information. To ana-
lyze beta diversity indices, we used principal coordi-
nate analysis (PCoA) based on both unweighted and 
weighted UniFrac distances for visualization [37]. 
Before analysis, we assessed the homogeneity of multi-
variate dispersion among treatments and groups using 
permutational multivariate analysis of dispersion (PER-
MDISP) [38]. Subsequently, a permutational analysis 
of variance (PERMANOVA) was performed to detect 
any potential differences in the microbial community 
structures between the minerals and temperatures. All 
procedures, including PCoA, PERMDISP, and PER-
MANOVA, were conducted using the vegan package in 
R software (v4.0.3).

Statistical analysis
Before analysis, the homoscedasticity and normality of 
the distribution assumptions were tested. Growth per-
formance, respiration rate, body temperature, blood 
parameters, and rumen fermentation parameters were 
analyzed by repeated measures using MIXED proce-
dure of the SAS statistical package (version 9.4; SAS 
Institute Inc., Cary, NC, USA) with an autoregressive 
covariance structure. The model included the main 
fixed effects of temperature, minerals, and interac-
tions between the two variables, whereas the effect of 
each calf was considered random [39]. Statistical sig-
nificance was set at P < 0.05 unless otherwise stated. 
Following a significant effect, Duncan’s post-hoc test 
was performed to assess the differences between the 
means.

Results
Growth performance, body temperature, and respiration 
rate
The growth performance of Holstein calves supple-
mented with inorganic and organic minerals at different 
temperatures is shown in Table 3. The average daily gain 
(ADG; kg), dry matter intake (DMI; kg/d), and FE were 
not significantly different between the treatment groups. 
The body temperatures and respiration rates of Holstein 
calves supplemented with inorganic and organic miner-
als at different temperatures are presented in Table 4 and 
Fig. 3. Body temperature was higher in the HS condition 
than in the recovery condition for all parameters (rectal, 
flank, rump, perineum, belly, back, and thigh) at 15:00 h 
(P < 0.05). The respiration rate was also higher in the HS 
condition than during the recovery period at both time 
points (P < 0.05).
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Serum biochemistry, mineral concentrations, cortisol, TOS, 
TAS, and OSI
The serum biochemistry and mineral concentrations 
of Holstein calves supplemented with inorganic and 
organic minerals at different temperatures are pre-
sented in Table 5. None of the tested serum biochemical 

parameters were significantly different between the dif-
ferent temperature and treatment groups. Serum Se 
concentration was higher in the recovery condition than 
in the HS condition (P < 0.05), and in the HOM group, 
it was the highest at 90.38  μg/dL and 102.00  μg/dL in 
the heat and recovery conditions, respectively (P < 0.05). 

Table 3 Growth performance of Holstein calves supplemented with inorganic and organic minerals at different temperatures

IBW Initial body weight, FBW Final body weight, ADG Average daily gain, DMI Dry matter intake, FE Feed efficiency
1 Con: Basal diet (without mineral supplementation)
2 IM: Basal diet + inorganic minerals supplementation
3 OM: Basal diet + organic minerals supplementation
4 HOM: Basal diet + higher organic minerals supplementation
5 Standard error of means
6 P value obtained from the mixed procedure of SAS with temperature effect (B), mineral effect (M), and interaction effect between temperature and minerals (T × M). 
A P value less than 0.05 indicates that the results are statistically significant

Parameters Heat Recovery SEM5 Mixed P  value6

Con1 IM2 OM3 HOM4 Con1 IM2 OM3 HOM4 Temperature Minerals T × M

IBW, kg 147.20 147.61 146.35 148.14 153.47 154.59 153.81 155.81 11.576 0.395 0.998 0.999

FBW, kg 153.47 154.59 153.81 155.81 161.88 161.69 160.81 162.06 12.037 0.408 0.999 0.999

ADG, kg 0.63 0.70 0.75 0.77 0.84 0.71 0.70 0.63 0.118 0.921 0.991 0.538

DMI, kg/d 4.83 4.74 4.87 4.86 5.08 4.95 5.11 5.10 0.279 0.247 0.950 0.999

FE 0.13 0.15 0.15 0.16 0.16 0.14 0.14 0.12 0.023 0.611 0.984 0.555

Table 4 Body temperature of Holstein calves supplemented with inorganic and organic minerals at different temperatures

1 Con: Basal diet (without mineral supplementation)
2 IM: Basal diet + inorganic minerals supplementation
3 OM: Basal diet + organic minerals supplementation
4 HOM: Basal diet + higher organic minerals supplementation
5 Standard error of the mean
6 P value received from the mixed procedure of SAS with temperature effect (B), mineral effect (M), and interaction effect between temperature and minerals (T × M). A 
P value less than 0.05 indicates that the results are statistically significant

Time Parameters Heat Recovery SEM5 Mixed P  value6

Con1 IM2 OM3 HOM4 Con1 IM2 OM3 HOM4 Temperature Minerals T × M

9:00 h Rectal 39.82 39.83 39.88 39.71 39.61 39.65 39.73 39.65 0.114 0.097 0.787 0.934

Flank 36.23 36.15 36.37 36.09 35.10 35.30 35.04 35.18 0.614 0.024 0.999 0.980

Rump 36.03 36.01 36.00 35.89 34.70 34.71 35.13 34.82 0.742 0.042 0.991 0.989

Perineum 36.83 36.85 36.81 36.75 36.32 36.30 36.31 36.36 0.277 0.049 0.999 0.996

Belly 35.94 35.85 36.01 36.02 35.09 35.29 35.13 35.25 0.549 0.062 0.997 0.992

Back 36.23 35.72 35.98 36.10 35.28 34.75 34.95 34.69 0.666 0.033 0.892 0.985

Thigh 36.01 36.10 36.05 35.98 35.08 35.21 35.38 35.61 0.412 0.025 0.945 0.904

15:00 h Rectal 40.33 40.29 40.41 40.33 40.04 40.05 40.07 39.85 0.173 0.029 0.905 0.943

Flank 36.55 36.85 36.79 36.87 35.67 35.53 35.26 35.57 0.544 0.004 0.985 0.945

Rump 36.60 36.61 36.70 36.55 35.25 35.46 35.19 35.26 0.590 0.005 0.996 0.992

Perineum 37.91 37.67 37.80 37.77 36.59 36.77 36.55 36.73 0.452 0.004 0.998 0.973

Belly 36.58 36.55 36.90 36.42 35.63 35.54 35.40 35.36 0.430 0.001 0.938 0.916

Back 36.75 36.75 36.71 36.76 35.56 35.47 35.30 35.46 0.522 0.002 0.993 0.997

Thigh 36.69 36.74 36.88 36.88 36.09 36.01 35.97 35.98 0.273 0.001 0.996 0.934
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The results for serum cortisol, TOS, TAS, and OSI 
in Holstein calves supplemented with inorganic and 
organic minerals at different temperatures are presented 
in Fig. 4. The serum cortisol concentration was 20.26 ng/mL 
in the HOM group in the HS condition, 5.60  ng/mL 
lower than that in the control group (P < 0.05). The TAS 

was the highest with 2.71 mmol Trolox equivalent/L in 
the OM group, followed by the HOM group under HS 
conditions and was the highest at 2.58  mmol Trolox 
equivalent/L in the HOM group under the recovery 
conditions (P < 0.05). The OSI was lower in the mineral-
supplemented groups than in the Con in both periods, 

Fig. 3 Respiration rate of Holstein calves supplemented with inorganic and organic minerals at different temperatures. Con: Basal diet (without 
mineral supplementation), IM: Basal diet + inorganic minerals supplementation, OM: Basal diet + organic minerals supplementation, HOM: Basal 
diet + higher organic minerals supplementation

Table 5 Serum biochemistry and mineral concentrations of Holstein calves supplemented with inorganic and organic minerals at 
different temperatures

1 Con: Basal diet (without mineral supplementation)
2 IM: Basal diet + inorganic minerals supplementation
3 OM: Basal diet + organic minerals supplementation
4 HOM: Basal diet + higher organic minerals supplementation
5 Standard error of means
6 P value obtained from the mixed procedure of SAS with temperature effect (B), mineral effect (M), and interaction effect between temperature and minerals (T × M). 
A P value less than 0.05 indicates that the results are statistically significant

Parameters Heat Recovery SEM5 Mixed P  value6

Con1 IM2 OM3 HOM4 Con1 IM2 OM3 HOM4 Temperature Minerals T × M

Glucose, mg/dL 69.25 68.75 70.88 68.50 65.75 67.00 67.13 68.75 4.661 0.532 0.989 0.974

BUN, mg/dL 6.38 6.88 7.13 6.25 6.13 7.25 6.25 6.38 1.127 0.847 0.882 0.951

PHOS, mg/dL 7.55 7.55 7.40 7.41 7.75 7.85 7.35 7.61 0.273 0.438 0.683 0.941

Ca, mg/dL 9.24 9.18 9.26 9.08 9.35 9.21 9.43 9.24 0.159 0.312 0.640 0.977

Mg, mg/dL 2.00 2.01 1.95 2.03 2.01 2.01 2.06 2.01 0.033 0.277 0.989 0.270

Total P, g/dL 6.81 6.76 6.65 6.69 6.84 6.76 6.90 6.79 0.126 0.308 0.918 0.761

AST, U/L 81.00 80.50 81.50 82.50 83.63 87.75 88.00 87.75 3.320 0.046 0.871 0.925

TBIL, mg/dL 0.25 0.30 0.31 0.24 0.21 0.25 0.30 0.21 0.022 0.071 0.006 0.869

CHOL, mg/dL 78.25 72.63 73.13 75.00 88.13 75.88 84.88 81.75 7.930 0.198 0.771 0.961

Iron, μg/dL 137.50 136.75 140.00 146.75 144.00 145.75 141.88 142.75 7.728 0.573 0.956 0.869

Zn, μg/dL 97.00 100.00 95.63 102.38 100.63 103.38 106.00 106.13 4.764 0.186 0.798 0.901

Se, μg/dL 67.00 74.38 73.38 90.38 70.75 74.75 77.25 102.00 3.198 0.047 < 0.001 0.395
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and the lowest OSI was observed in the HOM group 
(149.61) under recovery conditions (P < 0.05).

Plasma SOD, GPX, MDA, and HSPs
The results of plasma SOD, GPX, MDA, and HSPs 
in Holstein calves supplemented with inorganic and 
organic minerals at different temperatures are presented 
in Table  6. The plasma SOD and GPX concentrations 
were numerically lower, whereas HSPs were numeri-
cally higher in the mineral-supplemented groups than in 
the Con group under both heat and recovery conditions 
(P > 0.05). The HOM group under heat and recovery con-
ditions showed lower plasma MDA and HSP70 levels and 
higher SOD and GPX activities (P > 0.05).

Rumen fermentation characteristics and composition 
of rumen microbiota
The rumen fermentation characteristics of Holstein calves 
supplemented with inorganic and organic minerals at dif-
ferent temperatures are presented in Table  7. No signifi-
cant differences were observed in pH,  NH3-N, or total VFA 

among the different temperatures and treatment groups. 
Figure 5A and B show the beta diversity results. Individu-
als were projected onto the first two dimensions of PCoA, 
which accounted for 9.1% and 6.9% of the variability in 
unweighted UniFrac distances, respectively. Similarly, the 
first two dimensions of the PCoA accounted for 34.1% and 
20.1% of the variability in the weighted UniFrac distances 
observed between the samples (Fig. 5C and D). Regardless 
of the factors investigated (temperature and minerals) or 
the distance matrix utilized (unweighted or weighted Uni-
Frac), no significant differences in the individual dispersions 
were observed (PERMDISP: P > 0.05). Moreover, the PER-
MANOVA procedure failed to detect substantial differences 
(P > 0.05) between the minerals using either unweighted or 
weighted UniFrac distances. Conversely, PERMANOVA 
revealed a significant influence of temperature on the overall 
microbial structure, based on both unweighted (P = 0.023) 
and weighted (P = 0.038) UniFrac distances. The ruminal 
bacterial abundances in Holstein calves supplemented with 
inorganic and organic minerals at different temperatures 
are presented in Fig. 6. Upon evaluating the composition of 

Fig. 4 Serum cortisol (A) and total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) (B) of Holstein calves 
supplemented with inorganic and organic minerals at different temperatures. Con: Basal diet (without mineral supplementation), IM: Basal 
diet + inorganic minerals supplementation, OM: Basal diet + organic minerals supplementation, HOM: Basal diet + higher organic minerals 
supplementation
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the rumen microbiota, at the phylum level, Bacteroidetes 
(accounting for 40.86% to 57.87%) and Firmicutes (32.40% 
to 45.96%) were the two major bacterial taxa among all 
treatment groups. Firmicutes and Actinobacteria decreased, 
whereas Fibrobacteres, Spirochaetes, and Tenericutes 
increased under HS conditions (Fig. 6A). At the genus level, 
Treponema increased during HS, whereas Christensenella 
increased during the recovery period (Fig. 6B).

Discussion
Cattle exposed to HS show reduced feed intake, increased 
water intake, and changes in endocrine status, result-
ing in decreased body weight and average daily gain, 
and worsening body condition due to increased main-
tenance requirements [40]. However, non-significant 
variations in ADG (kg) and FE were observed among the 
treatment groups, which may be due to the short-term 

Table 6 Plasma SOD, GPX, MDA, and HSPs of Holstein calves supplemented with inorganic and organic minerals at different 
temperatures

SOD Superoxide dismutase, GPX Glutathione peroxidase, MDA Malondialdehyde, HSP Heat shock protein
1 Con: Basal diet (without mineral supplementation)
2 IM: Basal diet + inorganic minerals supplementation
3 OM: Basal diet + organic minerals supplementation
4 HOM: Basal diet + higher organic minerals supplementation
5 Standard error of means
6 P value obtained from the mixed procedure of SAS with temperature effect (B), mineral effect (M), and interaction effect between temperature and minerals (T × M). 
A P value less than 0.05 indicates that the results are statistically significant

Parameters Heat Recovery SEM5 Mixed P  value6

Con1 IM2 OM3 HOM4 Con1 IM2 OM3 HOM4 Temperature Minerals T × M

SOD, U/mL 33.38 35.72 33.78 35.69 32.03 33.05 33.17 34.08 0.990 0.115 0.368 0.892

GPX activity, nmol/min/mL 34.70 35.98 36.72 36.21 34.14 36.05 36.21 37.41 3.469 0.984 0.920 0.994

MDA, μmol/L 1.53 1.50 1.37 1.24 1.60 1.59 1.44 1.29 0.144 0.549 0.263 0.999

HSP27kDa, pg/mL 742.57 691.42 663.04 667.63 833.49 806.98 715.89 753.28 60.783 0.077 0.451 0.972

HSP70kDa, ng/mL 0.24 0.22 0.22 0.21 0.25 0.22 0.20 0.20 0.017 0.701 0.169 0.796

HSP90kDa, ng/mL 6.41 5.90 5.98 5.58 6.14 5.28 5.89 5.38 0.678 0.542 0.620 0.983

Table 7 Rumen fermentation characteristics of Holstein calves supplemented with inorganic and organic minerals at different 
temperatures

A:P Acetate:propionate, NH3-N Ammonia–nitrogen, VFA Volatile fatty acids
1 Con: Basal diet (without mineral supplementation)
2 IM: Basal diet + inorganic minerals supplementation
3 OM: Basal diet + organic minerals supplementation
4 HOM: Basal diet + higher organic minerals supplementation
5 Standard error of means
6 P value obtained from the mixed procedure of SAS with temperature effect (B), mineral effect (M), and interaction effect between temperature and minerals (T × M). 
A P value less than 0.05 indicates that the results are statistically significant

Parameters Heat Recovery SEM5 Mixed P  value6

Con1 IM2 OM3 HOM4 Con1 IM2 OM3 HOM4 Temperature Minerals T × M

pH 6.23 6.26 6.21 6.40 6.46 6.32 6.29 6.37 0.069 0.109 0.334 0.438

NH3‑N, mg/dL 4.96 4.34 4.11 3.51 4.95 4.65 3.97 3.48 0.752 0.956 0.295 0.993

Total VFA, mmol/L 113.02 109.28 111.48 106.05 112.28 105.02 111.06 106.75 6.936 0.820 0.788 0.988

Acetate, mmol/L 59.89 60.17 62.85 60.48 60.81 58.46 60.26 60.96 3.077 0.748 0.909 0.931

Propionate, mmol/L 33.76 30.69 32.20 28.55 33.44 29.76 32.99 29.81 3.081 0.933 0.528 0.987

Butyrate, mmol/L 19.37 18.42 16.43 17.02 18.04 16.80 17.80 15.97 1.786 0.664 0.767 0.882

A:P 1.81 1.99 2.06 2.17 1.83 1.97 1.93 2.05 0.152 0.606 0.439 0.961

Acetate, % 53.40 55.39 56.68 57.15 54.28 55.60 54.57 57.08 1.450 0.806 0.257 0.783

Propionate, % 29.64 27.98 28.66 26.67 29.72 28.38 29.31 27.91 1.453 0.617 0.531 0.988

Butyrate, % 16.96 16.63 14.66 16.18 16.00 16.02 16.12 15.01 1.237 0.753 0.829 0.775
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HS conditions used in this study. Body temperature and 
respiration rate (RR) were unaffected by mineral sup-
ply but increased under HS conditions according to the 
change in THI. This is similar to the study in which rec-
tal temperature and RR were considered visible physio-
logical indicators for determining the thermal regulation 
response of dairy cows to heat stress and that they are 
altered due to high environmental temperatures [41, 42].

Among these minerals, selenium, iron, and zinc play 
important roles in animal growth and health by being 
involved in the antioxidant defense system [17, 43, 44]. 
Increased lipid peroxidation under stress conditions stim-
ulates the stress axis to increase cortisol concentrations 
[45, 46]. In this study, the supply of organic minerals (OM 
and HOM groups) was beneficial in reducing cortisol lev-
els and oxidative stress index during short-term HS.

The MDA concentration is an indicator of lipid per-
oxidation [47], and antioxidant enzymes, such as SOD 
and GPX, can be synthesized in the body to remove 
ROS generated during HS [48, 49]. HSP70 expression 
has been used as an indicator of heat stress in ani-
mals [50]. In this study, the mineral supplementation 
and temperature did not significantly affect the MDA 
and HSP70, while a tendency for an increase in SOD 
levels was observed in HOM under heat and recovery 
conditions. This suggests that high concentrations of 
organic minerals are beneficial in alleviating the side 
effects of HS.

No significant differences were observed in pH and 
 NH3-N according to temperature changes or mineral 
supply, which explains why the supply of high concentra-
tions of organic minerals did not negatively affect rumen 

Fig. 5 PCoA of rumen microbiota of Holstein calves supplemented with inorganic and organic minerals at different temperatures. A Unweighted 
UniFrac distances (minerals). B Unweighted UniFrac distances (temperature). C Weighted UniFrac distances (minerals). D Weighted UniFrac 
distances (temperature). Con (C): Basal diet (without mineral supplementation), IM: Basal diet + inorganic minerals supplementation, OM: Basal 
diet + organic minerals supplementation, HOM: Basal diet + higher organic minerals supplementation
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fermentation. HS decreases the proportion of acetate 
in the rumen, and increases butyrate proportion and 
propionate concentration [51, 52]. In the present study, 

non-significant differences in the molar proportions of 
acetate, propionate, and butyrate were recorded, which 
might be due to the short-term HS conditions.

Fig. 6 Rumen bacterial abundance of Holstein calves supplemented with inorganic and organic minerals at different temperatures. A Phylum level. 
B Genus level. Con: Basal diet (without mineral supplementation), IM: Basal diet + inorganic minerals supplementation, OM: Basal diet + organic 
minerals supplementation, HOM: Basal diet + higher organic minerals supplementation
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In Holstein rumen microbiota under heat stress, the 
increase in Fibrobacteres and the soluble carbohydrate-
digesting bacterium Treponema and the decrease in the 
acetate-producing bacteria Actinobacteria were con-
sistent with previous studies [53, 54]. Additionally, the 
relative abundance of Christensenella increased as the 
mineral concentration increased under HS conditions. 
According to Hu et al. [55] and Correia Sales et al. [56], 
Christensenella mainly affects rumen energy metabolism, 
and becomes relatively abundant when high-energy feed 
is consumed. This suggests that the addition of organic 
minerals may alter the composition of rumen bacterial 
communities. Although the overall rumen microbiome 
was not influenced by mineral supplementation, a signifi-
cant alteration was observed between the HS and recov-
ery periods, which is consistent with earlier studies [57].

Conclusion
A high concentration of organic mineral supplementa-
tion during HS reduced the cortisol concentration and 
increased the total antioxidant status in Holstein bull 
calves without altering the overall rumen microbiota. 
Overall, these results suggest that the side effects of heat 
stress can be alleviated by adding HOM.
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