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Abstract 

Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose 
not to consume into edible high-quality food. However, ruminant excreta is a significant source of nitrous oxide 
 (N2O), a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide. Natural 
phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen 
(N) utilization and decrease  N2O emissions from the excreta of ruminants. Dietary inclusion of tannins can shift more 
of the excreted N to the feces, alter the urinary N composition and consequently reduce  N2O emissions from excreta. 
Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion. In grazed pas-
tures, large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants 
rich in these compounds and then excrete them or their metabolites in the urine or feces. If inhibitory compounds 
are excreted in the urine, they would be directly applied to the urine patch to reduce nitrification and subsequent 
 N2O emissions. The phytochemicals’ role in sustainable ruminant production is undeniable, but much uncertainty 
remains. Inconsistency, transient effects, and adverse effects limit the effectiveness of these phytochemicals for reduc-
ing N losses. In this review, we will identify some current phytochemicals found in feed that have the potential 
to manipulate ruminant N excretion or mitigate  N2O production and deliberate the challenges and opportunities 
associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion 
and excreta-derived  N2O emissions.
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Introduction
Ruminant animals are extremely important not only 
for producing the highest quantity of milk and meat as 
essential parts of human diets, but also for their ability 
to feed on fibrous feeds that cannot be used as human 
food [1]. However, 75%–90% of consumed nitrogen (N) 
is excreted as urine and feces [2]. As the excreted N 
exceeds the plant demand, it can result in considerable 
N losses via nitrate  (NO3

−) leaching, ammonia  (NH3) 
volatilization, and nitrous oxide  (N2O) production [2]. 
 N2O, a potent greenhouse gas (GHG), is estimated to be 
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298 times more powerful than carbon dioxide  (CO2) in 
warming power over 20 years [3]. By oxidizing into nitro-
gen oxides in the stratosphere,  N2O plays a vital role in 
depleting stratospheric ozone [4]. Anthropogenic  N2O 
emissions (2.7 ± 1.6  GtCO2-eq) were 133% higher in 2019 
than in 1990 [3]. Approximately 81% of anthropogenic 
 N2O emissions are attributed to the agricultural sector 
[3], and  N2O emissions from ruminant excreta account 
for 46% of agricultural  N2O emissions [5].

Ruminant production is projected to continue growing 
in the next few decades, driven by fast growth of human 
population, rising incomes, and dietary preferences 
towards ‘Western’ diets [6]. Given the growing concerns 
over the environmental impacts of ruminant farming, 
there is an impetus to decrease the emissions of rumi-
nant-derived  N2O substantially. Over the years, several 
manure N and  N2O mitigation strategies, including die-
tary or manure management approaches at the herd level 
along with more targeted approaches, such as reducing 
dietary protein intake [7], supplementing sodium chlo-
ride [8], changing rumen undegradable protein sources 
[9], alternative forage [10, 11], and nitrification inhibitors 
[12, 13] have been widely investigated. Contemporary 
consumer demands orient towards the use of ‘natural 
products’ to alter ruminant N metabolism and excreta-
derived  N2O emissions.

On the one hand, regulating the N metabolism of 
ruminants using nutritional strategies could decrease 
N excretion and, consequently, reduce  N2O emissions. 
Previous studies indicated that the addition of natural 
phytochemicals (e.g., tannins, saponins, and essential 
oils) could reduce ruminal  NH3 concentration and alter 
excreted N partitioning, which helps to lower urinary N 
excretion and  N2O emissions to the atmosphere [14–16]. 
On the other hand, phytochemicals may lessen  N2O loss 
when they are deposited in urine, either as diuretics to 
lower pasture N loading rates or as natural nitrification 
inhibitors because of their antibacterial activities [17, 
18]. Inhibitory substances found in forage can be applied 
directly to urine patches after being consumed by rumi-
nant livestock. For example, Plantago aucubin and Bras-
sica isothiocyanates have been shown to inhibit a crucial 
step in  N2O generation from urine patches in ruminants 
fed these forages [19–21].

However, the role and efficacy of phytochemicals in 
reducing  N2O emissions from the excreta of ruminant 
livestock remain controversial. The reasons for the con-
troversy are multifaceted, mainly including the variable 
effect of reducing  N2O emissions, different assessment 
methods of  N2O emissions, the source of phytochemi-
cals, the number of phytochemicals ingested, the cost 
of additional feeding, and possible side effects in terms 
of performance and health. In this review, the potential, 

mechanisms, and unsolved problems of reducing  N2O 
emissions from ruminant livestock through feeding phy-
tochemicals are also discussed. Our purpose is to provide 
deeper insights into use of phytochemicals to manipu-
late N excretion and mitigating  N2O emission from 
ruminants.

N2O production from ruminant excreta
N2O is predominantly generated through two major 
biological pathways, i.e., nitrification and denitrification 
[22], but may also be produced by other processes such 
as nitrifier-denitrification or codenitrification [23]. As 
shown in Fig. 1, following excreta deposition, the major 
fraction of organic N or urea N in manure is mineralized 
or hydrolyzed into ammonium  (NH4

+) and then con-
verted to  NO3

− via the activity of nitrifiers under partial 
aeration. The  NO3

− produced can then be transformed 
into dinitrogen  (N2) by denitrifying bacteria under anoxic 
conditions. During nitrification of  NH4

+ and denitrifica-
tion of  NO3

−,  N2O gas may escape into the atmosphere 
as a by-product. The proportion of N released as  N2O 
from ruminant excreta is significantly influenced by feed-
ing regimes, environmental circumstances, farm systems, 
and manure management practices [24]. We can divide 
these influencing factors into two facets (i.e., animals and 
environmental factors) according to the N cycle between 
ruminants and the environment (Fig. 1).

In the latest review, Mancia et  al. [25] discussed the 
factors of disaggregation of  N2O emission factors (EF), 
such as excreta type, animal diet, seasonal variations, and 
spatial variability. Considering the association between 
ruminant excreta composition and dietary mitiga-
tion strategies, this review focuses on disaggregation by 
excreta type. In the 2006 Intergovernmental Panel on Cli-
mate Change (IPCC) guidelines, the default values of EF 
were 2% and 1% for cattle and sheep, respectively, with 
no distinction between urine and dung [26]. The more 
recent IPCC values of  N2O EF have been updated, and 
the urine-based and dung-based  N2O-EF for cattle was 
0.77% and 0.13%, respectively, in a wet climate [27]. Most 
studies reported that the  N2O-EF of urine patches were 
greater than the dung-based  N2O-EF [28–32], except the 
results depicted by Wachendorf et al. [33] and Ma et al. 
[34].

Compared with a longer time for dung N minerali-
zation, urine could rapidly supply available  NH4

+ for 
nitrification and denitrification by hydrolyzing urea, 
contributing to higher  N2O losses [35]. Addition-
ally, the high dry matter (DM) content of the dung also 
reduced the potential for dung N to infiltrate into the 
soil, restricting interaction with the soil microbial com-
munity [36]. The difference implies that the ratio of dung 
N to urine N excreted can also influence the amounts of 



Page 3 of 19Zhao et al. Journal of Animal Science and Biotechnology          (2023) 14:140  

 N2O emissions. The benefit of disaggregating emissions 
into dung and urine is that the effect of diet manipula-
tion on N partitioning and thus on  N2O emissions can be 
accounted for. Therefore, the disaggregation by excreta 
type offered a better opportunity to regulate  N2O emis-
sions through dietary phytochemicals.

Potentials of natural phytochemicals in reducing N 
excretion and  N2O emissions
Diet has a profound effect on the chemical composition 
and partitioning of excreted N, and may therefore indi-
rectly affect  N2O emission from excreta patches [37]. 
Several phytochemicals (e.g., tannins, essential oils, 
saponins, and glucosinolates) present in forages and 
plant extracts have been identified as possible methane 
 (CH4)  inhibitors in the rumen [38–41]. Nonetheless, 
there are numerous opportunities to simultaneously 
reduce N waste and  CH4 production in ruminants [15]. 
In this section, recent advances using dietary phyto-
chemicals as N excretion and  N2O emission mitigation 
strategies are described here.

Tannins
Condensed tannins
Conventionally, tannins are usually classified into two 
groups: condensed tannins (CT) and hydrolyzable tan-
nins (HT). CT or proanthocyanidins are formed via 

C4–C8 and C4–C6 interflavonoid connections between 
chatequins, leucoanthocyanidins, and their derivatives; 
CT is not rapidly degraded in the gastrointestinal tract 
[42]. CT can interact with plant proteins via hydrogen 
bonding in the near neutral pH range to form insoluble 
tannin-protein complexes, which are subsequently dis-
sociated in the abomasum to release protein. CT may 
hinder the growth of proteolytic microbes, thereby inhib-
iting proteolysis [43]. Therefore, the formation of tan-
nin-protein complexes and the suppression of microbial 
proteolytic activity may reduce rumen degradability and 
increase the flow of protein into the intestine [44] (Fig. 2).

Numerous studies have reported that dietary sup-
plementation with CT reduced urinary N output and 
increased fecal N excretion in dairy cows [45], beef cat-
tle [46], sheep [47], lambs [48], and goats [49] (Table 1). 
The shift in N excretion from urea in the urine to a more 
stable form of N in feces can increase soil organic N con-
centration and reduce  N2O emissions [50]. A field study 
demonstrated that feeding beef steers with a tannin-rich 
legume (sericea lespedeza hay) effectively reduced the 
emission of  N2O,  CH4, and  CO2 from the soil for 32  d 
after the application of manure [51]. However, Hao et al. 
[52] reported that supplementing CT in the diet of beef 
cattle did not affect composted manure  N2O emissions. 
The converse effects were obtained by de Souza et  al. 
[53], who observed that Acacia mearnsii tannin extract 

Fig. 1 A brief overview of the  N2O production pathways in ruminant excreta applied to soil and the potential influence factors. N Nitrogen
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elevated  N2O emissions from excreta patches in the field; 
however, this unexpected result cannot be well explained. 
These findings suggested that the effects of CT on rumi-
nant N utilization and  N2O emissions can be highly 
diverse depending on origin, concentration, molecular 
structure, and tannin dosage.

However, most studies in the past decades investigat-
ing the effects of dietary CT on N excretion were con-
ducted with penned ruminant livestock under intensive 
feeding systems. Only a few articles have been published 
regarding the effects of fresh forages rich in tannins on 
excreta-derived N gaseous losses under year-round graz-
ing. Acacia cyanophylla foliage containing 3% CT fed to 
grazing ewes up to 200 g/d reduced urinary N excretion 
and increased NUE [55]. Lagrange et al. [63] found that 
a combination of tanniferous legumes (birdsfoot trefoil 
and sainfoin) led to reductions in urine N and urinary 
urea-N concentration that were larger than the decrease 
observed for the single tanniferous species alone. How-
ever, it remains controversial whether tannins can 
maintain their biological activity during the haymaking 
process [67]. Stewart et al. [15] reported that feeding CT-
containing hays [birdsfoot trefoil (0.6% CT) or sainfoin 
(2.5% CT)] or HT-containing hay [small burnet (4.5% 
HT)] to Angus heifers or beef cows also reduced urinary 
urea N excretion and shifted the partitioning of N from 
urine to feces, compared to feeding traditional legume 
and grass hays. The results of Stewart et al. [15] suggested 
that tannins retain their biological capabilities (i.e., 
influencing N metabolism) regardless the modifications 

during the haymaking stage. Furthermore, the potential 
of adding chestnut and mimosa tannin to grass at ensiling 
to improve N utilization in sheep was also investigated by 
Deaville et al. [47], who found that compared to the con-
trol silage, both tannins decreased urinary N excretion 
and increased fecal N output.

By mixing CT into the feed of penned ruminant live-
stock, enough CT intake can be achieved; however, when 
cattle and sheep are grazing, it can be difficult to achieve 
an adequate and consistent consumption of a feed sup-
plement containing CT. Kronberg and Liebig [56] showed 
that supplementing quebracho tannins to the freshwa-
ter of grazing sheep lowered urine urea deposition onto 
grasslands, and evaluating the feasibility of adding CT to 
drinking water to minimize  N2O emissions from urine 
patches in pastures is warranted. Tannins have been 
studied extensively in reducing N or  N2O emissions in 
confined livestock raised in temperate climates. However, 
the use of tannins can be extended to other production 
systems by considering their basic biology.

In addition to reducing of urine  N2O emissions through 
decreasing urinary urea excretion, the CT presented 
in feces may provide a feasible strategy to reduce  N2O 
emissions by applying manure (a combination of dung 
and urine) to agricultural soils. Over 50% of CT remains 
undigested in the ruminant gastrointestinal tract [68, 69]. 
In this light, it should be no surprise that ruminants fed a 
diet high in CT will excrete CT-rich feces. Tannins from 
birdsfoot trefoil were shown to be present and potentially 
active in the feces of dairy cows, as shown by Misselbrook 

Fig. 2 The model of action of dietary tannins in reducing N excretion and  N2O emissions from ruminat excreta. N Nitrogen
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et al. [70]. When dairy calves were fed dietary CT,  NH3 
emissions from slurries on the barn floor [70] and slur-
ries applied to soil [70, 71] were reduced. Powell et  al. 

[71] observed that urease activity in feces and  NH3 emis-
sions from manure were both reduced when dairy cattle 
were fed chestnut tannin extract or simulated barn floors 

Table 1 Effects of dietary condensed tannins or forages containing condensed tannins on nitrogen metabolism and  N2O emissions 
from excreta in ruminants

DMI Dry matter intake, MUN Milk urea nitrogen, BUN Blood urea nitrogen, CP Crude protein, ADG Average daily gain, FCR Feed conversion ratio, NH3-N Ammonia 
nitrogen, UN Urinary nitrogen, FN Eecal nitrogen, NUE Nitrogen utilization efficiency, ↑ = Increase, ↓ = Decrease, – = No statistically significant effect, NR Not reported

Reference Tannin source 
(plant/extract)

Animal species DMI, production 
performance, or N 
metabolism related 
indicators

N excretion or N 
retention

N2O emissions

Grainger et al. [54] Acacia mearnsii Grazing dairy cows –DMI; ↓Milk yield ↓UN; ↑FN; –N retention NR

Deaville et al. [47] Mimosa tannins Wether sheep ↓DMI ↓UN; ↑FN; –N retention NR

Hao et al. [52] Acacia mearnsii Beef cattle NR NR –Manure  N2O emissions

Maamouri et al. [55] Acacia cyanophylla 
foliage

Grazing ewes ↓DMI; ↓Milk yield; ↓MUN ↓UN; –FN; ↑NUE NR

Kronberg and Liebig [56] Quebracho Grazing sheep –DMI; ↓BUN ↓Urinary urea N NR

Ahnert et al. [57] Quebracho Heifers –DMI; ↓CP digestibility ↓UN; ↑FN; ↑N retention NR

Min et al. [58] Pinus taeda L Meat goats –DMI; –CP digestibility; –UN; –FN NR

Aguerre et al. [59] Quebracho-chestnut 
tannin extracts

Dairy cows ↓DMI; –Milk yield; ↑Milk/
DMI;
↓CP digestibility; 
↓Rumen  NH3-N; ↓MUN

↓UN; ↑FN; –NUE NR

Gunun et al. [60] Antidesma thwait-
esianum Muell. Arg

Goats –DMI; –CP digestibility; 
–Rumen  NH3-N

↓UN; –FN; ↑N retention; 
↑NUE

NR

Pathak et al. [48] Ficus infectoria 
and Psidium guajava 
leaf meal mixture

Lambs ↑DMI; ↑ADG; ↑FCR; 
↑Wool yield;
–CP digestibility

↓UN; ↑FN;
↑N retention; ↑NUE

NR

Gerlach et al. [45] Acacia mearnsii Dairy cows –DMI; –Milk yield; –Milk 
composition; ↓MUN

–UN; –FN; ↓NUE NR

Koenig et al. [46] Acacia mearnsii Beef cattle –DMI; –ADG; –FCR; –
Carcass traits; ↓BUN

↓Manure  NH3-N emis-
sions

NR

Koenig and Beauchemin 
[61]

Acacia mearnsii Beef cattle –DMI; ↓CP digestibility; 
↓BUN

↓Urinary urea; ↓UN; ↑FN NR

Zhang et al. [62] Bayberry/Acacia 
mangium

Dairy cows –DMI; –Milk yield; –Milk 
composition; ↓MUN; 
↓CP digestibility (Acacia 
mangium); ↓BUN 
(bayberry)

↑FN (Acacia mangium); 
↓UN (bayberry);
↑N retention (bayberry);
↓N retention (Acacia 
mangium);

NR

Lagrange et al. [63] Birdsfoot trefoil 
and sainfoin

Grazing beef cattle ↓BUN ↓Urinary N concentra-
tion;
↓Urinary urea-N con-
centration

NR

de Souza et al. [53] Acacia mearnsii Sheep –DMI; ↓CP digestibility ↑FN; – UN; –N retention ↑Urine  N2O emissions; –
Feces  N2O emissions

Silveira Pimentel et al. [49] Acacia mearnsii Goat kids –DMI; ↓FCR; ↓Carcass 
yield; ↓CP digestibility

↓UN; ↑FN; –N retention NR

van Cleef et al. [51] Sericea lespedeza Beef steers NR NR ↓Urine  N2O emissions; 
↓Feces  N2O emissions; 
↓Urine  N2O-EF; ↓Feces 
 N2O-EF;

da Silva Aguiar et al. [64] Mimosa tenuiflora 
hay

Lambs ↓DMI; ↓CP digestibility ↓UN; ↑FN; –N retention NR

Uushona et al. [65] Acacia mearnsii Lambs ↑DMI; ↓CP digestibility; 
↑Rumen  NH3-N

↑FN; –UN; ↑N retention; 
↑NUE

NR

Oliveira et al. [66] Acacia mearnsii Dairy cows –DMI; –Milk yield; –Milk 
composition;
↓Milk UFA

–UN; –FN NR
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were applied with tannins. Recent studies confirmed 
that  N2O emissions were reduced from tannin-enriched 
manure [72, 73].

Additionally, because mineralization of the complex 
is inhibited, the tannins-protein complexes in feces are 
more resistant to breakdown in the soil and decompose 
more slowly than feces without CT [74, 75]. Fagundes 
et  al. [76] reported that feeding Acacia mimosa tannin 
extract to cattle increased fecal N output, delayed organic 
matter breakdown, and changed soil microbial dynam-
ics following feces application. However, these research-
ers did not quantify  N2O emissions from the feces of 
ruminant fed-CT. Larger-scale studies are required to 
determine the effectiveness of dietary tannin extracts in 
abating  N2O loss from ruminant barn floors and land-
applied excreta.

Hydrolyzable tannins
Compared with CT, HT has a weaker affinity for proteins 
and thus is more easily absorbed by the gastrointestinal 

tract, increasing potential toxicity to the animal [42, 77]. 
For this reason, previous studies on the utilization of 
tannins in ruminant livestock focused on CT instead of 
HT. Nevertheless, an in  vitro investigation revealed no 
difference between tannin sources in preventing protein 
degradation [78]. Therefore, HT can also bind to bacte-
ria, modifying their activity, and to proteins, reducing 
their breakdown in the rumen and consequently alter-
ing N output. Supplementing HT extracted from chest-
nut at 1%–3% DM in sheep [79] or coupled with CT 
extract (derived from quebracho) at 1.5% DM in steers 
[80] decreased the ruminal  NH3 concentration (Table 2). 
Chestnut tannins, as a representative HT, have been 
shown the potential to minimize the environmental 
impact of ruminants via the N shift from urine to feces 
[47, 81].

Tannic acid is another typical HT. Yang et  al. [83] 
reported that the supplementation of tannic acid to 
the diet of beef cattle reduced the ratio of urine N to 
fecal N and modified the concentrations of nitrogenous 

Table 2 Effects of dietary hydrolyzable tannins or forages containing hydrolyzable tannins on nitrogen metabolism and  N2O 
emissions from excreta in ruminants

GA Gallic acid, TA Tannic acid, DMI Dry matter intake, MUN Milk urea nitrogen, BUN Blood urea nitrogen, CP Crude protein, ADG Average daily gain, FCR Feed 
conversion ratio, NH3-N Ammonia nitrogen, SFA Saturated fatty acids, UFA Unsaturated fatty acids, UN Urinary nitrogen, FN Fecal nitrogen, NUE Nitrogen utilization 
efficiency, ↑ = Increase, ↓ = Decrease, – = no statistically significant effect, NR Not reported

Reference Tannin source 
(plant/extract)

Animal species DMI, production 
performance, or N 
metabolism related 
indicators

N excretion or N 
retention

N2O emissions

Deaville et al. [47] Chestnut Wether sheep ↑DMI ↓UN; ↑FN; –N retention NR

Wischer et al. [81] Chestnut or valonea Sheep –DMI; ↓CP digestibility ↑FN; ↓UN; –N retention;
–NUE

NR

Wei et al. [82] GA Beef cattle NR ↑FN; –UN; ↓Urinary urea;
–N retention

NR

Yang et al. [83] TA Beef cattle ↓BUN ↑FN; ↓UN; ↓Urinary urea; 
↑Urinary hippuric acid

NR

Aboagye et al. [80] Chestnut Beef cattle –DMI; –ADG; –FCR; ↓Rumi-
nal  NH3-N; –BUN

↓UN NR

Bao et al. [10] GA Beef cattle NR –FN; –UN; –N retention ↓Urine  N2O emissions

Aboagye et al. [84] GA, TA, or chestnut Beef heifers –DMI; ↓CP digestibility (TA 
and chestnut);
↓Ruminal  NH3-N (TA); ↓BUN 
(GA, TA, and chestnut)

↑FN (TA and chestnut);
–UN; ↓Urinary urea N/UN;
–N retention

NR

Zhang et al. [62] Valonia Dairy cows –DMI; –Milk yield; –Milk 
composition; ↓MUN; ↓BUN; 
↓CP digestibility

↑FN; –UN; ↓N retention;
–NUE

NR

Zhou et al. [7] TA Beef cattle NR ↑FN; ↓UN; ↓Urinary urea; 
↑Urinary hippuric acid

↓Urine  N2O emissions

Herremans et al. [85] Oak Dairy cows ↑DMI; –Milk yield; –Milk 
composition; ↓Milk SFA; 
↑Milk UFA; –Ruminal 
 NH3-N; –MUN; –BUN; ↓CP 
digestibility

↑FN; ↓UN NR

Kapp-Bitter et al. [86] Chestnut Dairy cows –DMI; –Milk yield; –Milk 
composition; –CP digest-
ibility

↑UN; –FN NR
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compounds in the urine. Gallic acid derives from the 
hydrolysis of specific HT [87]. Feeding gallic acid to beef 
cattle altered the pattern of N excretion by increasing the 
ratio of fecal N to urinary N and decreasing the ratio of 
urinary urea N to urinary N [82]. Subsequently, labora-
tory incubation trials demonstrated that adding gal-
lic acid or tannic acid to the diet of steers reduced  N2O 
fluxes after applying urine to the soil [7, 10].

In contrast to CT, it is believed that HT can be degra-
dable in the rumen [88]. Dietary supplementation with 
gallic acid decreased urine  N2O emissions from beef 
cattle, while urinary N excretion or urea excretion was 
not influenced [10]. Bao et  al. [10] attributed it mainly 
to the excretion of gallic acid metabolites, such as pyro-
gallol and resorcinol, which might inhibit the processes 
of  N2O production. However, no direct evidence for this 
proposed mechanism is currently available. Additionally, 
a greater amount of urinary hippuric acid excretion was 
observed in beef cattle fed tannic acid [7, 83]. Hippuric 
acid excretion correlates with polyphenols consumption 
because polyphenols are the precursor components to 
hippuric acid formed during rumen fermentation [89]. 
The antibacterial compound hippuric acid has been con-
sidered for its ability to reduce  N2O emissions. Research-
ers have found that enhancing the percentage of hippuric 
acid in the urine caused a decrease in  N2O fluxes from 
bovine urine of 50%–54% [90, 91], most likely due to the 
inhibition of denitrification or a reduction in the ratio 
of  N2O to  N2 [90]. Bertram et al. [92] reported that hip-
puric acid also partially inhibited soil nitrification. These 
observations suggest that an elevation in urine excre-
tion of hippuric acid in response to the consumption of 
biodegradable polyphenols (e.g., HT) may represent a 
possible  N2O mitigation strategy. However, conflicting 
findings have been found in the limited field tests done 
so far, with no inhibitory effects of hippuric acid on urine 
 N2O fluxes [93, 94]. Further research is needed to iden-
tify whether supplementing HT to increase the formation 
of HT metabolites in urine will decrease subsequent  N2O 
emissions.

In a word, although tannins have shown good potential 
in reducing urinary N and  N2O from ruminant excreta, 
it does not mean that they can be promoted in livestock 
production. The nutritional and environmentally sus-
tainable potential of tannins will only be realized when 
the composition, structure, and biological function of 
tannins in plant extracts or forages are better defined. 
Chemical assays should be complemented by measure-
ments of binding capacity to plant proteins and effects on 
enzyme activity or in vitro digestion, as the relationship 
between chemical structure and stringency is not well 
defined. Analytical and experimental efforts will reveal 
the most effective tannins for expressing temperate 

legumes by genetic engineering or conventional selection 
as part of plant breeding projects or for mitigating  N2O 
from ruminant excreta utilizing existing forages.

Glycosides
Glucosinolates
Glucosinolates (GLS) are a large group of plant second-
ary metabolites with nutritional effects and biologi-
cally active compounds. The GLS molecule comprises a 
β-thioglucose unit, a sulfonated oxime unit, and a side 
chain derived from an amino acid that varies (Fig.  3A) 
[95]. There are at least 120 distinct structures of GLS, 
which are found in 16 families of dicotyledonous plants 
[95]. Brassica plants are annuals traditionally used to fill 
feed deficits in temperate ruminant grazing systems [96]. 
There are five primary degradation products of GLS, 
with isothiocyanate being the most important, followed 
by thiocyanate, nitrile, epithionitrile, and oxazolidine-
2-thione [97] (Fig. 3A).

The potential of GLS hydrolysis products to act as 
biological nitrification inhibitors has been investigated. 
Studies reported that the application of Brassicaceae 
tissues and subsequent the generation of various GLS 
hydrolysis products (isothiocyanate, thiocyanate, and 
nitriles) could weaken the activity of nitrifying bacte-
ria [98] and inhibit nitrification [99]. The GLS hydroly-
sis products have been shown to inhibit the nitrification 
processes in soil incubated with brassica seed meals con-
taining GLS [100].

GLS and their decomposition metabolites have been 
detected in the urine of animals fed brassicas [101]. 
Urine from sheep-fed forage rape (Brassica napus L.) 
had a lower  N2O-EF than urine from sheep-fed peren-
nial ryegrass (Lolium perenne L.) when applied to a freely 
draining pasture soil in early spring (0.11% vs. 0.27%, 
respectively) [19] (Table  3). According to Hoogendoorn 
et  al. [102], the urine from sheep-fed ryegrass (Lolium 
perenne L./Trifolium repens) had a higher  N2O EF than 
sheep-fed fodder rape (Brassica napus L.). This decline 
may be explained by the fact that the brassica-derived 
chemicals GLS hydrolysis products were transferred 
from urine to the soil [103, 104], inhibiting nitrification 
in the urine patch [105]. The promising findings of these 
experiments indicate that isothiocyanate and other uri-
nary secondary metabolites may function as nitrifica-
tion inhibitors. In a laboratory study, Balvert et al. [105] 
demonstrated that several GLS hydrolysis products (iso-
thiocyanate and nitrile) inhibited the nitrification process 
and lowered  N2O fluxes from urinary urea applied to 
soils (Fig. 4). In a field experiment, however, the applica-
tion of GLS hydrolysis products to artificial urine patches 
did not result in any significant differences in  N2O emis-
sions [105].
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Furthermore, several experiments have also exam-
ined the response of  N2O production to the metabolite 
thiocyanate. Snyder et al. [118] observed that 2-propenyl 
isothiocyanate and thiocyanate released from Brassica 
juncea and Sinapis alba seed meals hindered bacterial 

metabolism and that thiocyanate release was the cause of 
nitrification inhibition in the Sinapis alba treatment. Thi-
ocyanate was also detected in the rumen fluid and urine 
of cattle fed rapeseed meals [106, 119, 120], whereas 
isothiocyanate and oxazolidine-2-thione remained 

Fig. 3 The chemical structure of glucosinolate and its metaboites (A), aucubin (B), aucubigenin (C), and saponin (D)
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undetected in the rumen fluids. Thus, thiocyanate may be 
the primary product of GLS hydrolysis in the rumen, and 
that the ruminal GLS metabolic route could be distinct 
from that driven by myrosinase [119]. Contrary to expec-
tations, in a laboratory study, Gao et al. [106] found that 
the urine  N2O emissions and  N2O-EF were increased in 
steers received the diet containing high GLS-rapeseed 
cake. A significant correlation was found between urinary 
thiocyanate content and urine  N2O fluxes [106]. Addi-
tional laboratory incubation confirmed that thiocyanate 
enhanced the denitrification of soil nitrifiers, which may 

have led to an increase in  N2O emissions [121]. These 
controversial results suggest that GLS hydrolysis prod-
ucts differ in their effects on N transformations. There-
fore, more GLS hydrolysis products excreted in ruminant 
urine should be assessed for their individual or combina-
tion effect on  N2O production from urine.

Unfortunately, except for the publication by Gao et al. 
[106], no study has investigated the potential for the 
feeds containing GLS and the subsequent effect of the 
voided urine to reduce soil nitrification and  N2O emis-
sions. Before the intake of forage rich in GLS or their 

Table 3 Effects of dietary glycosides or forages containing glycosides on nitrogen metabolism and  N2O emissions from excreta in 
ruminants

DMI Dry matter intake, MUN Milk urea nitrogen, BUN Blood urea nitrogen, CP Crude protein, ADG Average daily gain, FCR Feed conversion ratio, NH3-N Ammonia 
nitrogen, UN Urinary nitrogen, FN Fecal nitrogen, NUE Nitrogen utilization efficiency, ↑ = Increase, ↓ = Decrease, – = no statistically significant effect, NR Not reported

Reference Glycoside source 
(plant/extract)

Animal species DMI, production 
performance, or N 
metabolism related 
indicators

N excretion or N 
retention Angus 
heifers

N2O emissions

Glucosinolates

 Luo et al. [19] Brassica napus L. Grazing sheep –DMI ↑N retention; –UN/N 
intake; ↑FN/N intake

↓Urine  N2O emissions

 Gao et al. [106] Rapeseed cake Beef cattle –ADG ↑FN; –UN; –N retention; 
–NUE
–N retention

↑Urine  N2O emissions

Aucubin

 Box et al. [107] Plantain Grazing dairy cows ↑Milk yield; ↑Milk lactose 
percentage; ↓MUN

↓UN; –FN NR

 Cheng et al. [108] Plantain Grazing dairy heifers –DMI; ↓BUN; ↓UN NR

 Minnéeet al. [109] Plantain Grazing dairy cows ↑DMI; ↑Milk yield; ↑Milk 
lactose percentage; 
↓MUN

↑FN; ↓UN; ↑Milk N NR

 Marshall et al. [110] Plantain Grazing dairy cows –DMI; –Milk yield; –Milk 
composition; ↓MUN;
–Ruminal  NH3-N

↑FN; ↓UN; ↑Milk N NR

 Ineichen et al. [111] Plantain Dairy cows ↑DMI; ↑Milk yield; –Milk 
composition; ↑MUN; 
–FCR

↑FN/N intake; –UN/N 
intake; ↓NUE

NR

 Nkomboni et al. [112] Plantain Grazing dairy cows –DMI; ↑Milk protein per-
centage; ↓MUN; ↓BUN

–Milk N; –NUE NR

 Al-Marashdeh et al. [113] Plantain Grazing dairy cows –DMI; ↑Milk yield NR ↓N2O emissions

Saponins

 Santoso et al. [14] Biophytum peter-
sianum

Goats ↓CP digestibility; ↓Rumi-
nal  NH3-N; ↑Microbial N 
supply

–FN; ↓UN; –N retention NR

 McMurphy et al. [114] Yucca schidigera Steers –DMI; –CP digestibility; 
↑Microbial N supply; 
–BUN

–FN; –UN; –N retention; 
–NUE

NR

 Guyader et al. [115] Tea saponin Nonlactating cows ↓DMI; –Ruminal  NH3-N ↓N intake; –FN; –UN; –N 
retention

NR

 Guyader et al. [116] Tea saponin Dairy cows ↓DMI; ↓Milk yield; –Milk 
composition; ↓Milk/DMI;
–CP digestibility; –Rumi-
nal  NH3-N

–FN; –UN; ↓milk N; –N 
balance

NR

 Liu et al. [117] Tea saponin Dorper crossbred ewe –DMI; ↑CP digestibility; 
↓Ruminal  NH3-N

↓FN; ↓UN; ↑N retention; 
↑NUE

NR
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hydrolysis compounds can be perceived as a strategy for 
decreasing  N2O emissions, the composition and con-
centration of GLS hydrolysis products in urine must be 
determined. More research into the  N2O production 
mechanisms in soils treated with urine from ruminants-
fed brassica plants under various environmental situ-
ations is required. It should be noted that the action of 
GLS depends on their activity in fertilizing the soil with 
excreta (mainly urine). However, its activity is often 
affected by the environment and is full of uncertainties. 
At the same time, GLS is one of the common antinutri-
tional factors in ruminant feed. Therefore, targeting GLS 
as an inhibitor to reduce  N2O emissions may be difficult.

Aucubin
Aucubin, an iridoid glycoside found in plantain (Plan-
tago), displays similar inhibitory properties as GLS and 
their metabolites (Fig. 3B). Aucubin is known to degrade 
completely into its instability aglycone, aucubigenin 
(Fig.  3C), within 4  h in the presence of β-glucosidase 
[122], and β-glucosidase is known to be present in soils 
[123]. Aucubigenin can be converted into an unsaturated 
aldehyde that binds permanently to the nucleophilic side 
chains of nucleic acids and proteins, due to its potent 
alkylating characteristics [124]. Numerous experiments 
showed that dairy cows grazing plantain (Plantago lan-
ceolata L.) or mixed pastures containing plantain had a 
lower N concentration in spot-sampled urine [18, 107–
109, 125] (Table  3), and these researchers hypothesized 

that the overall output of urine N might also be lowered. 
This can offer an opportunity to utilize plantain to mini-
mize N losses in grazing ruminants. The increased frac-
tion of undegradable N is one of the potential causes of 
the lower urine N content in cows received plantains. 
The greater undegraded N content allows more N to pass 
through the rumen to be digested in the small intestine, 
where more N is partitioned to milk and feces, and less 
N is excreted into urine. Minnée et al. [109] showed that 
feeding dairy cows with a diet containing 45% DM of 
plantain reduced the amount of urinary N while increas-
ing the amount of N partitioned to milk and feces by 14%.

The second possible mechanism for decreasing urinary 
N concentration and increasing urine volume is aucu-
bin’s diuretic action. O’Connell et  al. [126] confirmed 
this effect by observing that penned sheep fed plantain 
emitted more urine than those fed ryegrass. Additionally, 
Navarrete et  al. [127] found that aucubin reduced  NH3 
production in vitro and was likely degraded to its active 
aglycone aucubigenin in the rumen. Therefore, the third 
possible mechanism for influence of grazing plantain on 
urinary output could be partly due to aucubin lowering 
ruminal  NH3 losses and reducing urea production in the 
liver [128]. Aucubin, for instance, is antibacterial due to 
the aucubin aglycone (aucubigenin), which binds to free 
amino acids, making them unavailable [122]. The escape 
from the rumen of these aucubigenin-amino acids com-
plexes could also shift the N partitioning from urine to 
feces by transferring the digestible N fractions to the 

Fig. 4 The possible mechanisms for glucosinolates, aucubin, and saponin as ruminant manure N and  N2O mitigation strategies. N Nitrogen, BNI 
Biological nitrification inhibition
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intestine. Therefore, aucubin and/or aucubigenin in plan-
tain could potentially change the N partitioning in rumi-
nants (Fig. 4).

Furthermore, soils under plantain showed signifi-
cantly lower  NO3

− concentrations [129], mineralization 
and nitrification rates [129], lower ammonia oxidizer 
bacteria abundance [130], and lower  N2O fluxes [131] 
than under other plant species. Likely, plantain root-
released chemicals (e.g., aucubin) with biological nitri-
fication inhibitory capacity contributed partially to the 
reduced  N2O flux observed in the presence of plantain. 
Luo et  al. [20] observed that comparison of  N2O emis-
sions from cattle urine applied to plantain and to per-
ennial ryegrass, plantain had lower emissions in winter 
but not in other seasons. This result may be due to dif-
ferences in concentrations of aucubin or other secondary 
metabolites as they could have been affected by tempera-
ture or other environmental variables [132]. In addition, 
broad-spectrum antibacterial action has been observed 
with aucubin, and aucubigenin has been shown to inhibit 
cytochrome P-450, which may be related to its capacity 
to limit ammonia oxidation by inhibiting the activity of 
the soil enzyme ammonia monooxygenase [133, 134]. 
Thus, aucubin and its derivative aucubigenin are poten-
tial biological nitrification inhibitors (Fig. 4).

It is uncertain what form or concentration of aucubin 
is excreated in ruminant urine because Navarrete et  al. 
[127] did not quantify the residence time of aucubin and/
or aucubigenin during ruminal fermentation or identify 
its fate following ruminal metabolism. Additionally, plan-
tain was the only plant species tested (550 total) whose 
antibacterial activities were detectable in rabbit urine 
8–16  h after feeding [135]. Even though a rabbit is not 
a ruminant, similar results can be obtained with rumi-
nant urine. Judson et  al. [136] found higher soil  NH4

+ 
contents following the application of urine from dairy 
cows received 100% plantain compared to the urine of 
cows fed with ryegrass-white clover. However, the two 
urine sources had comparable total N contents, suggest-
ing that urine from grazing cows fed plantain can inhibit 
nitrification. Similarly, Simon et  al. [21] observed that 
the increasing consumption of plantain for grazing cows 
decreased urinary N loading rates and urine  N2O emis-
sions. Thus, another potential route for the aucubin in 
plantain to enter the soil would be through the urine of 
ruminants grazing plantain-based pastures.

For a short period of time following soil application, 
aucubin may act as a nitrification inhibitor; however, its 
inhibitory actions seem insufficient to produce substan-
tial reductions in total urine patch  N2O fluxes [137]. A 
latest trial revealed that grazing dairy cows on plantain 
pastures did not lower urine  N2O fluxes compared to 
ryegrass-white clover urine when treated at the same N 

urine rate [138]. It is hypothesized that aucubin degrades 
swiftly in soils and that the suppressive action of its 
decomposition metabolites, notably aucubigenin, persist 
in soils for no more than a few days [137]. Further stud-
ies should determine the metabolic pathways of aucubin 
in soil, quantify aucubin urination ratios, and investigate 
the impact of aucubin excretion ratios on the inorganic-
N dynamics and  N2O emissions of urine patches.

Saponins
Saponins are a large family of amphiphilic glycosides of 
steroids and triterpenes (Fig. 3D). Saponins is well known 
for their potential of decreasing rumen  CH4 production 
by decreasing both the number and activity of methano-
genic microorganisms [139]. Another important effect of 
saponins in the rumen appears to be to inhibit the pro-
tozoa (defaunation) by affecting cell membrane integ-
rity [140]. Ruminal  NH3 concentrations are reduced 
when protozoal growth is inhibited, presumably due to 
depressed rumen degradation of feed protein or turnover 
of bacterial protein [14].  NH3 concentration also will be 
altered by binding of  NH3 to compounds like saponin, as 
noted by Cheeke [141]. Jouany [142] also assumed that 
urinary N always decreases with defaunation, due to both 
the decreased  NH3 concentration in the ruminal fluid 
and the increased capture of urea N for microbial pro-
tein synthesis. Hu et  al. [143] showed that the addition 
of 40 g/kg of tea saponin led to the lowest concentration 
of rumen  NH3-N and the maximum microbial protein 
content in  vitro. Overall, it appears that plants or their 
extracts with high concentrations of saponins may oper-
ate as natural rumen manipulators, which can increase 
the efficiency of microbial protein synthesis and enhance 
protein flux to the intestine by decreasing microbial pro-
tein turnover.

In a review by Wina et  al. [144], 14 out of 51 publi-
cations indicated that saponins did not affect rumen 
 NH3-N content, whereas 17 indicated an inhibitory 
effect. Supplementation of Biophytum aqueous extract, 
up to 26 mg/kg BW of saponin, decreased rumen  NH3-N 
and urinary N output, thereby increasing microbial N 
supply and retained N as a proportion of N digested in 
goats [14]. Ramírez-Restrepo et  al. [145] reported that 
adding tea seed saponin reduced blood urea concentra-
tion in tropical Brahman cattle. Liu et al. [117] observed 
that dietary addition with tea saponin decreased rumen 
 NH3-N, fecal N, and urinary N excretion, leading to a 
significant increase in N retention and NUE in Dorper 
crossbred ewe. These results indicate that saponins may 
contribute to mitigating N excretion and  N2O emis-
sions from ruminants. However, it was shown that tea 
saponin did not modify the N balance or N excretion of 
lactating cows [116] or nonlactating cows [115]. These 
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discrepancies may be due to variations in the experimen-
tal diets and saponin dosages.

To test the effect of saponin extracts or saponin-rich 
forages on  N2O emissions from excreta under grazing 
circumstances, additional animal studies and field experi-
ments are still needed. To achieve sustained beneficial 
effects of saponins in diets, it is necessary to conduct 
extensive research on the interactions between sapo-
nin chemical structures, dietary nutrition components, 
and their influence on the rumen microbial ecology. It 
is essential to identify the most biologically active sapo-
nins that inhibit the activity and abundance of protozoa 
while possibly stimulating beneficial bacteria and fungi. 
Certain classes of saponins may have toxic effects on the 
body and must be examined in  vivo in long-term stud-
ies. If more active saponins can be isolated and identified 
from plants, or if plant biotechnology techniques can be 
used to produce target saponin components, the benefi-
cial effects of saponins could be widely exploited in vari-
ous feeding systems, assuming it can be demonstrated 
in the future that saponins in ruminants are effective at 
reducing animal N excretion and excreta-derived  N2O 
emissions.

Essential oils
Aromatic plants can produce essential oils, complex 
combinations of volatile organic substances. Essential oil 
can contain up to 60 chemical substances, such as alco-
hols, aldehydes, hydrocarbons, ketones, esters, and ethers 
[145]. Essential oils have been demonstrated to possess 
the ability to affect ruminal protein degradation and 
amino acid absorption in the small intestines of rumi-
nant livestock. Numerous studies reported that addition 
with essential oil decreased rumen  NH3-N concentra-
tion in  vitro (e.g., Golbotteh et  al. [146]; Patra and Yu 
[147]; Pawar et al. [148]) or in vivo (e.g., Lin et al. [149]; 
Toseti et  al. [150]; Wu et  al. [16]). Carrazco et  al. [151] 
also found that feeding essential oils reduced enteric 
emissions of  N2O and  NH3 in mid-lactation dairy cat-
tle. Essential oil can reduce ammonia levels, likely due to 
direct inhibition of proteolytic and ammonia-producing 
rumen bacteria [147]. Their antibacterial characteristics 
are explained by various mechanisms, including chemical 
structures and physical properties [152]. Essential oils are 
hydrophobic, partitioning through lipid cell membranes, 
disrupting their integrity and stability, and resulting in 
leakage of cell contents [153]. The hydroxyl group and 
their relative position in the phenolic structures (in the 
case of thymol and eugenol) were believed to be impor-
tant attributes that influence the antibacterial properties 
of essential oil [152].

Reducing ruminal  NH3 loss and moving more micro-
bial protein to the small intestine can increase tissue N 
retention, reducing the urinary N excretion and the 
potential of  N2O emission from manure application. 
Wanapat et al. [154] observed that feeding garlic powder 
containing essential oil at 80  g/d with urea-treated rice 
straw decreased urinary N excretion and improved N 
retention of steers (Table 4). Ribeiro et al. [155] showed 
that supplementing thyme essential oil enhanced N 
retention and reduced urinary N excretion compared 
to monensin. Specifically, the latest meta-analysis of the 
effectiveness of essential oils revealed that N retention 
was greater in beef cattle that received essential oil [156]. 
However, these results should be interpreted with cau-
tion because of the low number of studies that reported 
these response variables [156].

Other trials using lactating dairy cows have also shown 
that single or combinations of essential oils contain-
ing thymol, eugenol, and/or carvacrol have no effect on 
N utilization [145, 158, 160]. Muñoz-Cuautle et al. [161] 
found that including oregano essential oil in the diet 
did not alter urinary N, fecal N, or N retention in meat 
lambs. Conversely, Tekippe et al. [158] reported that sup-
plementing 525  mg/d essential oils products containing 
eugenol and cinnamaldehyde enhanced urinary N excre-
tion in dairy cows. Several parameters, such as trial dura-
tion, essential oil chemical composition, and dosages, 
may account for differences in results among in vivo tri-
als. The contradictory results may also be attributable to 
variations in the kinds and amounts of dietary protein 
consumed. Some findings indicate that essential oil can 
inhibit the colonization and/or subsequent degradation 
of readily degradable substrates, such as starch and pro-
tein, thus impacting the metabolism of amylolytic and 
proteolytic bacteria [162]. All fermentation processes 
associated with dietary protein degradation and ruminal 
 NH3 production require further investigation. Animal 
production indices should be quantitatively and quali-
tatively correlated with the effects of increasing dietary 
protein escape from the rumen. Overall, the most prom-
ising essential oils and their effective concentrations and 
combinations can  be evaluated further in  vivo experi-
ments to determine the essential oils (dose and combi-
nation) that can be applied on farms. Before their use on 
farms, the positive effects of commercial essential oils on 
animal performance and the environment must be estab-
lished due to their high cost.

Challenges of phytochemicals as manure N 
and  N2O mitigation strategies
The consistency and comparability of study results
Phytochemicals are highly variable depending on many 
factors, including plant species, growth environment of 
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the plants (e.g., soil composition, temperature, and mois-
ture stress), stage of plant growth, parts of the plants 
utilized to extract phytochemicals, and phytochemicals 
extraction or analysis method [163]. However, currently, 
there is no standard product composition, structure 
and purity of any commercial plant extracts for use in 
livestock production. As a result, there are often con-
siderable variations between research results, making 
it difficult to ascertain the necessary types and dosages. 
For example, Cobellis et al. [163] summarized the effects 
of various single essential oils and essential oil blends on 
ruminal N metabolism in vivo and in vitro experiments 
and discovered that in vitro and in vivo results are always 
inconsistent. As shown in Tables 1 and 2, numerous stud-
ies showed that feeding tannins increased fecal N output, 
which is a result of tannins limiting the absorption of N, 
and suggests that part of the protein-tannins complexes 
failing to dissolve in the abomasum, resulting in a loss of 
dietary protein [164]. However, some studies observed 
that tannins altered only urinary N. Depending on the 
chemical structures of tannins and proteins, tannin-pro-
tein interactions do not always function optimally and 
account for these variations among studies.

Numerous in  vitro studies have documented the pos-
sible ruminal  NH3 mitigation effects of phytochemicals 

in  vitro. However, it is generally accepted that in  vitro 
systems, while excellent for screening for bulk inhibitors, 
are not very representative of responses in N excretion 
and excreta-derived  N2O for live animals. Therefore, it 
is strongly suggested that in  vitro results be confirmed 
in in  vivo experiments. Moreover, future studies should 
detail the source of phytochemicals, extraction method, 
chemical composition, purity, and dosage. In  vitro 
experiments and studies of the minimal inhibitory con-
centration of rumen or soil microbes using pure active 
compounds can shed light on their action method, reveal 
their major active components, and assist in establish-
ing  an appropriate dosage. A better understanding of 
structure–activity relationships would be needed to 
acquire consistent results from phytochemicals on miti-
gating ruminant manure N and  N2O emissions.

The balance between its efficacy and side effects
Despite extensive research conducted in recent years, 
using phytochemicals in ruminant livestock remains 
challenging and very limited for side effects. Tannins in 
the diet can bring significant benefits to ruminant live-
stock; nevertheless, high dietary contents or CT with 
the ‘wrong’ compositional features would reduce diges-
tion and utilization of dietary protein and absorption of 

Table 4 Effects of dietary essential oils or forages containing essential oils on nitrogen metabolism and  N2O emissions from excreta in 
ruminants

DMI Dry matter intake, MUN Milk urea nitrogen, BUN Blood urea nitrogen, CP Crude protein, ADG Average daily gain, FCR Feed conversion ratio, NH3-N Ammonia 
nitrogen, UN Urinary nitrogen, FN Fecal nitrogen, NUE Nitrogen utilization efficiency, ↑ = Increase, ↓ = Decrease, – = no statistically significant effect, NR Not reported

Reference Essential oil source 
(plant/extract)

Animal species DMI, production 
performance, or N 
metabolism related 
indicators

N excretion or N 
retention

N2O emissions

Wanapat et al. [154] Garlic powder Steers –DMI; –CP digestibility; 
↓Ruminal  NH3-N; ↓BUN

↓UN; –FN; ↑N retention NR

Wanapat et al. [157] Peppermint powder/garlic 
powder

Beef cattle –DMI; –Ruminal  NH3-N; 
–BUN; ↓CP digestibility 
(peppermint powder)

–UN; –FN; ↑N retention 
(garlic powder);
↓N retention (peppermint 
powder)

NR

Tekippe et al. [158] Cinnamaldehyde
and eugenol

Dairy cows –DMI; –Milk yield; –Milk 
composition; ↑Feed 
efficiency; ↑MUN; –CP 
digestibility

↑UN; –FN; –Milk N; –NUE NR

Oh et al. [159] Carvacrol, eugenol and thy-
mol

Dairy cows –DMI; –Milk yield; –Milk 
composition;
–CP digestibility; –MUN
↑Milk lactose percentage; 
↓MUN

–UN; –FN; –Milk N; –NUE NR

Ribeiro et al. [155] Thyme (Thymus vulgaris) Sheep –DMI; –ADG; –CP digest-
ibility; –Ruminal  NH3-N

↓UN; –FN; –N retention NR

Benchaar [160] Thymol Dairy cows –DMI; –CP digestibility; –
Ruminal  NH3-N; –Milk yield; 
–Milk composition

–UN; –FN; –Milk N; –NUE NR

Muñoz-Cuautle et al. [161] Oregano (Lippia graveolens) Lamb –DMI; –ADG; –FCR; –Meat 
quality; –Ruminal  NH3-N

–UN; –FN; –N retention; 
–NUE

NR



Page 14 of 19Zhao et al. Journal of Animal Science and Biotechnology          (2023) 14:140 

crucial amino acids by the ruminant [88]. For example, 
Ahnert et  al. [57] found that the ruminal infusion of a 
moderate level of quebracho tannin extract may signifi-
cantly shift N excretion from urine towards feces, while 
high quebracho tannin extract dosages has detrimental 
effects on crude protein and fiber digestibility. The bind-
ing capabilities of tannins may potentially reduce fiber 
digestibility by inhibiting cellulolytic enzyme or bind-
ing to dietary carbohydrates, reducing ruminal turnover 
rate, and consequently minimize feed intake and animal 
production performance [59, 165]. Guyader et  al. [116] 
also reported that milk production, DM intake, and feed 
efficiency of dairy cows were reduced with tea saponin 
(0.52% DM). Major deleterious effects of GLS ingestion 
in animals are reduced palatability, decreased growth and 
production [166]. In addition, nitriles are known to influ-
ence the activities of the liver and kidneys. Thiocyanates 
inhibit the availability of iodine, whereas oxazolidine-
2-thione can induce the morphological and physiological 
alterations in the thyroid [166].

Overall, the challenge is to determine which phyto-
chemical features can reduce  N2O production from 
excreta by improving dietary N utilization and/or exert-
ing the biological nitrification inhibitory activities in the 
urine, without harming animal health, performance, or 
farmers’ profitability. Throughout the production cycle 
and across several production cycles (for example, dairy 
cows), the impact of manure N and  N2O mitigation strat-
egies on animal health, welfare, and reproduction must 
be examined through long-term research. Long-term 
experiments are also needed to study the mechanism of 
adaptation of gastrointestinal microbes and animals to 
phytochemical. A better understanding of how phyto-
chemical mitigation strategies impact ruminant product 
composition, shelf life, sensory traits, and consumer per-
ceptions of livestock products is also essential.

Systematic research methodology
Although saponins and essential oil have the poten-
tial to manipulate ruminant N metabolism,  N2O fluxes 
from ruminant excreta using field plots with the static 
chamber method have not been investigated previously. 
In grazing systems, biologically inhibition of nitrifica-
tion through dietary manipulation with GLS or accu-
bin has not been extensively investigated. The following 
step is to determine the effect of dietary phytochemi-
cals more closely on  N2O emissions and soil N cycles in 
larger-scale, longer-term experiments that simulate more 
closely manure management of commercial ruminant 
production systems.

Accurately estimating emissions from farmers using 
manure N and  N2O mitigation options requires an inte-
grated systems approach. Life cycle assessments (LCA) 

should evaluate the upstream and downstream impacts 
of mitigation strategies. Meta-analyses are critical to 
determine the effectiveness of phytochemicals as miti-
gation protocol. Additionally, phytochemicals have the 
potential to decrease rumen  CH4 emissions. However, 
few studies have examined phytochemicals’ use to reduce 
main GHG (i.e.,  CO2,  CH4, and  N2O) on either the herd 
level or in individual animals. The goal of reducing GHG 
is undermined if a strategy reduces  N2O but increases 
another GHG. If LCA is performed, only then will this be 
captured. Additionally, dietary manipulations with phy-
tochemicals targeting excreted N or  N2O reduction are 
mostly studied in isolation.

Conclusions and perspectives
Ruminant production systems are significant contribu-
tors to global N loss and  N2O emissions. As demand for 
high-quality meat and milk products rises,  N2O emis-
sions and global temperature will continue to increase. 
Phytochemicals, because of their anti-microbial activ-
ity and easy availability, may be promising agents to 
enhance NUE and reduce the environmental impact of 
ruminant  N2O emissions. The proposed mechanisms 
of  N2O reduction using natural phytochemicals include 
inhibiting rumen  NH3 production, increasing N par-
titioning into feces relative to urine, the diuretic effect 
phytochemical of leading to more frequent urination, 
and biologically nitrification inhibitor function of plant 
secondary metabolites from root exudation and/or ani-
mal’s urine. Present results indicate that the dietary 
inclusion of tannins could considerably reduce N excre-
tion and excreta-derived  N2O emissions from cattle 
excreta, whereas the possible negative effects of tannins 
on ruminant feed intake and nutrient digestibility are of 
concern. Compared with tannins, none of the existing 
studies has provided conclusive evidence of the effec-
tiveness and mechanisms of plant glycosides or essen-
tial oils in reducing N excretion and  N2O emissions, and 
these compounds should also be evaluated in long-term 
in vivo trials for their effect on N metabolism and  N2O 
production. Thus, further studies are required to deter-
mine their bioactive compositions, effective doses, mode 
of action, effect on animal performance and health, and 
cost–benefit ratio before phytochemicals can be applied 
as additives on farms to minimize N excretion and  N2O 
emissions from ruminant excreta.

Another major issue is affordability; ruminant farm-
ers need greater information on the cost of natural phy-
tochemicals or forages rich in phytochemicals and their 
impacts on animal productivity, particularly for concen-
trated animal feeding operations. Regulatory approval 
requirements for some promising feed ingredients may 
slow their adoption, and a lack of consumer acceptance 
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of some of them may preclude their use for  N2O mitiga-
tion. Incentives and low-cost approaches may be needed 
to encourage adoption because, in most cases, decreased 
N excretion and  N2O production have not increased 
ruminant performance.

Additionally, it can be challenging to assess the system-
wide effects of  N2O reduction practices, even though 
they may be beneficial at specific stages of the production 
cycle. Therefore, it is critical to analyze mitigation strat-
egies and procedures based on natural phytochemicals 
or forages rich in phytochemicals in the context of the 
whole system and LCA to ensure efficiency gains across 
all levels. In a word, phytochemicals may have a place in 
sustainable ruminant production scenarios only if more 
convincing results of their efficacy and effectiveness in 
mitigating N excretion and GHG emissions are depend-
ably identified. The old saying “do not put all your eggs in 
one basket” still applies to phytochemical research.
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