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Abstract 

Background Sex hormones play important roles in the estrus return of post-weaning sows. Previous studies have 
demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota. However, 
the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown.

Results In this study, we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing 
and identified significant associations between microbes and estrus return of post-weaning sows. Using metagen-
omic sequencing data from 85 fecal samples, we identified 37 bacterial species that were significantly associated 
with estrus return. Normally returning sows were characterized by increased abundances of L. reuteri and P. copri 
and decreased abundances of B. fragilis, S. suis, and B. pseudolongum. The changes in gut microbial composition 
significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome. The results were 
confirmed in a validation cohort. Significant changes in sex steroid hormones and related compounds were found 
between normal and non-return sows via metabolome analysis. An integrated analysis of differential bacterial species, 
metagenome, and fecal metabolome provided evidence that normal return-associated bacterial species L. reuteri 
and Prevotella spp. participated in the degradation of pregnenolone, progesterone, and testosterone, thereby promot-
ing estrogen biosynthesis. Furthermore, the microbial metabolites related to sow energy and nutrient supply or meta-
bolic disorders also showed relationships with sow estrus return.

Conclusions An integrated analysis of differentially abundant bacterial species, metagenome, and fecal metabolome 
revealed the involvement of L. reuteri and Prevotella spp. in sow estrus return. These findings provide deep insight 
into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut 
microbiota and sex hormones, suggesting that the manipulation of the gut microbiota could be an effective strategy 
to improve sow estrus return after weaning.
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Background
The period from the time that nursing piglets are 
removed from the sow to the time that the sow shows 
the first estrus behaviors is defined as the weaning-to-
estrus interval. An excessively long weaning-to-estrus 
interval increases the number of non-productive days 
(NPDs, referring to the days that the sow is not pregnant 
or lactating), reduces the number of weaned piglets per 
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sow per year (PSYs), and results in significant economic 
losses. The weaning-to-estrus interval is an important 
indicator reflecting the normal return of estrus after 
weaning. About 85% of sows will display estrus within 7 
d after weaning [1]. However, certain sows fail to return 
to estrus for a long period after weaning, a phenomenon 
that remains to be addressed in the pig industry.

The hypothalamic-pituitary-ovarian (HPO) axis feed-
back loop plays a crucial role in the regulation of the 
endocrine system and sow estrus. The composition, 
functional capacity, and metabolites involved have been 
associated with a multitude of physiological systems, 
including the endocrine and reproductive systems [2]. 
Previous studies have investigated the influence of gut 
microbiota on the regulation of sex steroid hormones [3], 
the duration of farrowing, and the post-weaning estrus 
interval in sows [4]. A complex interplay exists between 
gut microbiota and sex steroid hormones. Sex steroid 
hormones shape the gut microbiota by regulating the 
innate immune response [5, 6]. Conversely, the gut micro-
biota modulates local and systemic levels of sex steroid 
hormones by synthesizing enzymes that can modify these 
molecules [7]. The gut microbiota is a major regulator of 
androgen metabolism [8]. The enzyme 3β-hydroxysteroid 
dehydrogenase expressed by gut microbes degrades tes-
tosterone and has been linked to depression in males [9]. 
Bacterial-derived β-glucuronidase, β-glucosidase, and 
hydroxysteroid dehydrogenases (HSD) can convert the 
conjugated estrogen into a free form that promotes the 
reabsorption of estrogen into the enterohepatic circula-
tion where it exerts multiple biological functions [10]. 
The dysbiosis of the gut microbiota is involved in a wide 
range of diseases in women, including bacterial vagino-
sis, infertility, gestational diabetes, polycystic ovary syn-
drome (PCOS), and obesity [11]. Studies in mice have 
demonstrated significant effects of gut microbiota on 
the host estrus cycle. For example, depletion of the gut 
microbiota by antibiotics resulted in an altered estrus 
cycle in female mice [12]. Compared with the conven-
tionally raised mice with a natural gut microbiota, germ-
free mice showed abnormal estrus cycles [13]. However, 
there are few related studies in pigs.

Elucidating the underlying mechanisms of the intes-
tinal microbiota and their metabolites influencing the 
estrus return of sows after weaning has significance for 
the pig industry. Our previous study suggested that the 
gut microbiota was associated with the shifts of serum 
metabolites and that this may influence the interval from 
weaning to estrus [14]. With the development of high-
throughput multi-omics technologies, shotgun metagen-
omic sequencing can provide a profile of the microbiota 
composition and functional capacities of the microbi-
ome. Fecal metabolome analysis is a reliable method with 

which to understand the metabolic activities of the gut 
microbiota and is an effective complement to functional 
readout of the gut microbiome. Recently, the multi-
omics approach has been applied to explore the effects 
of gut microbiota on host physiology and diseases such 
as PCOS [2], major depressive disorders [15], and insulin 
resistance [16].

In the present study, we investigated the relationship 
of the gut microbiota with the failure of estrus return 
after weaning in more than 200 experimental sows, and 
we examined the underlying mechanisms of the changes 
in gut microbiota and their metabolites influencing the 
failure of estrus return by integrating 16S rRNA gene 
sequencing, shotgun metagenomic sequencing, and fecal 
metabolome analysis using the study workflow shown in 
Fig. S1. Based on these analyses, we identified the specific 
bacterial species and metabolites associated with sow 
estrus return. We suggest that the dysbiosis of gut micro-
biota may disturb the level of sow steroid hormones 
and sex hormone-related compounds and the metabo-
lites related to sow energy and nutrient supply or meta-
bolic disorders, ultimately leading to the failure of estrus 
return in sows. We also provide biomarkers that could be 
used to predict non-return sows.

Materials and methods
Animals and sample collection
A total of 236 Landrace × Yorkshire sows, most of which 
were distributed from the fourth to seventh parity, were 
used in this study. These experimental sows were derived 
from two independent sow cohorts that were defined as 
the discovery cohort (n = 207) and the validation cohort 
(n = 29). The experimental sows were housed and man-
aged under similar farm conditions and were provided 
with commercial formula diets containing 67% corn and 
26% soybean meal (Table S1). Clean water was supplied 
ad libitum. All subjects were healthy and did not receive 
any antibiotics or probiotics for at least 2 months prior 
to sample collection. A total of 236 fecal samples were 
collected from the two independent sow cohorts on the 
day of weaning. Full details concerning fecal sample col-
lection were described previously [14]. Briefly, fecal sam-
ples were manually collected from each animal’s anus and 
dispensed in 2-mL sterile tubes. The fecal samples were 
immediately immersed in liquid nitrogen and stored 
at −80  °C until DNA extraction. Sow estrus behaviors 
had been recorded since the weaning day, as described 
in our previous study [14]. Those sows for which estrus 
behaviors and symptoms had not been observed for more 
than 14  d since the weaning day were defined as non-
return sows. All experimental sows were divided into 
two groups according to the interval from weaning to 
estrus return: the normal return group (167 sows in the 
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discovery cohort and 18 sows in the validation cohort), in 
which the sows returned to estrus within 7 d after wean-
ing, and the non-return group (40 sows from the discov-
ery cohort and 11 sows from the validation cohort), in 
which the sows failed to return to estrus within 14 d after 
weaning.

Microbial DNA extraction
Microbial DNA from fecal samples was extracted using 
an E.Z.N.A.® soil DNA kit (M9636-02, Omega Bio-Tek, 
Norcross, GA, USA) according to the manufacturer’s 
manuals. Microbial DNA quality was checked using 1.0% 
agarose gel electrophoresis (JY600C, JUNYI, Beijing, 
China), and the concentration and purity of extracted 
DNA were determined with a NanoDrop® ND-2000 
spectrophotometer (ND2000, Thermo Scientific Inc., 
Waltham, MA, USA). All DNA samples were stored 
at −80 °C until use.

16S rRNA gene sequencing and bioinformatic analysis
PCR amplification was performed for the V3-V4 hyper-
variable region of the 16S rRNA gene using the prim-
ers 338F (5’-ACT CCT ACG GGA GGC AGC AG-3’) and 
806R (5’-GGA CTA CHVGGG TWT CTAAT-3’) by an 
ABI GeneAmp® 9700 PCR thermocycler (ABI-97, ABI, 
Los Angeles, CA, USA) for 207 fecal microbiota DNA 
samples. The conditions for the PCR amplification were 
described in our previous study [14]. The purified PCR 
products were used to construct libraries and were 
sequenced on an Illumina MiSeq PE300 platform with a 
paired-end strategy (SY-410-1003, Illumina, San Diego, 
CA, USA) according to standard protocols by Major-
bio Bio-Pharm Technology Co. Ltd. (Shanghai, China). 
After removing the barcodes, all sequence reads of tested 
samples were processed using the QIIME2 Core 2021.11 
pipeline [17] with the following parameters: the demul-
tiplexed paired-reads were merged using the q2-vsearch 
plugin (via vsearch join-pairs), and raw reads were fil-
tered based on the quality scores with the q2-quality-
filter plugin using default parameters. The high-quality 
reads were denoised using the Deblur algorithm [18] with 
recommended parameters except –p-trim-length 390. 
Finally, a feature table of amplicon sequence variants 
(ASVs) was obtained for downstream analyses. ASVs 
identified as the sequences of mitochondrial genes were 
filtered. An additional step was employed to remove the 
samples with a total number of less than 4,000 reads. The 
sequencing depth of fecal samples was rarefied to 10,879 
tags to avoid the effect of uneven sequencing depth on α- 
and β-diversity of the microbial composition. Taxonomic 
assignment of ASVs was performed based on the Silva 
database using the q2-feature-classifier plugin. The pre-
trained Naive Bayes taxonomy classifier for the V3-V4 

region (silva-138-99-seqs-338-806-classifier.qza) was 
used in the classification.

Shotgun metagenomic sequencing and bioinformatic 
analysis
A total of 85 fecal DNA samples from the discovery 
cohort, including 45 samples from normal return sows 
and 40 samples from non-return sows, and 29 fecal 
DNA samples from the validation cohort, including 18 
samples from normal return sows and 11 samples from 
non-return sows, were used for shotgun metagenomic 
sequencing analysis. These samples covered all non-
return sows that we could obtain and a similar num-
ber of normal return sows that were selected randomly 
from both cohorts. DNA samples were fragmented 
to an average size of about 400  bp using Covaris M220 
(Gene Company Limited, Hong Kong, China). Paired-
end libraries were constructed using NEXTFLEX Rapid 
DNA-Seq (Bioo Scientific, Austin, TX, USA). Adapters 
containing the full complement of sequencing primer 
hybridization sites were ligated to the blunt ends of frag-
ments. Paired-end sequencing was performed on an 
Illumina NovaSeq 6000 platform (Illumina, San Diego, 
CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. 
(Shanghai, China) using NovaSeq Reagent Kits accord-
ing to the manufacturer’s protocol. Adapters, low-quality 
reads, and host genomic sequences were filtered from 
the raw reads before assembly using the software fastp 
(v0.20.0, –cut_by_quality3 -W 4 -M 20 -n 5 -c -l 50 -w 3) 
[19] and bwa-mem2 (v2.2.1, -t 16 -T 30) [20]. The clean 
reads were used to conduct single-sample assembly using 
MEGAHIT (v1.1.3, –min-count 2 –k-min 27 –k-max 127 
–k-step 20 –min-contig-len 1000) [21]. The gene predic-
tion of assembled contigs was performed using Prodigal 
(v2.6.3) [22]. Complete genes (containing both a start and 
stop codon) were retained and used to construct a non-
redundant gene catalog containing 3,990,509 genes at the 
90% identity level by CD-HIT (v4.7, -c 0.9 -s 0.8) [23]. 
The protein sequences of non-redundant genes were then 
aligned to the Uniprot TrEMBL database by DIAMOND 
(v2.0.8) [24] with e-values ≤ 1e−5. Taxonomic classifica-
tion of predicted genes was performed using the BASTA 
(v1.3.2.3, -l 25 -i 80 -e 0.00001 -p 60) software based 
on the Lowest Common Ancestor algorithm [25]. All 
predicted genes were functionally annotated using the 
KEGG (Kyoto Encyclopedia of Genes and Genomes) and 
dbCAN databases (HMMdb V9) with the DIAMOND 
(v2.0.8) and HMMER programs (v3.1b2), respectively. 
Meanwhile, KOBAS (v3.0) [26] was used to retrieve 
KO annotation and identify the pathways with high fre-
quency as well as statistically different enrichments from 
the annotation results. The abundance of predicted genes 
was estimated using featureCounts (v1.6.2, -p) [27]. The 
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abundances were normalized to fragments per kilobase 
of gene sequence per million reads mapped (FPKM) [28]. 
The abundances of microbial taxa and KEGG pathways 
were quantified by summing the abundances of genes 
belonging to each category [29].

Construction of co‑abundance groups (CAGs) of bacterial 
species with metagenomic sequencing data
The correlations among gut bacterial species obtained 
from shotgun metagenomic sequencing data were 
assessed in both discovery and validation cohorts 
based on the sparse correlations for compositional 
data (SparCC) algorithm [30] implemented in FastSpar 
(v1.0.0) [31]. A total of 1,000 bootstrap samples were 
generated with the command fastspar_bootstrap, and 
the correlation matrices of the resampled data matrices 
were calculated with 50 iterations. From 1,000 bootstrap 
correlations, P-values were then calculated using 1,000 
permutations with the command fastspar_pvalues. The 
correlation values were converted to a correlation dis-
tance (1 – the correlation value), and the species were 
clustered using the Ward clustering algorithm via the 
WGCNA package [32] in R program. Similar clusters 
were subsequently merged if the correlation coefficient 
between the CAG’s eigenvectors exceeded 0.8. The CAG 
network was visualized via Cytoscape (v3.7.1).

Widely targeted metabolome and lipidomics 
measurements of feces samples
The fecal samples were thawed on ice. For widely tar-
geted metabolome measurement, 50  mg (± 1  mg) was 
taken from each fecal sample and homogenized with 500 
μL of ice-cold methanol/water (70%, v/v) with an inter-
nal standard. The homogenate was vortexed for 3 min, 
sonicated for 10 min in an ice water bath, and then fur-
ther vortexed for 1 min. The mixtures were centrifuged at 
12,000 r/min at 4 °C for 10 min. Subsequently, 250 μL of 
the supernatant was pipetted out and centrifuged again 
at 12,000 r/min for 5 min at 4 °C before on-board analy-
sis. The sample extracts were analyzed using an LC–ESI–
MS/MS system (UPLC: LC-30A, Shimadzu, Kyoto, Japan; 
ESI–MS/MS system: QTRAP 6500+ , SCIEX, Foster City, 
CA, USA). For each sample, 2 μL of extracted superna-
tant was injected into a Waters Acquity UPLC HSS T3 
C18 column (1.8  μm × 2.1  mm × 100  mm, 186003539, 
Waters, Taunton, MA, USA) at 40 °C. The flow rate was 
set at 0.4  mL/min. Water containing 0.1% formic acid 
(A) and acetonitrile containing 0.1% formic acid (B) were 
used as the mobile phase. Linear ion trap (LIT) and triple 
quadrupole (QQQ) scans were acquired on a triple quad-
rupole-linear ion trap mass spectrometer (TripleTOF 
6600+ , SCIEX, Foster City, CA, USA) equipped with an 
ESI Turbo Ion-Spray interface, operating in positive and 

negative ion mode, and controlled by the Analyst soft-
ware (v1.6.3, SCIEX). The ESI source temperature and 
ion spray voltage (IS) were set at 500 °C and 5,500 V for 
positive ion mode, and 500 °C and −4,500 V for negative 
ion mode. Meanwhile, the ion source gas 1 (GS1), gas 2 
(GS2), and curtain gas (CUR) were set at 50, 50, and 25 
psi, respectively. Instrument tuning and mass calibration 
were performed with 10 and 100 μmol/L polypropylene 
glycol solutions in QQQ and LIT modes, respectively.

For fecal lipidomics measurements, 20 mg of feces was 
taken from each sample and homogenized with 1  mL 
of methyl-tert-butyl ether (MTBE)/methanol (3:1, v/v) 
with the internal standard mixture and a steel ball. After 
removing the steel ball, the mixture was vortexed for 
15 min. Subsequently, 200 μL of water was added to the 
mixture and vortexed for 1 min. The mixture was centri-
fuged at 12,000 r/min at 4  °C for 10 min. A total of 300 
μL of the supernatant was pipetted from each sample 
and freeze-dried. The powder was then dissolved in 200 
μL of mobile phase B. The lipidomics extracts were ana-
lyzed using an LC–ESI–MS/MS system (UPLC: SCIEX 
ExionLC AD system; MS: SCIEX QTRAP 6500+ sys-
tem). A total of 2 μL of lipidomics extracts for each sam-
ple was injected into a Thermo Accucore™ C30 column 
(2.6  μm × 2.1  mm × 100  mm) (27826–102130, Thermo 
Scientific, Waltham, MA, USA) at 45  °C. The flow rate 
was set at 0.35  mL/min. Acetonitrile/water (60/40, v/v) 
containing 0.1% formic acid (A) and acetonitrile/isopro-
panol (10/90, v/v) containing 0.1% formic acid (B) were 
used as the mobile phase. The ion source GS1, GS2, and 
CUR were set at 45, 55, and 35 psi, respectively. The 
parameters of ESI source temperature, IS, instrument 
tuning, and mass calibration were the same as those for 
the metabolome measurements.

The mass spectrum data were acquired by Analyst 
software (v1.6.3, SCIEX). The repeatability of the extrac-
tion and detection of metabolites were determined by 
total ion current and multi-peak diagram in the multi-
ple reaction monitoring (MRM) mode. The qualitative 
analysis of secondary general data and the identification 
of metabolites were carried out according to the reten-
tion time (RT) and mass-to-charge ratio (m/z) based on 
both an in-house MWDB database (Metware Biotechnol-
ogy Co., Ltd., Wuhan, China) and several publicly avail-
able databases, including massbank (http:// www. massb 
ank. jp/), Metlin [33], HMDB [34], and knapsack (http:// 
kanaya. naist. jp/ knaps ack/). Quality control (QC) samples 
were prepared by mixing 10 μL of each sample. One QC 
sample was injected per 10 samples following the run-
ning order. Metabolite quantification was accomplished 
using MRM of triple quadrupole mass spectrometry. The 
chromatographic peaks of the mass spectrum files were 
integrated and calibrated in the QTRAP® system. The 

http://www.massbank.jp/
http://www.massbank.jp/
http://kanaya.naist.jp/knapsack/
http://kanaya.naist.jp/knapsack/


Page 5 of 22Liu et al. Journal of Animal Science and Biotechnology          (2023) 14:155  

peak area of each chromatographic peak represented the 
relative concentration of the corresponding metabolite. 
We calculated the coefficient of variation (CV) values of 
the metabolites in the QC samples and removed those 
metabolites whose CV values were greater than 0.5.

Statistical analysis
Comparisons of the α‑ and β‑diversity of the gut microbiome 
between normal return and non‑return sows
Using the 16S rRNA gene sequencing data, the 
α-diversity indices of observed species, Chao1, ACE, 
Shannon, Simpson, and Evenness were calculated and 
visualized with the MicrobiotaProcess R package (v1.7.8). 
The α-diversity of the gut microbial composition between 
normal return and non-return sows was compared by a 
Wilcoxon rank-sum test. The β-diversity based on the 
Bray–Curtis distance was analyzed using the q2-diver-
sity plugin in QIIME2. A principal coordinate analysis 
(PCoA) was performed based on the microbial dissimi-
larity between the two groups and visualized using R 
software to assess the differences in the microbiota com-
position between normal return and non-return sows. 

For the metagenomic sequencing data, the α-diversity 
(observed species, Chao, ACE, and Shannon indices) and 
the β-diversity based on the Bray–Curtis distance were 
estimated via the Vegan package for R software (v4.1.2). 
A Wilcoxon rank-sum test was used to compare the α- 
and β-diversity of the gut microbiome between normal 
return and non-return sows. The results were visualized 
using the ggplot2 package for R.

Identification of microbial taxa, CAGs, and functional 
capacities showing different abundances between normal 
return and non‑return sows
The mp_diff_analysis() function of the MicrobiotaProcess 
R package (v1.7.8) was used to identify the ASVs and taxa 
whose abundances varied significantly between normal 
return and non-return sows at the significance thresholds 
of false discovery rate (FDR) < 0.05 and linear discrimi-
nant analysis (LDA) score > 3.0 using the 16S rRNA gene 
sequencing data. Differential CAGs between normal and 
non-return sows were identified by a Wilcoxon rank-sum 
test at the significance threshold of P < 0.05. The linear 
discriminate analysis effect size (LEfSe) algorithm [35] 
was used to identify microbial taxa showing significant 
differences in the abundances between normal return 
and non-return sows at the significance threshold of 
P < 0.05 and LDA score > 2 using metagenomic sequenc-
ing data. The relative abundance of P. copri in each tested 
sample was defined as the number of reads aligned to 
the P. copri genome normalized by the total number of 
reads in that sample and the genome size. The Wilcoxon 
rank-sum test was also performed to discriminate the 

functional capacities of the gut microbiome having sig-
nificantly different abundances between two sow groups 
at the threshold of FDR < 0.05.

Data analysis of widely targeted metabolome and lipidomics
Orthogonal partial least squares discriminant analysis 
(OPLS-DA) was performed to evaluate the differences 
of widely targeted metabolome profiles between normal 
return and non-return sows using the online Metabo-
Analyst (v5.0) [36] with default parameters. The differen-
tial metabolites, lipid molecules, and metabolite modules 
were first identified by univariate analysis with Student’s 
t-test at the significance threshold of FDR < 0.05. Then, 
the differential metabolites and lipid molecules with 
FDR < 0.05 and the absolute value of  log2 (fold change) > 1 
were visualized by a volcano plot. Differential candi-
dates of metabolites and lipid molecules with FDR < 0.05 
and variable importance in projection (VIP) > 1 from 
the OPLS-DA model were clustered into co-abundance 
modules using the WGCNA R package. Signed and 
weighted co-abundance correlation networks of metabo-
lites were constructed after  log2(x + 1) transformation of 
the concentrations of metabolites across 85 experimen-
tal sows. According to the scale-free topological criterion 
(R2 = 0.9), we chose the soft threshold of β = 16 for the 
correlations of widely targeted metabolites and β = 28 for 
lipid molecules. Metabolite clusters were identified with 
the dynamic hybrid tree-cutting algorithm at the thresh-
old for deepSplit of 4 and minimum cluster sizes of 5 and 
3 for widely targeted metabolites and lipid molecules, 
respectively. The metabolites that did not fit the cluster-
ing criteria were recruited in a group named ‘remain-
ing’. The eigenvector of each module was selected as 
the representative value of its profile. The modules with 
similarity of eigengenes > 0.8 were merged. The clusters 
of widely targeted metabolites and lipid molecules were 
labeled M01–M35 and L01, L03–L22, respectively.

Correlation analysis between the gut microbiome and fecal 
metabolome
To assess the relationships between the changes in gut 
microbiota and the shifts in fecal metabolites, Spear-
man correlation analysis was performed between differ-
ential gut microbial taxa and fecal metabolites, between 
differential CAGs and metabolite modules, and between 
differential gut microbial taxa and hormones and hor-
mone-related compounds. We computed P-values and 
applied the Benjamini–Hochberg method to control for 
the FDR. The correlations with FDR < 0.05 were visual-
ized with the ggplot2 and ComplexHeatmap packages for 
R software (v4.1.2).
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Random Forest model for identifying the biomarkers 
that could be used to classify return and non‑return sows
To distinguish return and non-return sows, a random 
forest classification model was constructed based on fecal 
CAGs and metabolite modules using k-fold cross-valida-
tion, where k was the number of samples. The optimal 
combination was chosen at the lowest cross-validation 
error. The efficiency of classification was assessed using 
receiver operating characteristic (ROC) curves, and the 
area under the ROC curve (AUC) was measured using 
the pROC package for R software (v4.1.2).

Results
Gut microbial composition of sows after weaning 
and identification of the gut microbial taxa associated 
with estrus return of post‑weaning sows
A 16S rRNA gene sequencing analysis was performed for 
a total of 207 fecal samples to provide a comprehensive 
understanding of the composition of the gut microbiota 
in sows after weaning. On average, 16,027 clean tags were 
obtained for each sample, and these tags were clustered 
into 4,880 ASVs using a deblur denoising pipeline. Rar-
efaction curves based on the α-diversity indices indicated 
that the number of sequence reads for each fecal sample 
was sufficient for further analysis (Fig. S2A). After the 
taxonomic annotation of ASVs, we obtained a profile of 
the taxonomic composition of the gut microbiota. The 
gut microbial community was dominated by Firmicutes 
(77.51%), Bacteroidota (13.2%), Spirochaetota (5.85%), 
and Proteobacteria (2.15%). At the genus level, Clostrid-
ium_sensu_stricto_1 (15.07%), Terrisporobacter (11.09%), 
Treponema (5.77%), Turicibacter (5.42%), and Lactoba-
cillus (5.26%) were ranked in the top 5 in relative abun-
dances (Fig. S2B). We evaluated the effect of sow parities 
on the gut microbial composition because experimental 
sows were at different parities. The results showed that 
the parity only accounted for 0.17% of the variation of 
the gut microbial composition, suggesting no significant 
effect (Fig. S3).

All 207 experimental sows were divided into a normal 
return group (167 fecal samples) and a non-return group 
(40 samples) according to the interval from weaning 
to estrus return (Methods). Although there was no sig-
nificant difference in the α-diversity of gut microbiota 
between the two sow groups, the richness of observed 
taxa, Chao1, ACE, and Shannon indices in non-return 
sows were higher than those in normal return sows (Fig. 
S4A). Meanwhile, significant shifts in gut microbiota 
composition between normal return and non-return 
sows were observed from the PCoA based on the Bray–
Curtis distance (Fig. S4B and C).

We further identified bacterial taxa having signifi-
cantly differential abundances between the two groups. 

At the genus level, genera from Muribaculaceae, Lach-
nospiraceae_XPB1014_group, and Prevotella were sig-
nificantly enriched in normal return sows, while 4 genera 
had significantly higher abundances in non-return sows, 
including Streptococcus, Bacteroides, Family_XIII_
AD3011_group (belonging to Anaerovoracaceae) and 
Bifidobacterium (Fig. S4E, Table S2). At the ASV level, 
15 ASVs showed significantly differential abundances 
between the two sow groups. ASV0014:s_Lactobacil-
lus_johnsonii, ASV0302:g_Lachnospiraceae_XPB1014, 
ASV0714:g_Muribaculaceae, and ASV0242:g_Murib-
aculaceae were significantly enriched in normal sows, 
whereas the abundances of 11 ASVs were significantly 
higher in non-return sows, including ASV0109:g_Strep-
tococcus, ASV0048:g_Clostridium_sensu_stricto_1, 
ASV0088:s_Clostridium_septicum, ASV0059:g_Family_
XIII_AD3011_group, ASV0201:g_Clostridia_UCG014, 
ASV0310:s_Bacteroides_fragilis, and ASV0384:s_Bifido-
bacterium_pseudolongum (Fig. S4D, Table S2).

Shotgun metagenomic sequencing was performed for 
85 fecal samples, with 45 samples from normal return 
sows and 40 samples from non-return sows (Table S3). 
There was no significant difference in gene richness 
between the two sow groups (Fig. S5A). The α-diversity 
indices including observed species, Chao, and ACE in 
normal return sows were significantly lower than those in 
non-return sows, although the difference in the Shannon 
index did not achieve a significant level (Fig.  1A). The 
β-diversity of gut microbial composition was also signifi-
cantly different between normal return and non-return 
sows (Fig. 1B and C).

Streptococcus, Bacteroides, Enterococcus, and Bifido-
bacterium were more abundant in non-return sows, 
whereas Limosilactobacillus, Prevotella, and Treponema 
had higher abundances in normal return sows (Fig. S5C). 
The LEfSe analysis further identified 37 bacterial spe-
cies showing distinct abundances between the two sow 
groups. Among these species, 19 species were signifi-
cantly enriched in normal sows, most of which belonged 
to Lactobacillus and Prevotella. The relative abundances 
of 18 species were significantly higher in non-return 
sows, including B. fragilis, B. pseudolongum, and sev-
eral species belonging to Streptococcus and Enterococcus 
(Fig.  1D, Table S4). This result agreed with the findings 
based on the 16S rRNA gene sequencing data, suggesting 
that these species should be treated as potential micro-
bial biomarkers to distinguish normal return and non-
return sows.

To further validate the association analysis results, we 
performed a multivariate logistic regression to examine 
the relationship between gut microbial species and estrus 
return in experimental sows by adopting the models with 
and without adjusting for the effect of parity. Notably, the 
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Fig. 1 Comparison of the diversity of gut microbiota and identification of gut bacterial species showing differential abundances between normal 
and non-return sows. A Comparison of the α-diversity of gut microbiota. B Comparison of the gut microbial composition between normal return 
and non-return sows by principal coordinate analysis (PCoA) based on the Bray–Curtis distance. C Boxplot of the Bray–Curtis dissimilarity of gut 
microbiota between subjects within and between each group. Comparison was performed by Wilcoxon rank-sum test at the significance level 
of P < 0.05. D Differential bacterial species between normal return and non-return sows with metagenomic sequencing data. The significance 
threshold was set at LDA score > 2 and P < 0.05
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estrus return-associated bacterial species were mostly con-
sistent with those identified in the LEfSe analysis. Further-
more, the parities showed no effect on the identification of 
estrus return-associated bacterial species (Table S5).

Co‑abundance group analysis identified the hub bacterial 
species associated with estrus return of post‑weaning sows
A co-abundance network was constructed based on the 
SparCC algorithm with 540 bacterial species obtained 
from metagenomic sequencing analysis. A total of 25 
CAGs were obtained and compared between the two sow 
groups (Table S6). Seven CAGs showed significantly dif-
ferent enrichment between the groups (P < 0.05) (Fig. 2B, 
Table S8). Of these, CAG6, CAG17, and CAG9 were 
enriched in normal sows. Notably, CAG6 comprised 12 
species from Prevotella, including P. copri and P. bryantii. 
The species from Limosilactobacillus and Lactobacillus 
were included in CAG17. CAG9 was largely composed 
of Clostridiales bacterium and Verrucomicrobia bacte-
rium. Combining their abundances in the gut microbi-
ome and the number of connections in the networks, L. 
reuteri, P. copri, and Verrucomicrobia bacterium were 
the hub species enriched in normal sows. Conversely, the 
abundances of CAG7, CAG12, CAG4, and CAG3 were 
significantly increased in non-return sows. The species 
included in each of these CAGs are shown in Fig. 2A. B. 
fragilis, S. suis, and B. pseudolongum were the hub spe-
cies enriched in the gut of non-return sows. Positive 
correlations were identified among CAG6, CAG17, and 
CAG9 as well as between CAG7 and CAG4. These results 
suggested that the CAGs may affect the estrus return of 
sows after weaning by synergistic regulation. Notably, 
CAG6 was negatively correlated with CAG12, CAG4, and 
CAG7 (Fig. 2A), suggesting competition between normal 
return-associated bacteria and non-return-associated 
bacteria in the gut microecosystem.

Validating the estrus return‑associated bacterial species 
in an independent validation sow cohort
Fecal samples of 18 normal return and 11 non-return 
sows from an independent validation cohort were 

subjected to shotgun metagenomic sequencing to further 
confirm the differential bacterial taxa between normal 
return and non-return sows (Table S3). The comparison 
results for the α- and β-diversity between the two sow 
groups are shown in Fig. S6A–C. At the species level, a 
total of 27 bacterial species showed different abundances 
between normal and non-return sows. Of these, 11 spe-
cies were significantly enriched in normal sows, most of 
which belonged to Lactobacillus. The relative abundances 
of 16 species including E. siraeum, B. pseudolongum, 
and several species belonging to Streptococcus were sig-
nificantly higher in non-return sows (Fig. S6D). We note 
that among these differentially abundant species, L. john-
sonii, L. gasseri, and Verrucomicrobia bacterium that 
were enriched in normal sows, and the species B. pseu-
dolongum, S. suis, R. lactaris, and S. equinus enriched in 
non-return sows were repeated between the discovery 
and validation cohorts. At the CAG level, 7 out of 32 
CAGs derived from 495 species in the validation cohort 
showed significantly different abundances between nor-
mal-return and non-return sows (Fig. S7B and Table S8). 
Of these, CAG3 was largely composed of Bifidobacterium 
spp. including B. pseudolongum and B. bifidum were 
significantly enriched in non-return sows. In contrast, 
CAG17 composed of Prevotella spp. and Muribacu-
laceae bacterium, and CAG23 including the species from 
Limosilactobacillus and Lactobacillus were significantly 
enriched in normal return sows (Fig. S7A and Table S7). 
These findings were also consistent with those obtained 
in the discovery cohort.

Significant changes in functional capacities of the gut 
microbiome between normal return and non‑return sows
The gut microbial genes were aligned to the KEGG data-
base to explore differential KEGG pathways between 
normal return and non-return sows. A total of 1,823 
differential KEGG orthology genes (KO genes) were 
identified between the two sow groups in the discovery 
cohort (FDR < 0.05), and these differential KO genes were 
involved in 233 functional pathways (Table S9). Of these, 
34 pathways were significantly enriched in non-return 

Fig. 2 Co-abundance groups (CAGs) of bacterial species showing different abundances between normal and non-return sows and comparing 
the abundances of bacterial genes participating in the deconjugation of estrogen. A The network diagram of 7 CAGs showing different 
enrichments between normal return and non-return sows. The size of the nodes represents the abundance of bacterial species. The thickness 
of the connections between nodes indicates the weight of the correlation coefficient between species. Lines were drawn only when its correlation 
coefficient was greater than 0.5 and P < 0.05. The red lines represent a positive correlation and the gray lines represent a negative correlation. The 
colors of the nodes represent different CAGs. B Boxplots show the differential abundances of seven CAGs between two sow groups. Wilcoxon 
rank-sum test was performed for comparison analysis. *P < 0.05, **P < 0.01, ***P < 0.001. C The comparisons of the abundances of β-glucuronidase, 
β-glucosidase, and hydroxysteroid dehydrogenases that participate in the deconjugation of estrogen. Wilcoxon rank-sum test was used 
for the comparison, ns, FDR > 0.05, *FDR < 0.05, ***FDR < 0.001. Muribaculaceae, Prevotella, Prevotella copri, and Limosilactobacillus carried the K05349 
gene that was annotated to β-glucosidase in their genomes

(See figure on next page.)
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sows, including ABC transporter, pyrimidine metabo-
lism, purine metabolism, and steroid degradation. while 
199 KEGG pathways exhibited significantly higher abun-
dance in normal sows, including energy metabolism, 

lipid metabolism (e.g., steroid hormone biosynthesis and 
glycerophospholipid metabolism), carbohydrate metabo-
lism (TCA cycle and glycolysis/gluconeogenesis), gly-
can biosynthesis and metabolism (lipopolysaccharide 

Fig. 2 (See legend on previous page.)
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biosynthesis), endocrine system (estrogen signaling 
pathway, GnRH signaling pathway, and ovarian steroi-
dogenesis), and digestive system (vitamin digestion and 
absorption) (Table S9). Significant changes in potential 
functional capacities of the gut microbiome between 
normal return and non-return sows were confirmed in 
the validation sow cohort. A total of 33 KEGG pathways 
showed significantly higher abundance in normal return 
sows. Twenty-three out of these 33 differential KEGG 
pathways were also identified in the discovery cohort, 
including steroid hormone biosynthesis, glycerophospho-
lipid metabolism, glycan biosynthesis and metabolism 
(lipopolysaccharide biosynthesis), glycolysis/gluconeo-
genesis, and the estrogen signaling pathway (Table S10). 
However, several immune and disease-related KEGG 
pathways were enriched in non-return sows. Notably, 
microbial genes having higher abundances in normal 
sows were enriched in the pathways of steroid hormone 
biosynthesis, estrogen signaling pathway, GnRH signal-
ing pathway, and ovarian steroidogenesis, further imply-
ing that gut microbiota may play an important role in the 
process of estrus return in post-weaning sows.

We compared the abundances of β-glucuronidase, 
β-glucosidase, and HSD in more detail, all of which 
participate in the deconjugation and reuptake of estro-
gens, between the two sow groups. In normal return 
sows of the discovery cohort, β-glucosidase  (K05349) 
and HSD17B12 (K10251) had significantly higher abun-
dances in the gut microbiome (FDR = 4.37e–04 and 0.03), 
and the abundance of β-glucuronidase was also higher, 
although it did not achieve a significant level (FDR = 0.24) 
(Fig.  2C). Specifically, some taxa significantly enriched 
in normal sows, such as Muribaculaceae, Prevotella 
(especially P. copri) and Limosilactobacillus, carried 
β-glucosidase in their genomes (Fig. 2C and S5D). More-
over, significantly positive correlations were observed 
in relative abundance between these gut microbes and 
β-glucosidase  (K05349), except for Limosilactobacil-
lus (Fig. S5E). P. copri was the hub species in CAG6 that 
was enriched in normal sows (Fig. 2A). We isolated and 
cultured P. copri in vitro from pig fecal samples in our 
previous study [37]. Here, the β-glucosidase  (K05349) 
was indeed found in the genome of the P. copri isolate. 
The P. copri isolate showed significantly higher abun-
dance in normal sows with metagenomic sequencing 
data (Fig. S5B). Importantly, a significant positive cor-
relation was observed between the abundances of the P. 
copri isolate and β-glucosidase (R2 = 0.60, P = 2.28e–11). 
Consistently, the gut microbiome of normal return sows 
in the validation cohort also had higher abundances 
of β-glucuronidase, β-glucosidase, and hydroxysteroid 
dehydrogenases compared to the non-return sows (Fig. 

S7D), although the differences did not achieve a signifi-
cant level due to the smaller sample size. These findings 
suggested that the alterations in the gut microbiome may 
cause changes in estrogen levels in the host. This could 
be one of the reasons leading to estrous cycle disorders 
in sows.

Alterations in fecal metabolome profiles between normal 
return and non‑return sows
Widely targeted metabolome and lipidome measure-
ments were performed on 85 fecal samples as described 
above to compare the metabolite profiles between nor-
mal return and non-return sows in the discovery cohort. 
A total of 1,863 metabolites and 718 lipid molecules were 
obtained and employed for further analysis. We observed 
that the metabolite profiles in normal return sows were 
clearly separated from those of non-return sows by 
OPLS-DA (Fig.  3C). Compared with normal return 
sows, non-return sows displayed increased concentra-
tions of 127 metabolites and decreased concentrations 
of 21 metabolites in the widely targeted metabolome 
data (Fig. 3A, Table S11). Daidzein, genistein, ergosterol, 
and 3-O-p-coumaroylquinic acid had significantly higher 
concentrations in normal sows. However, cicaprost, 
bolasterone, 5-pregnen-3β-ol-20-one, allopregnan-
20alpha-ol-3-one, adrenosterone, and phosphate sugars 
including D-fructose-6-phosphate-disodium salt and 
N-acetylglucosamine-1-phosphate showed significantly 
higher concentrations in non-return sows. Meanwhile, 
a total of 31 differentially abundant lipid molecules 
were identified between two sow groups, including 25 
lipid molecules enriched in non-return sows and 6 lipid 
metabolites having higher concentrations in normal sows 
(Fig. 3B and Table S11).

Considering the complex relationships among fecal 
metabolites, and to further explore the biological func-
tion patterns of different metabolites, all differential 
compounds, including 630 metabolites from the widely 
targeted metabolome data and 274 lipid molecules from 
lipidome data detected by OPLS-DA models (VIP > 1, 
FDR < 0.05), were clustered into 35 metabolite modules 
and 21 lipid molecule modules (Table S12). Among the 21 
lipid modules, 6 modules containing 68 lipid molecules 
were enriched in non-return sows, while 15 modules 
containing 163 lipid molecules were enriched in normal 
sows (Fig. 3D, Table S12 and S13). Among the 35 metabo-
lite modules, 12 modules including 296 metabolites were 
enriched in non-return sows, while 23 modules con-
taining 281 metabolites showed enrichment in normal 
sows (Fig.  4A, Table S12 and S13). We then performed 
a KEGG enrichment analysis for all differential metabo-
lites. The metabolites having higher concentrations in 
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non-return sows were enriched in primary bile acid bio-
synthesis, tyrosine metabolism, steroid hormone biosyn-
thesis, taurine and hypotaurine metabolism, and steroid 
biosynthesis (Fig.  4B). However, the metabolites having 
higher concentrations in normal return sows showed 
enrichment in the pathways of tyrosine metabolism, 
galactose metabolism, butyrate metabolism, nicotinic 
acid and nicotinamide metabolism, vitamin  B6 metabo-
lism, steroid hormone biosynthesis, and tryptophan 
metabolism (Fig. 4C). Notably, when we focused on the 
metabolites enriched in the pathways involved in hor-
mones and hormone-related compounds, androgens, 
progestogens, and related compounds including testos-
terone, oxandrolone, adrenosterone, bolasterone, tes-
tosterone cypionate, allopregnan-20alpha-ol-3-one, and 
5-pregnen-3β-ol-20-one were enriched in non-return 
sows. However, estrogen-related compounds such as 

estradiol-17 phenylpropionate, estrone 3-sulfate, phy-
toestrogens (including genistein and daidzein), and 
solasodine, which has an anti-androgenic effect, were sig-
nificantly enriched in normal return sows. These results 
indicated that the level of hormones and metabolites 
were significantly different between the two sow groups, 
and thus the changes in hormones may influence estrus 
return of post-weaning sows.

Shifts in fecal metabolites were associated 
with the changes in the gut microbiome
We evaluated the associations between the changes in 
the gut microbiome and the shifts in fecal metabolites 
to highlight the possible mechanism of gut microbi-
ome influencing sow estrus return. At the significance 
threshold of FDR < 0.05, the α-diversity (observed spe-
cies) of the gut microbiota was significantly associated 

Fig. 3 Alterations in fecal metabolome profiles between normal return and non-return sows. Volcano plots identifying the differential fecal 
metabolites by widely targeted metabolome (A) and lipidome (B), only the metabolites with FDR less than 0.05 and the absolute value of  log2 (fold 
change) greater than 1 are colored, red represents the metabolites enriched in non-return sows and blue represents those metabolites enriched 
in normal sows. C OPLS-DA diagram of fecal metabolome profile shows that metabolite profiles in feces samples of normal sows were clearly 
separated from that of non-return sows. Boxplots show differential metabolite modules between normal return and non-return sows. D Student’s 
t-test identified a total of 21 differential lipid molecule modules. *FDR < 0.05, **FDR < 0.01, and ***FDR < 0.001
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with 45 differential metabolite modules, with 17 metab-
olite modules and 28 lipid molecule modules. Specifi-
cally, M30 and M18 modules that contained hormones 
and hormone-related compounds showed the strongest 
positive correlations, indicating a significant relation-
ship between the composition of the gut microbiome and 
hormones and hormone-related compounds (Fig.  5A). 
Subsequently, significant relationships were discovered 

between 7 differential CAGs and 56 differential metabo-
lite modules (21 lipid molecule modules and 35 metab-
olite modules) (Fig. S8A and B). The correlations with 
R2 > 0.5 were selected (Fig. S9). In particular, CAG17 and 
CAG6 were positively correlated with M02 (containing 
tryptophan, indole, and its derivatives), M11 (includ-
ing estrone 3-sulfate), and M19 (including genistein and 
daidzein), but negatively correlated with M28 (hormones 

Fig. 4 Alterations in fecal metabolome profiles between normal return and non-return sows. A 35 differential metabolite modules identified 
by Student’s t-test. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001. The y-axis indicates the eigenvector of each module as the representative value of its 
metabolite profile. B and C The KEGG pathways enriched by differential fecal metabolite features (including both lipid molecules and metabolites) 
in non-return (B) and normal return sows (C). The size and color of the dots indicate the value of the KEGG pathway impact and the enrichment 
significance of the pathways, respectively

(See figure on next page.)
Fig. 5 The interrelationship between gut microbiota and fecal metabolite profile by integrating fecal metagenomic and metabolome data. A The 
association between the α-diversity index of observed species and metabolite modules. Red represents a positive correlation and blue represents 
a negative correlation. Only the correlations with FDR < 0.05 were displayed. B The heatmap depicts the relationships between differential bacterial 
species, and fecal hormones and hormone related compounds. Spearman correlation coefficients were used. Red represents positive correlations 
and blue represents negative correlations. The stars in the grids represent the significance threshold: +FDR < 0.05, *FDR < 0.01, **FDR < 0.001
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Fig. 5 (See legend on previous page.)
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and hormone-related compounds, including progester-
one, androgen and oxidized lipids), M03 (oxidized lipids, 
hormones, and hormone-related compounds, e.g., oxan-
drolone), M18 (containing adrenosterone), and M21 
(hormones and hormone-related compounds and bile 
acids) (Fig. S8B). We further focused on the relationships 
between differential bacterial species and differential 
hormones and hormone-related compounds. Negative 
correlations were observed between the abundance of 
Muribaculaceae, Prevotella spp., and Limosilactobacil-
lus spp., and the concentrations of pregnenolone, allo-
pregnan-20alpha-ol-3-one, testosterone, adrenosterone, 
bolasterone, and oxandrolone. In contrast, these com-
pounds had significant positive correlations with the spe-
cies from Bifidobacterium and Streptococcus, which were 
significantly enriched in non-return sows. This was in 
concordance with the findings described above, in which 
significant positive correlations were found between B. 
pseudolongum and progesterone-related compounds 
such as 5-pregnen-3β-ol-20-one and allopregnan-
20alpha-ol-3-one. Furthermore, estrone 3-sulfate, daid-
zein, and genistein enriched in normal sows showed 
positive correlations with Muribaculaceae and the spe-
cies from Prevotella and Limosilactobacillus but had 
significant negative correlations with the species from 
Bifidobacterium and Streptococcus (Fig. 5B and S8C).

Meanwhile, significant associations between functional 
pathways of the gut microbiome and fecal metabolite 
modules were identified (Fig. S10). Notably, steroid hor-
mone synthesis, ovarian steroidogenesis, and the estro-
gen signaling pathway, which were significantly enriched 
in the gut microbiome of normal return sows, showed 
significantly positive associations with M11 (lysophos-
phatidyle  thanolamine, lysophosphatidyl  choline, indole 
and its derivatives, and estrogens such as estrone 3-sul-
fate), but were negatively correlated with M28 (hormones 
and hormone-related compounds, e.g., progesterone and 
androgen), and M03 (oxidized lipids, and hormones and 
hormone-related compounds including oxandrolone). 
Overall, the findings indicated that the changes in the gut 
microbiome and its functional capacities could modulate 
the metabolites of hormones and hormone-related com-
pounds that affected the estrus return of weaning sows.

Integrated analysis of the abundance of bacterial 
species, metagenome, and fecal metabolome confirmed 
the relationships between estrus return related‑gut 
microbiome and the biosynthesis of steroid hormones
An integrated analysis of shotgun metagenomic sequenc-
ing and fecal metabolome data was performed to check 
whether the disturbance of steroid hormone biosynthe-
sis was particularly relevant to the changes in the gut 

microbiome in non-return sows. Three main steps are 
involved in the biosynthesis of steroid hormones from 
cholesterol to estrogens and the reciprocal conversion 
between steroid hormones. (I) Biosynthesis of preg-
nenolone from cholesterol and its transformation and 
metabolism. Pregnenolone is synthesized from choles-
terol. Pregnenolone and progesterone can be intercon-
verted by a bifunctional enzyme complex. The microbial 
genes K10251, K12343, and K00038 are involved in the 
metabolism of pregnenolone and progesterone. In this 
study, K12343 and K10251 were significantly enriched 
in the gut microbiome of normal return sows. K00038 
showed a similar trend, but it did not achieve a signifi-
cant level. Notably, four metabolites involved in this step, 
including cholesterol, pregnenolone, 7alpha-hydroxy-
pregnenolone, and 11beta, 17alpha, and 21-trihydroxy-
pregnenolone, were detected in the fecal metabolome 
and had significantly lower concentrations in the feces 
of normal return sows. (II) Biosynthesis of testosterone 
from pregnenolone and progesterone, and its trans-
formation. Pregnenolone and progesterone can be 
converted into 17-alpha-hydroxypregnenolone and 
17-alpha-hydroxyprogesterone, respectively, and then to 
androstenedione. Androstenedione and testosterone can 
be interconverted. The microbial gene K12343 is involved 
in the metabolism of androstenedione and testoster-
one, and this had a higher abundance in normal return 
sows as mentioned above. From the fecal metabolome 
data, testosterone and adrenosterone had significantly 
higher abundances in non-return sows. (III) Biosynthe-
sis of estrogens (estradiol-17beta, estrone, and estriol) 
and their mutual transformation. The microbial gene 
K10251 is involved in the process of mutual transforma-
tion of estrone and estradiol-17beta and was enriched in 
normal return sows. Estrone 3-sulfate, the product of the 
interconversion from estrone, was also enriched in nor-
mal return sows. Overall, the abundances of the micro-
bial genes  K12343,  K00038, and  K10251 were higher in 
the gut microbiome of normal return sows in both the 
discovery and validation sow cohorts (Fig. S11), suggest-
ing increases in both the biosynthesis of estrogen and 
the degradation of progesterone and androgen in these 
sows. Notably, K00038 and K12343 were identified in 
the gut bacterial species enriched in normal return sows 
such as L. reuteri and Prevotella spp. (Fig.  1D). Moreo-
ver, strongly positive correlations were observed between 
K00038 and L. reuteri and between K12343 and Prevo-
tella spp. (Fig. S5E). It implied that L. reuteri and the spe-
cies from Prevotella could participate in the degradation 
of pregnenolone, progesterone, and testosterone, but 
promote the biosynthesis of estrogens, finally resulting in 
the normal return of estrus (Fig. 6).
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Biomarkers based on microbial composition and fecal 
metabolome for predicting non‑return sows
To evaluate whether gut microbial CAGs and metabo-
lite modules could be used as biomarkers to discrimi-
nate non-return sows from normal sows, three random 
forest models were constructed based on 7 differential 
gut bacterial species CAGs, 56 differential metabolite 
modules, and the combination of differential gut micro-
bial CAGs and metabolite modules (Fig. 7A and B). We 
found that single-type biomarker panels could distin-
guish non-return sows, with area under the curve (AUC) 
values of 0.933  and 0.930  (CAGs of fecal bacterial spe-
cies: AUC = 0.933, metabolite modules: AUC = 0.930). 
The impact of discriminatory features in each type of 
biomarker on the predictions is shown in Fig. 7C, S12A 
and B. We found that the marker panels integrating fecal 
microbial CAGs and metabolite modules enabled the dis-
crimination of non-return sows with the highest predic-
tion power (AUC = 0.970).

Discussion
The failure to return to estrus of sows after weaning has 
a serious influence on reproductive performance and 
leads to economic losses in the swine industry. There are 
a variety of factors affecting sow estrus return. Our previ-
ous study implied that the gut microbiota could be one 
of the key factors involved [14]. Few studies have inves-
tigated the effect of gut microbiota on sow estrus return 
after weaning. To our knowledge, there has been no study 
investigating the underlying mechanisms of gut microbi-
ota influencing sow estrus. In the current study, we sys-
temically explored the association of the gut microbiome 
with estrus return in 236 sows from two sow cohorts. By 
integrating metagenomic sequencing data, fecal metabo-
lome data, and the genome of P. copri isolates, we further 
investigated the possible mechanism of gut microbial 
taxa affecting estrus return of weaning sows. Our results 

suggested that the changes in the gut microbiome were 
associated with the disturbance to the biosynthesis of 
host sex steroid hormones, and finally were related to the 
failure of sows to return to estrus.

The gut microbial composition of sows could be influ-
enced by different parities [38]. However, in this study, 
we did not observe a significant effect of parity on the 
composition of the gut microbiota (Fig. S3). This could 
be because the parities of most experimental sows were 
relatively concentrated at the fourth to seventh parity. All 
experimental sows were raised on the same farm under 
the same conditions, with similar management practices. 
The non-return sows were characterized by an increased 
α-diversity of the gut microbiota. This was consistent 
with our previous study [14]. This result could be related 
to the levels of sex steroid hormones in sows after wean-
ing. It has been reported that the α-diversity of the gut 
microbiota is inversely correlated with the level of estro-
gen and positively correlated with the level of testos-
terone [39]. However, another study showed a negative 
correlation between the α-diversity of the gut microbiota 
and the level of testosterone [40]. This may have been due 
to the state of reproductive physiology of the experimen-
tal animals.

We then speculated as to the possible mechanism 
of the gut microbiome affecting sow estrus return by 
integrating information concerning differential bacte-
rial taxa, potential functional capacities, and the fecal 
metabolome. The species from Muribaculaceae [41], 
Lachnospiraceae_XPB1014_group [42, 43], Prevotella 
[44, 45], and Lactobacillus [46] that can produce short-
chain fatty acids (SCFAs) with anti-inflammatory effects 
[47] by degrading a variety of complex carbohydrates 
showed enrichment in the gut microbiota of normal 
return sows, while species from Streptococcus, Enterococ-
cus, Bacteroides, and Bifidobacterium were enriched in 
non-return sows. Previous reports have suggested that 

Fig. 6 The bacterial taxa and microbial genes taking part in the biosynthesis and metabolism of sex steroid hormones and comparisons of their 
abundances and its metabolites between normal return and non-return sows. A Biosynthesis and metabolism of pregnenolone and progesterone. 
Microbial genes (K10251, K00038, and K12343) participating in the metabolism of progesterone were up-regulated in normal group. Moreover, 
Prevotella spp. and Limosilactobacillus reuteri carrying K12343 and K00038 genes also showed significant enrichment in normal group, suggesting 
a promotion of progesterone degradation in normal group. However, cholesterol, pregnenolone, and 11beta,17alpha,21-trihydroxypregnenolone 
and 7alpha-hydroxypregnenolone had higher concentrations in feces of non-return sows. B Biosynthesis and metabolism of testosterone. As 
described in A, microbial gene K12343 participating in the metabolism of testosterone and androstenedione, and Prevotella spp. carrying K12343 
had higher abundances in normal sows. C Biosynthesis of estrogens (estradiol-17beta, estrone and estriol). Microbial gene K10251 involved 
in the mutual transformation of estrogens was enriched in normal sows. Boxplots show the differential abundances of bacterial species, microbial 
genes and fecal metabolites between non-return and normal return sows. Red represents the metabolites that were significantly enriched 
in non-return group, and blue represents bacterial species, microbial genes and metabolites that were significantly enriched in normal group. 
Wilcoxon rank sum test was used for differential analysis of bacterial species and microbial genes, and Student’s t-test was used for differential 
analysis of fecal metabolites. ns, FDR > 0.05, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001, ****FDR < 0.0001. Gut bacterial species carrying microbial genes 
involved in this pathway have also been highlighted. And the solid lines between metabolites represent direct and previously confirmed pathways 
and the dashed lines represent indirect or unknown pathways

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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the abundance of anti-inflammatory bacteria including 
Lactobacillus and Butyrivibrio were positively correlated 
with SCFAs, follicle-stimulating hormone (FSH), E2, and 
IL-10. Conversely, the abundances of Actinobacteria, 
Bacteroides, and Streptococcus were negatively correlated 
with SCFAs, FSH, E2, and IL-10 [48].  The abundance 
of Bifidobacterium spp. in the gut of women and mice 
was increased by increased progesterone during late 

pregnancy [49]. This agreed with our findings in which 
significantly positive correlations were found between 
B. pseudolongum and progesterone-related compounds 
such as 5-pregnen-3β-ol-20-one and allopregnan-
20alpha-ol-3-one. From the metagenomic sequencing 
data obtained in this study, Prevotella (especially P. copri), 
Muribaculaceae, and Limosilactobacillus enriched in 
normal return sows harbored a β-glucosidase gene that 

Fig. 7 The performance of classification models based on fecal microbiota CAGs and metabolite modules in discriminating non-return sows 
from normal sows. A Aera under the receiver operating characteristic curve (AUC) of three random forest models with biomarkers of fecal 
microbiota CAGs and metabolite modules. The diagnostic performance was assessed using receiver operating characteristic analysis. Colors 
represent different models. Cl, confidence intervals. B Ten folds in random forest cross-validation for feature selection C The classification 
model with the best diagnostic performance is based on the gut microbiota CAGs and metabolite modules. The length of the line represents 
the importance of biomarkers. The red dots represent biomarkers significantly enriched in non-return sows, while blue dots represent biomarkers 
significantly enriched in normal sows
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can deconjugate estrogens in their genomes. This could 
increase sow estrogen levels by deconjugating estrogen 
and promoting its reuptake. Corynebacterium is not only 
a pathogenic bacterium [50, 51], but also harbors genes 
that are involved in the degradation of steroid hormones. 
Metagenomic analysis further showed that microbial 
genes having higher abundance in normal return sows 
were enriched in the KEGG pathways of steroid hormone 
biosynthesis, estrogen signaling pathway, GnRH signaling 
pathway, and ovarian steroidogenesis. Fecal metabolome 
analysis identified the relationships between the changes 
in the gut microbial taxa and the shifts in the fecal levels 
of sow sex steroid hormones and the related metabolite 
compounds. As is well known, progesterone, testoster-
one, and estrogen can be reciprocally converted. L. reu-
teri and Prevotella spp. harbor genes participating in the 
reciprocal conversion of progesterone, testosterone, and 
estrogen (Fig.  6). The metabolome analysis found that 
estrogen-related compounds, including estradiol-17phe-
nylpropionate, estrone 3-sulfate, and phytoestrogens such 
as genistein and daidzein were enriched in normal sows. 
Estrone 3-sulfate is a long-term repository of estrone and 
17β-estradiol in vivo [52]. Daidzein and genistein are iso-
flavones with a structure similar to estrogen, and they are 
also known as phytoestrogens that can modulate steroid 
hormone receptors and bind to estrogen receptors [53]. 
In this study, daidzein and genistein were positively cor-
related with the bacterial species enriched in normal 
return sows. Estrogen can also upregulate the expres-
sion of phosphatidylethanolamine N-methyltransferase, 
which can convert PE into phosphatidylcholine  (PC) 
[54]. The abundance of PC is closely related to lipopro-
tein formation and metabolism. The impairment of lipo-
protein metabolism disrupts ovarian steroid hormone 
synthesis [55, 56]. The changes in PC abundance during 
lactation in sows may indirectly impact ovarian function 
and steroid hormone biosynthesis, thereby affecting the 
post-weaning return to estrus [57]. Notably, PC had a 
higher abundance in normal return sows and was posi-
tively correlated with normal return-associated bacterial 
species. Testosterone and other androgen-related com-
pounds, including oxandrolone, adrenosterone, bolaster-
one, and testosterone cypionate, had higher abundances 
in non-return sows. Androgen has an antagonistic effect 
on estrogen, and excessive accumulation of androgen can 
interfere with the normal development of follicles [58]. 
Progesterone-related compounds such as pregnenolone 
and allopregnan-20alpha-ol-3-one also showed enrich-
ment in non-return sows. An increased level of proges-
terone has a negative feedback on the hypothalamus and 
pituitary gland, inhibiting FSH secretion and prevent-
ing follicle development [59]. Overall, we inferred that 
the shifts in the concentrations of sex hormones and 

hormone-related compounds caused by the changes in 
the gut microbiome could be one of the reasons leading 
to the failure of sows to return to estrus.

Sugars, vitamin E, and the lipid molecules triglycer-
ide and diacylglycerol had higher abundances in normal 
return sows and were negatively correlated with non-
return-associated bacterial species. An adequate supply 
of energy and nutrients is required in sows after weaning 
due to the loss of energy and body weight during lacta-
tion. During sow lactation, sugars, vitamins, triglyceride, 
and diacylglycerol should be supplied to compensate 
for the energy loss and to meet the nutritional require-
ments [60, 61]. A deficiency of vitamin E inhibits the 
regulation of the pituitary gland in the secretion of estro-
gen in the ovaries, and this can induce menopause syn-
drome and premature ovarian failure [62]. Phosphate 
sugars and lipid molecule ceramides were enriched in 
non-return sows and were positively correlated with non-
return-associated bacterial species. The accumulation of 
phosphorylated sugars during cellular metabolism has 
wide-ranging toxic effects on organisms [63]. Ceramides 
are metabolites that accumulate in individuals with obe-
sity or dyslipidemia [64], and the inhibition of ceramide 
synthesis ameliorates glucocorticoid-, saturated-fat-, and 
obesity-induced insulin resistance [65]. Insulin resistance 
and compensatory hyperinsulinemia can induce repro-
ductive diseases related to excessive androgen levels such 
as PCOS that shows abnormal estrous cycles, as insulin 
can induce androgen secretion from the adrenal glands 
and regulate the level of luteinizing hormone [66, 67]. 
Notably, the metabolites having higher abundance in nor-
mal return sows were enriched in the pathway of valine, 
leucine, and isoleucine degradation. It has been reported 
that increased levels of branched-chain amino acids are 
related to insulin resistance and obesity [16]. Obesity can 
perturb the processes related to female fertility, including 
sex hormone secretion [68]. The compounds enriched in 
normal sows were also related to tryptophan metabolism. 
Gut microbes, e.g., Lactobacillus, can convert tryptophan 
into indole and its derivatives. Limosilactobacillus and 
Lactobacillus spp. were positively correlated with fecal 
concentrations of tryptophan as well as indole and its 
derivatives. Indole and its derivatives, including indole-
3-acid-acetic and indole acetaldehyde, were also enriched 
in normal sows; these can act as ligands for the aryl 
hydrocarbon receptor [69] that plays an important role 
in intestinal barrier function and intestinal homeostasis 
[70]. These results suggested that some metabolites pro-
duced by gut microbiota should be provided as energy 
and nutrients to sows and that they may cause sow meta-
bolic disorders, e.g., obesity. This should be another fac-
tor influencing sow estrus return.
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Identifying the specific biomarkers of the gut micro-
biota and fecal metabolites that can serve as predic-
tive indicators of post-weaning estrus performance in 
sows are economically important for the pig industry. 
Such information can help to identify sows with a short-
ened weaning-to-estrus interval, which can significantly 
improve sow reproductive efficiency and production per-
formance. In this study, the biomarkers combining both 
gut microbiota and fecal metabolome could be used to 
predict non-return sows with high accuracy. We also sug-
gested that L. reuteri and Prevotella spp. should be poten-
tial candidate probiotics for regulating estrus return of 
weaning sows, although the causality and the underly-
ing mechanisms need to be confirmed. The results also 
suggested that in addition to genetic improvement, 
nutrition, and management, it is important to focus on 
the regulation of gut microbial compositions of sows in 
breeding programs.

Conclusions
In this study, we found that the composition of the gut 
microbiome was significantly associated with sow estrus 
return after weaning. The shifts in the concentrations of 
sex hormones and hormone-related compounds caused 
by the changes in gut microbiome could be an important 
factor influencing sow estrus return. Specifically, L. reu-
teri and Prevotella spp. may regulate sow estrus return 
by participating in the reciprocal conversion of pregne-
nolone, progesterone, testosterone, and estrogen. The 
metabolites that were produced by gut microbiota should 
be provided as energy and nutrients to sows, as their lack 
may cause sow metabolic disorders, a factor possibly 
influencing sow estrus return. Although the causality and 
the underlying mechanisms should need to be further 
confirmed using various experiments, we have provided 
valuable evidence for the hypothesis that the manipula-
tion of gut microbiota may be an effective way to improve 
the estrus return of sows after weaning.
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Additional file 1: Fig. S1. Overview of the workflow for this study. Fig. 
S2. The rarefaction curve and taxonomic composition of gut microbiota 
in 207 fecal samples. A The rarefaction curve of ACE, Chao1, and Observed 
species index. Colors indicate grouping. B The Sankey diagram depicts 
the bacterial composition of fecal samples from experimental sows. The 
colored columns from left to right represent taxonomy from phylum to 
genus level, and the length of bar indicates the relative abundances of gut 
bacterial taxa. Fig. S3. Comparison of the microbial compositions of gut 
among different parities by PCoA based on Bray-Curtis distance. Fig. S4. 
Comparison of the diversity of gut microbial composition and identifica-
tion of differential gut bacterial taxa between normal and non-return 
groups in 207 weaned sows. A Comparison of the alpha-diversity index 
of gut microbiota. B Principal coordinate analysis (PCoA) based on the 
Bray-Curtis distance shows different microbial compositions between 
normal return and non-return sows. C Boxplots of the Bray-Curtis dis-
similarity of gut microbiome between subjects within and between each 
group. The comparison was performed by Wilcoxon rank-sum test at the 
significance level of P < 0.05. D and E Identification of the differential 
bacterial genera and ASVs between normal return and non-return sows at 
the thresholds of LDA score > 3 and FDR < 0.05. The relative abundance 
and the LDA score of differential bacterial taxa are shown in boxplots 
on the left and dots on the right, respectively. Fig. S5. The shifts in the 
gut microbiome between normal return and non-return sows with 
metagenomic sequencing data. A Comparison of gene richness between 
normal return and non-return sows. B Comparison of the abundance of 
P. copri isolate between normal return and non-return sows. Wilcoxon 
rank-sum test was performed. C Shifts in 16 genera of gut microbiota 
with the highest abundance between normal return and non-return 
sows in 85 fecal samples with shotgun metagenomic sequencing data. D 
Butterfly plot showing the differential gut bacterial taxa between two sow 
groups and the threshold of LDA score > 2 and P < 0.05. E The heatmap 
shows the Spearman’s rank correlations of KO genes involved in estrogen 
metabolism and steroid hormone biosynthesis with specific gut microbes 
that carry these KO genes. Benjamini-Hochberg adjusted P values, and 
only significant correlations are noted. ns, FDR > 0.05; *, FDR < 0.05; **, 
FDR < 0.01, and ***, FDR < 0.001. Fig. S6. Comparison of the diversity 
of gut microbiota and identification of gut bacterial species showing 
differential abundances between normal and non-return sows in the 
validation cohort. A Comparison of the alpha-diversity of gut microbiota. 
B Comparison of the gut microbial composition between normal return 
and non-return sows by principal coordinate analysis (PCoA) based on the 
Bray-Curtis distance. C Boxplot of the Bray-Curtis dissimilarity of gut micro-
biota between subjects within and between each group. Comparison was 
performed by Wilcoxon rank-sum test at the significance level of P < 0.05. 
D Differential bacterial species between normal return and non-return 
sows with metagenomic sequencing data. The significance threshold was 
set at LDA score > 2 and P < 0.1. Fig. S7. Co-abundance groups (CAGs) 
of bacterial species showing different abundances between normal and 
non-return sows and comparing the abundances of bacterial genes 
participating in the deconjugation of estrogen in the validation cohort. A 
The network diagram of six co-abundance groups (CAGs) shows different 
enrichments between normal return and non-return sows. Lines were 
drawn only when its correlation coefficient was greater than 0.4 and P < 
0.05. Further details regarding the network description are provided in 
Fig. 2. The bacterial species in CAG2 are listed in Table S7. B Boxplots show 
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the differential abundances of seven CAGs between two sow groups. Wil-
coxon rank-sum test was performed for comparison analysis. *, P < 0.05, **, 
P < 0.01, and ***, P < 0.001. C Comparison of gene richness between nor-
mal return and non-return sows. D The comparisons of the abundances of 
β-glucuronidase, β-glucosidase and hydroxysteroid dehydrogenases that 
participate in the deconjugation of estrogen. Wilcoxon rank-sum test was 
used for the comparison, ns, FDR > 0.05. Fig. S8. Spearman correlation 
analysis between gut microbiota and fecal metabolites. A-B The heatmaps 
show the associations between differential CAGs and metabolic modules. 
A Lipid molecule modules. B Metabolite modules. C The heatmap shows 
the relationships between differential bacterial taxa, and hormones and 
hormone-related compounds. Spearman correlation coefficients were 
calculated. Red represents positive correlations and blue represents nega-
tive correlations. The stars in the grid represent the significance threshold: 
+, FDR < 0.05; *, FDR < 0.01; and **, FDR < 0.001. Fig. S9. Sankey diagram 
demonstrating the association between differential gut microbiota CAGs 
and differential fecal metabolite modules. Only those associations with 
Spearman correlation coefficient greater than 0.5 and FDR less than 0.05 
were displayed. The weight of correlation coefficient is represented by the 
thickness of the connections between fecal microbiota and metabolic 
modules. Positive correlations were colored red, whereas negative correla-
tions are represented by blue. In the gut microbiota column, the green 
stratum represents the CAGs that were significantly enriched in normal 
sows, the purple stratums represent the CAGs that were significantly 
depleted in normal sows. While in the metabolome column, the orange 
stratums represent metabolite modules that were significantly enriched in 
normal sows, and the pink stratums represent metabolite modules signifi-
cantly depleted in normal sows. Fig. S10. The Spearman correlation analy-
sis between differential functional capacities of gut microbiome and fecal 
metabolite modules. The black text on the left indicates KEGG Pathways at 
the level 3, and the purple text on the left indicates KEGG Pathways at the 
level 2. Red represents positive correlations and blue represents negative 
correlations. The stars in the grid indicate the significance threshold: +, 
FDR < 0.05; *, FDR < 0.01, and **, FDR < 0.001. Fig. S11. Comparing the 
abundances of microbial genes involved in the biosynthesis and metabo-
lism of sex steroid hormones between normal return and non-return sows 
in the validation cohort. Fig. S12. Biomarkers based on gut microbial 
CAGs and metabolite modules for discriminating non-return from normal 
return sows. A Biomarkers of gut microbiota CAGs. B Biomarkers of fecal 
metabolite modules. The length of the lines indicates the importance of 
biomarkers. The red dots represent the biomarkers significantly enriched 
in non-return sows, while blue dots represent the biomarkers significantly 
enriched in normal sows.

Additional file 2: Table S1. Nutrient components of commercial formula 
feed provided to experimental pigs. Table S2. Differential ASVs and 
genera between normal return and non-return sows in 207 fecal samples. 
Table S3. Description of metagenomic sequencing data in 85 fecal sam-
ples from discovery cohort and 29 fecal samples from validation cohort. 
Table S4. Bacterial species and taxa showing different enrichments 
between normal return and non-return sows in 85 fecal samples with 
metagenomic sequencing data. Table S5. Multivariate logistic regression 
analysis for the relationship between gut microbial species and estrus 
return in experimental sows. Table S6. 540 species of gut microbiota 
used to construct co-abundance groups (CAGs) in 85 samples. Table S7. 
495 species of gut microbiota used to construct co-abundance groups 
(CAGs) in validation cohort. Table S8. Differential CAGs of gut microbiota 
between normal return and non-return sows in discovery and valida-
tion cohorts. Table S9. Differential functional capacities of gut micro-
biota between normal return and non-return sows in discovery cohort. 
Table S10. Differential functional capacities of gut microbiota between 
normal return and non-return sows in validation cohort. Table S11. 
Differential metabolites and lipid molecules between normal return and 
non-return sows in 85 samples. Table S12. List of fecal metabolites and 
lipid molecules clustered into each co-abundance module (metabolite 
and lipid modules). Table S13. Differential metabolite and lipid molecule 
modules between normal return and non-return sows.
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