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Abstract 

Background The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradi‑
tion since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried 
out in traditional systems without intensive systematic breeding programmes for high uniform trait production 
(carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here 
as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised 
for a particular type of production, but known for their robustness and resistance to certain environmental condi‑
tions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, 
decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation 
and determine its production type.

Results We identified positive selection signatures in EAS using several methods based on reduced local variation, 
linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous 
genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmen‑
tal adaptation and economically important traits. Most candidate genes were related to meat/production and health/
immune response traits, while some of the candidate genes discovered were important for domestication and evo‑
lutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment 
analysis.

Conclusions Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS 
and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same 
time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance 
in the harsh and specific Mediterranean environment.
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Background
Around 12,000 BP, sheep (Ovis aries) were among the 
first animals domesticated by humans during the Neo-
lithic Revolution [1–3]. Along with goats, sheep were 
historically selected and preferred for their milk, meat, 
and wool production. They thrive outdoors and adapt 
well to local conditions, which in most cases are not 
suitable or sufficient for cattle. Sheep production is 
deeply rooted in the eastern Adriatic and was intro-
duced during the Neolithic migrations [4–6] so all 
populations have the same non-native origin. Croatian 
production primarily includes traditional systems with-
out specialized breeding for carcass or milk yield [7] 
making local breeds such as Istrian sheep, Cres Island 
sheep, Pag Island sheep, Krk Island sheep, Rab Island 
sheep, Lika Pramenka sheep, Dalmatian Pramenka 
sheep, and Dubrovnik Ruda sheep valuable genetic 
resources. These breeds are bred for milk, meat and 
to a limited extent wool, but are hardy and resilient in 
harsh environments. They are informally (also from the 
breeder’s point of view) considered well suited for meat 
and dairy production, although they are not favored 
over international breeds in any of these production 
directions.

With the development of molecular genetics, the iden-
tification of selection signatures reflecting natural or 
artificial selection has become possible, and numerous 
methods have been developed [8–11]. Four methods 
developed to identify selection signatures in livestock 
populations, all based on within-population approaches: 
i) extremely high SNP incidence in ROH ("extreme ROH 
islands" or "eROHi"), ii) integrated haplotype score (iHS), 
iii) number of segregating sites by length (nSL), and iv) 
composite likelihood ratio test (CLR), are widely used to 
identify hard and soft selection signals [12–18]. For 
example, many previous studies on Mediterranean sheep 
used statistical methods with medium density genomic 
data and found candidate genes for coat color, morphol-
ogy, milk, and wool [19–24].

An analysis by Ciani  et al. [25] identified Croatian 
breeds from the eastern Adriatic as part of the distinct 
"Balkan sheep group" with considerable genetic varia-
tion, which was confirmed by a broader diversity study 
using Infinium HD SNP arrays [7]. All of these breeds 
are distributed over an area approximately 1,000  km 
long and 50 km wide (more information provided in the 
Additional file 1). Although each breed or population is 
kept in a small but specific area, such as islands or pen-
insulas, they still form a unique group with the same 
origin, breeding environment, and socio-agricultural 
background. Understanding their genomic variation is 
critical for sustainable breeding to address environmen-
tal and economic challenges, while evidence of positive 

selection patterns offers insights into domestication, evo-
lution, and post-Neolithic change in Europe.

Using a comprehensive approach involving four selec-
tion signature methods, we aimed to uncover adaptive 
selection signals, profile production types, and elucidate 
gene functions within selection patterns. These analy-
ses are novel for autosomes in EAS as a member of the 
"Balkan sheep group" breeds/populations where selec-
tion signatures have not been identified previously. We 
have located selection signature regions, identified candi-
date genes, and characterized their biological/molecular 
functions. In general, the knowledge gained in this study 
improves our understanding of the genetic background of 
production capacity in EAS, which will help to improve 
EAS breeding.

Methods
Data and genotyping
The animals included in this study were selected and col-
lected in collaboration with the National Gene Bank of 
the Croatian Ministry of Agriculture, and all procedures 
with the animals were performed in accordance with 
national and European ethical protocols and guidelines. 
The animals were raised by registered breeders at differ-
ent locations in Croatia, and information was available 
on their origin and the exact location of the farm. Sam-
pling of closely related animals (parents with offspring, 
full or half siblings) was avoided.

A total of 196 animals of East Adriatic sheep breeds 
[7], were analysed as metapopulation (EAS) in this study, 
which includes Istrian sheep (n = 25; from 8 flocks), Cres 
Island sheep (n = 19; from 5 flocks), Pag Island sheep 
(n = 45; from 16 flocks), Krk Island sheep (n = 19; from 
3 flocks), Rab Island sheep (n = 18; from 17 flocks), Lika 
Pramenka sheep (n = 18; from 18 flocks), Dalmatian Pra-
menka sheep (n = 25; from 18 flocks), and Dubrovnik 
Ruda sheep (n = 26; from 17 flocks). Short descriptions of 
the breeds and pictures can be found in the Additional 
file  1. While collecting samples, our aim was to collect 
samples from high number of flocks in order to obtain 
representative sample and to avoid close genetic relation-
ships, therefore we collected samples from overall 102 
flocks. With the exception of the Pag Island sheep, sam-
ple sizes were similar. More detailed information on the 
samples (sex, map locations and coordinates etc.) in this 
study can be found in Additional file 2. As described in 
the Background, we decided to analyse EAS as one meta-
population in this study. Our preliminary analysis was 
performed for each of the breed separately, however, the 
signals of selection were less clear and more power was 
obvious in the case of metapopulation due to the higher 
sample size. Furthermore, we conducted an analysis of 
the decay of linkage disequilibrium (LD), which we also 
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performed (Additional file  3). This analysis revealed a 
consistent LD decay pattern across all breeds, provid-
ing additional support for the effectiveness of employ-
ing a large metapopulation strategy. All animals were 
genotyped using the Ovine Infinium® HD SNP Bead-
Chip 600  K (606,006 SNPs). Skin tissue samples from 
the ear were collected as part of the regular sampling of 
local autochthonous breeds by the National Gene Bank 
and from the blood, from which DNA was isolated using 
a commercial kit (DNeasy Blood and Tissue Kits, Qia-
gene, Germany). Plink 1.9 software [26] was used for 
quality control and data management. Of the genotypes 
obtained, we analysed only autosomal SNPs whose chro-
mosomal position was assigned. SNP positions were 
based on the sheep genome assembly ARS-UI_Ramb_
v2.0, and duplicate or misassigned SNPs were excluded 
from the analysis. SNPs missing more than 5% of geno-
types and SNPs with an Illumina GenCall score < 0.7 
were excluded from analysis. Sheep missing > 10% of 
the genotypes were also excluded from further analysis, 
while the thresholds to filter out all SNPs with a minor 
allele frequency of < 1% or due to deviations from Hardy–
Weinberg equilibrium (HWE) were < 0.01%. Finally, to 
avoid duplicate and related individuals (first- and second- 
degree relatives), the degree of common ancestry was cal-
culated for each pair of individuals using a threshold of 
identity by descent (IBD) > 0.18. After performing these 
quality control criteria, the final data set consisted of 
500,831 SNPs and 195 sheep (98 females and 97 males).

eROHi analysis
ROH analysis was performed with the detectRUNS 
package in R software [27] and SNP & Variation Suite 
(v7.6.8 Win64; Golden Helix, Bozeman, MT, USA, www. 
golde nhelix. com) using the consecutive runs method, 
a "windowless" method that searches the genome for 
ROHs regardless of window size. The criteria for detect-
ing runs were determined by recommendations for 
HD SNP data [28]. Thus, the minimum ROH length 
was set to 1  Mb, the minimum number of consecu-
tive homozygous SNPs in the called ROH was set to 
15, the minimum SNP density for the ROH was set to 
at least one SNP every 0.1 Mb, the maximum distance 
(gap) between consecutive homozygous SNPs was set 
to 1  Mb. In longer runs, one heterozygous SNP was 
allowed due to the possibility of genotyping or assign-
ment errors. Finally, detected ROHs were catego-
rised based on their length in Mb as follows: 1–2  Mb, 
2–4 Mb, 4–8 Mb, 8–16 Mb, and > 16 Mb. To establish a 
significance threshold, the frequency of ROHs was cal-
culated and normalised by their chromosome means, 
with the transformed value represented as −log10 (P) 
from the right tail of the normal distribution for each of 

the chromosomes separately. In this way, overrepresen-
tation of extreme ROH islands due to chromosome size 
was avoided. SNPs with −log10 (P  value) ≥ 4 were con-
sidered outliers, whereas only regions with consecutive 
outliers were considered as selection signals [29].

iHS and nSL analyses
For the analyses of iHS and nSL, the required haplotypes 
were phased from SNP data in SHAPEIT2 software [30] 
with 200 conditioning states and a window size of 2 Mb. 
The iHS statistic, based on the concept of Extended Hap-
lotype Homozygosity (EHH) [31], was calculated in R 
software using the rehh package [32]. Two-tailed P val-
ues for iHS [33] were calculated as −log10(2Φ(−|iHS|)), 
where Φ(x) represents the Gaussian cumulative distribu-
tion function. Sliding windows of 0.5 Mb with an overlap 
of 0.01 Mb with adjacent windows were used, and win-
dows with three or more SNPs exceeding the threshold 
(−log10 (P value) ≥ 4) were considered as selection signa-
tures. Since recombination rates are highly heterogene-
ous across the genome, we also used the nSL method, 
which is similar to the iHS method but was proved to be 
more robust in detecting selection signatures, regard-
less of the variation in recombination rate [34]. The nSL 
statistics were calculated with the selscan program [35] 
using the default parameters. Thus, a gap scale parameter 
of 0.02 Mb and a maximum allowable distance between 
two SNPs of 0.2 Mb were used, whereas all SNPs below 
0.05 were removed. The results of this analysis were then 
normalized to 100 frequency bins and to two-tailed P 
values for each SNP across all chromosomes using the 
program norm [35]. Using the same approach as the iHS 
method, selection signatures were determined based on 
the normalized values.

CLR analysis
The SweeD software, Linux version 3.0 [17], was used to 
calculate composite likelihood ratios (CLR) to test local 
reductions in nucleotide diversity along chromosomes. 
The reimplementation of the SweepFinder CLR test [8] 
in SweeD provides a robust representation of the genetic 
hitchhiking process caused by the chromosomal linkage 
of advantageous alleles to neighbouring polymorphisms 
that represent signatures of strong directional selection 
[36]. The SweeD CLR score represents the likelihood of a 
selective sweep in a tested region based on a denomina-
tor (likelihood for a null hypothesis empirically derived 
across all SNP positions assuming no selection) and a 
numerator (likelihood of a sweep in a tested region). The 
grid size determining the number of regions to be tested 
was set at 10,000 per chromosome. Larger grid sizes were 
also tested (up to 100,000 per chromosome) without sig-
nificant impact on the final results. The top 0.1% of hits 

http://www.goldenhelix.com
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were interpreted as loci under selection, resulting in a 
genome-wide threshold of 10.92.

Gene annotation and functional gene analysis
Functional biological interpretation of the discovered 
selection signatures was performed by conducting 
GO analyses [37]. Only significant selection signatures 
(regions whose initial and final positions overlapped) 
identified by at least two different methods were analysed 
(Additional file  4). Annotation of candidate genes was 
performed with the Ensembl [38] tool BioMart using the 
latest available assembly (ARS-UI_Ramb_v2.0). A total 
of 19 regions with an average region length of 0.970 Mb 
met our criteria and were subjected to further analysis 
(https:// www. ensem bl. org/ bioma rt/ martv iew). Search-
ing for the associated genes using BioMart yielded 4,984 
gene transcripts or 349 genes with unique Gene Stable 
IDs. The identified genes were further classified and sub-
jected to GO and protein domain (INTERPRO domains) 
enrichment analysis using publicly available software 
DAVID [39, 40]. Gene IDs were analysed using the 
online tool the Database for Annotation, Visualization 
and Integrated Discovery (DAVID), resulting in 25 func-
tional similarity clusters. The clustering provides useful 
approach to group a large number of genes which are 
functionally similar, and therefore make gene annotations 
more understandable in the context of biology. The clus-
tering algorithm uses Kappa statistics to measure how 
much genes are shared between two annotations. It also 
employs fuzzy clustering to categorize similar annotation 
groups based on these Kappa values. Essentially, if anno-
tations have a greater number of common genes, they are 
more likely to be grouped together.

Production and breeding type characterization
We also characterised the production mode of EAS by 
analysing the properties of positive selection signals 
("candidate genes") using the QTL (Quantitative Trait 
Loci) database for sheep (https:// www. anima lgeno me. 
org/ cgi- bin/ QTLdb/ OA/ index). The QTL database con-
tains sheep QTL/association data from 201 previously 
published studies and more than 3,000 QTLs. In these 
analyses, we focused on candidate genes whose signifi-
cance overlapped with all methods used in this study. 
QTLs from the QTL database were annotated using the 
GALLO R package [41] to query the Animal QTLdb 
(https:// www. anima lgeno me. org/ cgi- bin/ QTLdb/ index) 
for previously identified QTLs in regions of interest.

Results
Detected signatures of selection
In this study, we used four different intrapopulation 
methods for highly dispersed genomic information with 

an average spacing of 5  kb between SNPs, which pro-
vided us with a powerful tool to accurately detect posi-
tive genomic selection signatures at high resolution. A 
total of 165 genomic regions with positive selection sig-
nals were identified, of which 19 were identified by at 
least two different methods. Therefore, we conservatively 
focus our discussion and interpretation only on putative 
genes located in genomic regions of high confidence. 
These genes are consequently treated as candidate genes 
specific to the investigated East Adriatic sheep breeds.

Genomic regions detected as selection signatures by 
four different methods are shown as Manhattan plots 
in Fig. 1, 2, 3 and 4 and listed in Table 1. The threshold 
for detection of selection signals by the eROHi method 
was set to 4 [−log10 (P value)], and chromosomal regions 
from 100 kb up and down the genome were highlighted 
as selection signatures for all detected eROHi-s. In this 
way, 48 genomic regions were detected as selection sig-
natures only by the eROHi method, while six of them 
were also confirmed by at least one of the other methods 
used and were finally highlighted in the Manhattan plots 
by green colour and vertical lines. More detailed infor-
mation on the genomic regions detected and the overlap 
between the methods can be found in Additional file 5.

The strongest signals were detected in two regions on 
Ovis aries chromosome 6 (OAR6), the region between 
35.613  and 37.361  kb, where 155 SNPs exceeded the 
−log10 (P value) of 50, followed by OAR10 and OAR3. 
The majority of ROH segments detected in the sheep 
genome were short regions with a length of 1–2 Mb.

Genomic regions identified as selection signatures by 
iHS and nSL methods are shown as Manhattan plots in 
Fig. 2 and 3. To avoid selecting only SNPs above certain 
thresholds, we defined a window of 500  kb containing 
three or more SNPs with −log10 (P values) greater than 4. 
In this way, 22 genomic regions showing a positive selec-
tion pattern were detected by the iHS method, while 15 
of them also overlapped with the other methods used 
(highlighted in green).

Regions exceeding the above conditions for the iHS 
method were located on OAR2, OAR3, OAR4, OAR6, 
OAR7, OAR8, OAR13, OAR15, OAR21, OAR22, OAR23 
and OAR25. The four strongest signals detected by the 
iHS method were located at OAR6, OAR23, OAR21 and 
OAR2, as highlighted in Fig. 2. The average length of the 
identified genomic regions was 1.1 Mb.

The nSL method identified 17 regions that had a posi-
tive selection signature pattern, while 13 were confirmed 
by other methods. The genomic regions identified by 
the nSL method were located on OAR2, OAR3, OAR6, 
OAR7, OAR8, OAR13, OAR15, OAR16, OAR17, OAR20, 
OAR21, OAR23, OAR24 and OAR25. Although these 
two methods showed high correlation [9] in detecting 

https://www.ensembl.org/biomart/martview
https://www.animalgenome.org/cgi-bin/QTLdb/OA/index
https://www.animalgenome.org/cgi-bin/QTLdb/OA/index
https://www.animalgenome.org/cgi-bin/QTLdb/index
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selection signatures, surprisingly no complete (or at least 
high) overlaps were found. Of the total 28 selection sig-
natures detected by iHS and nSL, they overlapped only 
in nine genomic regions, confirming that the difference 
in recombination rate affects the results of our analyses. 
The three strongest signals detected by the nSL method 
were located at OAR23, OAR8, and OAR6, as highlighted 
in Fig. 3, while the average length of the detected regions 
was 1 Mb.

Genomic regions identified as selection signatures 
by the method CLR are shown as a Manhattan plot 
in Fig.  4.  In this study, the method CLR with a defined 
threshold of 0.1% highest hits identified 78 selection sig-
natures, 21 of which overlapped with other methods. The 
genomic regions identified by the method CLR, which 
were also confirmed by other methods, were on OAR2, 
OAR6, OAR7, OAR8, OAR13, OAR16, OAR17, OAR21, 
OAR22 and OAR23. The three highest CLR values were 
found in genomic regions on OAR16, followed by OAR2 
and OAR6, which also overlapped with other methods. 
The average length of the regions found was 0.95  Mb, 

which is comparable to the average length of the other 
regions.

GO analyses
GO and enrichment analysis results are presented only 
for genes found in the overlapping genomic regions by 
two or more methods because this approach increases 
the reliability of the identified genes (otherwise, too 
many genes would have been shown but their interpre-
tation would have been less reliable [39, 40]). The genes 
that were annotated in 19 overlapping genomic regions in 
our analyses are listed in Table 1. Of the total 4,984 gene 
transcripts, 342 genes (Additional file 6) were identified 
with unique Gene Stable IDs and subjected to GO analy-
sis using the software DAVID. Functional classification 
analysis of genes based on the functional similarity algo-
rithm [40] identified 10 gene groups (Additional file  7), 
providing a clearer picture of the extensive gene list from 
this study.

This analysis allows us to categorize a large number 
of genes based on their biological background, which 
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Fig. 1 Manhattan plot of genome‑wide eROHi analyses on East Adriatic sheep breeds from Croatia. Horizontal red dashed line marks 
the significance threshold of –log10 (P value) = 4. Chromosomal regions from 100 kb up and down the genome were highlighted as selection 
signatures for all detected eROHi‑s. Regions confirmed by at least one of the other methods were highlighted by green colour
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facilitates the interpretation of their functions. These 10 
groups consisted of 128 functionally related genes (see 
Table  1) that were assigned according to their chromo-
somal position and are considered candidate genes in 
this study. Modified Fisher’s exact P value (EASE score), 
which ranks the biological significance of the gene 
groups, was above 3.00 and was highest for the first three 
groups, 3.43 for the first group and 3.39 and 3.37 for the 
second and third groups, respectively. Functional anno-
tation analysis identified 116 annotation terms and their 
associated genes in this study (Additional file 8). Finally, 
functional annotation cluster analysis identified 25 anno-
tation clusters corresponding to biological functions, 
which are discussed below.

The terms from the first five annotated clusters (Addi-
tional file 4) exceeded a significance of P ≤ 0.05 but only 
the first two exceeded Benjamini–Hochberg correction 
for multiple hypothesis testing. In the first cluster, the 
most abundant and enriched GO terms and INTER-
PRO domains (IPR009122, GO:0030057, IPR009123 and 
IPR000233) were associated with desmosomal cadherin, 

desmoglein, and desmocollin, with the following associ-
ated genes DSG3, DSC1, DSG4, DSC2, DSG2 and DSG1 
on OAR23. All three protein families and their isoforms 
are dense adhesion complexes required for tissues to 
withstand mechanical stresses and are responsible for 
maintaining tissue integrity and facilitating cell–cell 
communication [42, 43]. As described above, they are 
mainly related to immune response and properties of tis-
sue, which is very important in the context of local adap-
tation in sheep. In the second cluster, the major enriched 
GO terms and INTERPRO domains (IPR020479, 
IPR009057, IPR001827, IPR001356 and IPR017970) were 
linked to homeobox genes (HOXA10, HOXA3, HOXA2, 
HOXA4, HOXA6 and HOXA9). These are a highly con-
served group of genes found not only in animals but also 
in plants and fungi. They belong to the class of transcrip-
tion factors that play a key role in developmental pro-
cesses [44]. As previously shown, several morphological 
and developmental traits in sheep (e.g., number of verte-
brae, inner thigh, tail) were found to be associated with 
this group of genes, and therefore this analysis confirms 
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Fig. 2 Manhattan plot of genome‑wide iHS analyses on East Adriatic sheep breeds from Croatia. Horizontal red dashed line marks the significance 
threshold of –log10 (P value) = 4, and if the windows with three or more SNPs exceeded this threshold, they were considered as selection signatures. 
Regions confirmed by at least one of the other methods were highlighted by green colour
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their importance in the genetic structure of East Adri-
atic sheep breeds. The enriched GO terms and INTER-
PRO domains from the third, fourth, and fifth clusters 
had significant P values but did not exceed the threshold 
for multiple comparisons (third cluster—GO:0005509, 
IPR002048 and IPR011992, all associated with calcium 
ion binding and hand domain genes; fourth cluster—
GO:0061630 and IPR001841: all associated with zinc 
finger and ubiquitin protein ligase; and fifth cluster—
GO:0004842 and IPR000408: all associated with protein 
transferase activity and regulation of gene expression).

Production type characterisation
The results of the QTL database analyses are shown in 
Fig. 5, and Additional file 9 and 10. In Fig. 5, the identi-
fied genes are classified based on their previously found 
associations with traits from the database. Additional 
file  9 and 10 show the significantly enriched traits/
types per chromosome and genome, respectively, as 
determined by QTL enrichment analysis. The area of 

the bubbles represents the number of QTLs observed 
for that class per chromosome, while the colour rep-
resents the FDR-adjusted P value as −log10 (P value) 
(the darker the colour, the smaller the P value). In addi-
tion, the x-axis shows the richness factor for each QTL, 
which is the ratio between the number of observed and 
expected QTLs.

Because we have identified numerous and very spe-
cific genomic regions in this study using four different 
methods, we have carefully described the biological 
functions of the genes in these regions. However, for 
the breeding context, the genomic background of these 
candidate genes is usually less clear because of complex 
mechanisms such as pleiotropy, epistasis or hitchhiking 
effects [41]. Figure 5 shows the percentage of each QTL 
type in the identified candidate regions in a pie chart, 
indicating that EAS breeds are formed primarily for 
meat and carcass traits, followed by production, health 
traits, and finally milk.
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Fig. 3 Manhattan plot of genome‑wide nSL analyses on East Adriatic sheep breeds from Croatia. Horizontal red dashed line marks the significance 
threshold of –log10 (P value) = 4, and if the windows with three or more SNPs exceeded this threshold, they were considered as selection signatures. 
Regions confirmed by at least one of the other methods were highlighted by green colour
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Discussion
Production type characterisation
A careful review of the old literature and knowledge [45] 
on sheep breeding in the Croatian Mediterranean region 
focuses on adaptation to the Mediterranean environ-
ment, but without a systematic breeding approach. His-
torically, this was an area without a sufficient food base 
for livestock (unlike the eastern and continental areas of 
Croatia) and with a low standard of living, so the main 
products were meat, milk, and wool. At the beginning of 
the nineteenth century, more than 1,000,000 sheep were 
counted in the eastern Adriatic region of Croatia, which 
was the highest per capita number of sheep in Europe. All 
these facts (large sheep population, low standard of liv-
ing) and local trends in sheep breeding led sheep farmers 
to focus mainly on their own needs. Therefore, focusing 
on meat/production, health and milk was a logical breed-
ing decision. In addition, commercial wool production 
required more specialized breeds with industrial sup-
port (e.g., Merino), which was not the case in this breed-
ing area. Since meat production was the main breeding 

objective, the sheep also had to be well adapted to the 
harsh environment, so health traits were a very logical 
breeding objective that was also complemented by natu-
ral selection. This is a fairly realistic explanation for our 
results related to economically important traits or pro-
duction type characterization for EAS. The overall list of 
candidate genes identified in this study also supports our 
conclusion, as most of them are associated with meat/
production traits in several species and with health and 
disease resistance. In addition, the enriched GO terms 
and INTERPRO domains from the first two gene clus-
ters could be considered the most important in our study, 
especially since they are consistent with the number of 
identified individual candidate genes and with the first 
three trait groups based on the annotated QTLs (meat/
production and health traits).

Candidate genes related with meat and carcass traits
On OAR2, SUSD3 (sushi domain containing 3) is a gene 
found to be associated with intramuscular fat content in 
pigs [46]. Another two very interesting genes have been 
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Fig. 4 Manhattan plot of genome‑wide CLR test on East Adriatic sheep breeds from Croatia. Horizontal red dashed line marks the significant 
genome wide threshold of 10.92, based on the top 0.1% hits, which were interpreted as selection signatures. Regions confirmed by at least one 
of the other methods were highlighted by green colour
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discovered on OAR2, the ASPN and the OGN genes, 
which were precisely mapped and described [47]. Both 
genes belong to the leucine-rich proteoglycan (SLRP) 
family and play important roles in various functions such 

as collagen fibrillogenesis, cell growth, cell differentiation, 
and migration [48]. This was confirmed by a proteomics 
and gene expression approach [49], in which thin-tailed 
sheep had higher ASPN expression levels compared 
with thick-tailed sheep and was also validated as a pro-
tein within the collagen fibril organizing group. In the 
aforementioned QTL study in pigs [47], ASPN and OGN 
genes were identified to be significantly associated with 
carcass traits at a genome-wide level, specifically loin and 
neck meat weight, shoulder meat weight, and daily gain 
(110–210  d). On OAR3, gene FAM171B is associated 
with meat colour in cattle [50], but its function is still 
unclear. On OAR4, we identified the gene EVX2, which is 
associated with the limbs and genital buds in sheep [51] 
and with mammary gland and spinal cord development 
in pigs [52], confirming its possible function in sex organ 
development.

The phosphatidylinositol glycan anchor biosynthesis 
class Y or PIGY gene is a member of the PIG gene fam-
ily and has an important function in cell–cell interac-
tions. In the study about the copy number variations 
surrounding this gene in sheep [53], it was found to be 
associated with growth traits and the type traits of chest 
girth and cannon bone circumference, suggesting that 

Table 1 Candidate regions and genes detected using all methods

a Start and end position of the genomic region
*  No candidate genes found

Region Chr Position,  bpa Length, Mb Methods Genes

1 2 27,846,647–29,059,562 1.213 CLR‑IHS‑NSL WNK2, SUSD3, ECM2, ASPN, OMD, OGN, NOL8, W5PEV5

2 2 30,200,000–31,190,000 0.990 NSL‑CLR *

3 2 121,400,000–123,491,237 2.091 ALL ZSWIM2, FAM171B, ZC3H15, W5Q575, FSIP2

4 3 39,840,000–40,930,000 1.090 NSL‑IHS ETAA1

5 4 68,150,000–69,110,000 0.960 IHS‑ROHS TAX1BP1, EVX1, W5PII1, HOXA10, HOXA9, W5PJ00, HOXA6, HOXA4, HOXA3, HOXA2, 
W5PJE3

6 6 24,035,512–25,350,000 1.314 CLR‑IHS‑NSL EMCN, C6H4orf54

7 6 32,870,000–40,660,000 7.790 IHS‑ROHS‑CLR CCSER1, TIGD2, FAM13A, PIGY, MED28, FAM184B, LCORL, W5P3G4, KCNIP4

8 6 112,846,266–116,882,460 4.036 CLR‑ROHS W5PDR8, SORCS2, W5PQN1, AFAP1, ABLIM2, W5PUD5, GRK4, MFSD10, SH3BP2, 
FAM193A, RNF4, W5Q0Q8, POLN, W5Q1Y2, TACC3, W5Q3F5, LOC101104663, 
LOC101105412, GAK, W5Q513, W5Q5J9

9 7 71,934,333–73,092,556 1.158 CLR‑IHS‑NSL W5QJ23, SGPP1

10 8 60,900,000–61,880,000 0.980 NSL‑IHS MTFR2, MAP7

11 8 62,319,974–63,470,000 1.150 CLR‑IHS‑NSL LOC101113683, W5NRH7, NHSL1

12 13 484,42,121–50,598,845 2.157 CLR‑IHS‑ROHS RNF24

13 13 50,563,961–51,826,354 1.262 CLR‑ROHS ADAM33

14 16 68,890,399–71,643,038 2.753 NSL‑CLR W5P6Z2, CEP72, BRD9, W5Q3L2, W5Q3M4, W5Q3S1, W5Q4G2

15 17 69,010,000–70,000,000 0.990 NSL‑CLR W5P400, SMTN, RNF185, PIK3IP1, SFI1, PRR14L, DEPDC5

16 21 41,901,704–42,960,000 1.058 CLR‑IHS‑NSL GPR137, CCDC88B, RPS6KA4, SLC22A11, NRXN2, MAP4K2, W5PK24, MEN1, 
CDC42BPG, NAALADL1, ZFPL1, TMEM262, FAU, MRPL49, SYVN1, SLC22A20P

17 22 49,880,000–50,810,000 0.930 IHS‑CLR W5Q425, CFAP46, W5Q8X7, KNDC1, W5QB54, CALY

18 23 25,350,000–26,730,000 1.380 CLR‑IHS‑NSL RNF138, RNF125, DSG2, DSG3, DSG4, DSG1, DSC1, DSC2, LOC101116442

19 25 6,540,000–8,070,000 1.530 NSL‑IHS W5NZP4, IRF2BP2, W5NZU5, RBM34

Fig. 5 Genes classified based on the Sheep Animal QTL database. 
QTLs were annotated using the GALLO R package and the Animal 
QTLdb for the previously identified QTLs in regions of interest. The 
identified genes are classified based on their associations with traits 
from the database
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this gene could be used as a marker for breeding pur-
poses. It has also been associated with meat and carcass 
quality [54]. Mediator complex subunit 28 (MED28) is a 
gene with function in regulating smooth muscle cell dif-
ferentiation and maintaining stem cell population. This 
gene is also associated with carcass characteristics and 
bone weight [55]. Two studies found that the SORCS2 
gene is involved in intracellular sorting and transport of 
various neurotrophic factors, transmembrane receptors, 
and synaptic proteins associated with a variety of cellu-
lar processes, including neuronal function, differentia-
tion, and synaptic plasticity in different species [56, 57]. 
Decreased SORCS2 expression increased oxidative stress 
and resulted in an enhanced oxidative stress response in 
primary neurons [57]. The SORCS2 gene was also found 
to control lipid metabolism in cattle [58]. It is showed 
that the ABLIM2 gene is required for normal neuronal 
function in humans, rats, and mice [59], whereas in dogs 
and pigs [60] it encodes an actin-binding muscle protein. 
Important GRK4 gene was found in OAR6, near which 
two ROH islands (ROH100 and ROH101) were found 
that are unique to Blackhead Persian and Nguni sheep 
and responsible for chemokine pathways [61]. Another 
research [62], found a role for the GRK4 as well as the 
MFSD10 gene in lipid storage, fat cell regulation, and 
fat tail deposition in Mediterranean sheep. The SMTN 
gene or smoothelin is expressed in various tissues such as 
smooth muscle, adipose tissue, cardiac muscle, and skele-
tal muscle [63], with two main isoforms. It has a function 
in controlling muscle contraction [64], but no associa-
tion has been found with economically important traits 
in livestock.

Kinase non-catalytic C-lobe domain containing 1 or 
KNDC1, plays a key role in many signal transduction 
pathways that contribute to protein recognition and 
functional regulation. In chickens, it has been associated 
with mammillary layer thickness and mammillary density 
[65], whereas in pigs it has been associated with the fatty 
acid profile in IMF along with the CALY gene from the 
same region [66]. In the gene expression study in sheep, 
KNDC1 was shown to be involved in the regulation of 
protein phosphorylation and was upregulated in fast-red 
muscle compared with slow-red muscle [67].

Candidate genes related with growth production traits
The ECM2 gene, which is involved in the extracellu-
lar matrix, has been associated with growth in humans 
[68]. Within the same cluster on OAR2, another member 
of the same SLRP family, the OMD gene (osteomodu-
lin or osteoadherin), was discovered to be involved in 
body development processes, such as regulation of the 
diameter and shape of collagen fibrils and bone forma-
tion [69]. The gene ZC3H15 has been associated with 

skull shape in mice [70]. Another gene on OAR6, LCORL 
(ligand-dependent nuclear receptor corepressor), is asso-
ciated with various body size traits in sheep, humans, 
horses, and cattle [71–82]. As for the POLN gene, it has 
been reported to have an effect on adult body size in 
some sheep in the United States [83]. The function of the 
TACC3 gene on OAR6 has not been fully elucidated, but 
it is generally suspected that it may be involved in the 
processes of cell growth and differentiation. Expression 
of this gene is upregulated in some cancer cell lines and at 
embryonic d 15 in mice [84]. In OAR16, only one region 
(2.753 Mb long) was confirmed by two methods (nSL and 
CLR). In this region two genes, CEP72 and BRD9, play 
important roles in bovine feed efficiency [85].

Candidate genes related with health traits
The WNK2 gene on OAR2 is associated with tumour 
suppressive function in humans [86], and when this gene 
is knocked down, it leads to accelerated tumour growth 
in mouse models. Another gene on OAR2, ZSWIM2 
was associated with perinatal mortality in cattle [87]. 
At OAR3, we identified an interesting gene, ETAA1 or 
Ewing tumour-associated antigen 1, that is differentially 
expressed in fat and short-tailed sheep [88], whereas in 
humans it is associated with body fat distribution [89]. 
In cattle, this gene is a strong indicator of mastitis resist-
ance and somatic cell score [90]. Next, on OAR6, the 
SH3BP2 gene plays an important role in natural killer 
cell-mediated cytotoxicity, which is likely responsible for 
the natural immunity/resistance of local sheep breeds 
[61].  Cyclin G-associated kinase (CAK) is a protein-cod-
ing gene on OAR6. Diseases associated with GAK include 
prostate sealing ring cell adenocarcinoma and Parkin-
son’s disease 15, autosomal recessive early onset. Nance-
Horan syndrome-like 1 protein (NHSL1), located on the 
OAR8 is related to metabolism and has been associated 
with subclinical ketosis and resistance to gastrointesti-
nal nematodes in adult sheep [91] and tick parasites [92], 
which is important for better environmental adaptation. 
The following 4 genes were located on OAR17. The ubiq-
uitin-protein ligase or RNF185 gene has a function in 
the endoplasmic reticulum (ER) associated degradation 
pathway (ERAD) and is associated with mitochondrial 
autophagy processes. The PIK3IP1 gene is involved in 
the negative regulation of phosphatidylinositol 3-kinase 
activity and in the negative regulation of phosphatidylin-
ositol 3-kinase signal transduction. These two genes are 
associated with longevity [93] and disease resistance [94, 
95] in cattle, as shown by GWAS.

The SFI1 gene, or centrin-binding protein also on 
OAR17, has been associated with reproductive traits [96], 
metabolic digestion [97], and interestingly, cold adapta-
tion, as it affects basal metabolic rate [98]. In addition, in 
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humans, this gene was proved to be associated with gly-
cosylated haemoglobin [99], a marker of average blood 
glucose levels. The gene Proline Rich 14 Like or PRR14L 
in this region is mainly studied in humans in the con-
text of blood metabolism (increase in monocytes and 
decrease in neutrophils) and leukaemia gene expression 
profiles [100], whereas in sheep was proved to be differ-
entially expressed between certain breeds [101].

On OAR21, the CCDC88B gene encodes a coiled-coil 
domain-containing protein 88b, a poorly annotated gene 
specifically expressed in spleen, bone marrow, lymph 
nodes, and thymus. CCDC88B protein is also abundantly 
expressed in immune cells, including  CD4+ and  CD8+ T 
lymphocytes, and in myeloid cells. Loss of CCDC88B 
protein expression has pleiotropic effects on T lympho-
cyte functions, including impaired maturation in  vivo, 
markedly reduced activation, decreased cell division, 
and impaired cytokine production (IFN-γ and TNF) in 
response to T cell receptor activation during the course 
of Plasmodium berghei infection in  vivo [102].  Another 
interesting study [103] was conducted to explore the 
resistance of different sheep breeds to gastrointestinal 
nematodes. Analysing the transcriptome of abomasal 
lymph node tissue, they found a total of 25 significant 
(P < 0.05) gene interaction networks. The gene interac-
tion network with the largest number of focal molecules 
(n = 18) including the NAALADL1 gene on OAR21 was 
assigned to infectious disease, cell-to-cell signalling and 
interaction, and cell movement. Also on OAR21, FAU or 
FAU Ubiquitin Like and Ribosomal Protein S30 Fusion 
is a protein coding gene. In the transcriptome analysis 
of adipose tissue from two fat-tailed sheep breeds [104], 
was found the specific gene expression patterns in adi-
pose tissue with 47 common highly expressed genes, of 
which 28 genes affected FAU gene. Diseases associated 
with FAU included sarcoma and osteogenic sarcoma 
[104]. Related pathways included viral mRNA transla-
tion and the integrated breast cancer pathway. On the 
OAR23, important gene family was identified containing 
the ring finger genes RNF138 and RNF135, both of which 
belong to the ubiquitin-binding protein family and have 
strong activities [105, 106]. They play a special role in the 
regulation of T cells and the immune response. RNF135 
was found to be associated with biological pathways that 
affect human body size [68].

Candidate genes related with milk production
An interesting gene on OAR6 is the endomucin or 
EMCN gene, which has been associated with growth and 
carcass traits in sheep [107], with meat marbling in cattle 
[108], but also with milk fat yield in sheep [109], which 
is the first described selection signature related to milk 
production in this study. EMCN is a membrane-bound 

glycoprotein expressed on the surface of the endothelium 
in venules and capillaries [110], and its main function is 
inflammation regulation, so it may be of particular inter-
est in the context of environmental adaptation and dis-
ease resistance.

For the FAM13A (family with sequence similar-
ity member 13A) gene located in the second important 
region on OAR6, a detailed GWAS study found an asso-
ciation with lung disease in humans [111], whereas other 
studies in sheep confirmed an association with milk yield 
[112] and body/bone weight in cattle [55, 113]. In the 
same region on OAR6, MED28 was found to be asso-
ciated with milk production traits in sheep [112] and 
expressed in the mammary gland during lactation [114]. 
The former study also confirmed the association of the 
FAM184B gene (member B of the family with sequence 
similarity 184) with somatic cell score and milk produc-
tion traits. FAM184B is known to be expressed in adipose 
and skeletal muscle tissue and during skeletal develop-
ment [55, 113]. DEPDC5 or DEP domain containing 
5 is a gene located on OAR17 and involved in stimulus 
response and associated with growth traits [115]. Whole-
genome analyses [116] have also shown that this gene 
family plays a role in the regulation of lactation in sheep. 
On OAR22, CFAP46 or cilia and flagella associated pro-
tein 46, has been associated to lactose content [117] 
whereas RBM34 or RNA-binding protein 34 gene on 
OAR25 has role in nucleic acid binding and nucleotide 
binding, and it was found by GWAS study on cattle to be 
associated with milk yield [118].

Candidate genes related with wool traits
The AFAP1 (actin filament associated protein 1) gene 
on OAR6 plays a role in some characteristics of yearling 
wool of one-year-old Chinese sheep with fine wool, such 
as the cleanliness of the fleece [119]. On OAR6, two gene 
families, desmoglein or DSG protein with four members, 
DSG1, DSG2, DSG3 and DSG4, and desmocollin protein 
or DSC with two members, DSC1 and DSC2, were iden-
tified in this study. These genes are involved in immune 
response in sheep [91], but more interestingly, they have 
been shown to affect fibre properties [120, 121] and hair 
growth and follicle structure [122]. For this reason, this 
gene may be particularly important for adaptation to 
local environmental and climatic conditions and for char-
acterizing production type. On OAR25, IRF2BP2 gene is 
very interesting and quite important for wool character-
istics. It is the Interferon regulatory factor 2 binding pro-
tein 2 which acts as a transcriptional coregulator and it 
was found to be involved in the fleece variation between 
the hairy/long coat and short/woolly fleece phenotypes 
[123]. Also, it was confirmed in another study about the 
functionality of these genes in relation to immune and 
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reproduction response, where high and low gene signal-
ling variants resulted in different hair phenotypes [124].

Candidate genes related to reproduction traits
The coiled-coil serine rich protein 1 or CCSER1 gene 
on OAR6, which encodes a proline-rich protein, plays 
an important role in mitosis and cell division and has 
been linked to several human cancers [125]. SNPs in the 
intronic region of this gene have been associated with 
male fertility traits in sheep, such as ejaculate quality 
[126], and together with the TIGD2 gene with growth 
and carcass traits in cattle [127], body weight in salmon 
[128], and meat quality traits in ducks [129]. The TIGD2 
gene has also been associated with resistance to disease 
and bacterial infection in cattle [85], making it an impor-
tant candidate in our study. The KCNIP gene (potassium 
voltage-gated channel interacting protein 4) also located 
on OAR6 has an important function in regulating trans-
membrane transport of potassium ions. Several GWAS 
studies confirmed the association of this gene with male 
fertility [126] and growth traits [55, 130, 131]. On the 
second important region on OAR6, the RNF4 gene was 
found to play an important role in litter size in pigs, being 
involved in a number of reproductive physiological pro-
cesses [132]. Only one region on OAR7 was detected as a 
positive selection signal. The SGPP1 gene plays an impor-
tant role in ovine fertility traits, where increased expres-
sion in the endometrium of the non-gravid uterine horn 
was detected. SGPP1 expression also increased in the 
placenta late in gestation [84, 133] and in lipid metabo-
lism [134].

Candidate genes related to environmental adaptation
The gene on OAR2, NOL8, which has been associated 
with circulating fasting glucose levels in mice [135] and 
may be important for energy expenditure in harsh envi-
ronments. It has also been identified as a candidate gene 
for hunting ability in dogs [136] and carcass traits in cat-
tle [137].  The gene FSIP2 also on OAR2, was found to 
be associated with fecundity in sheep [138]. In the con-
text of domestication, the FSIP2 gene is very interesting 
because it was previously identified as a gene important 
for domestication [138, 139], i.e., a gene associated with 
adaptation rather than production traits. Moreover, the 
haplotypes of this gene strongly resemble those of Asian 
mouflon and other wild sheep relatives (snow sheep and 
argali) but not those of domestic sheep. The HOXa gene 
family, consisting of six genes (HOXA2, HOXA3, HOXA4, 
HOXA6, HOXA9 and HOXA10) and possibly important 
for EAS adaptation, are located on OAR4. The HOXA 
gene cluster or homeobox A is a group of conserved 
genes throughout the animal kingdom that encode sev-
eral transcription factors responsible for nervous system, 

body, and spinal development [140, 141]. This gene clus-
ter is particularly important in an evolutionary context 
because a single mutation in this cluster results in drastic 
body shapes [140, 142]. Several studies have found asso-
ciations of this region with similar traits related to devel-
opmental functions and morphological traits, such as the 
number of thoracic vertebrae [143] and fat tail develop-
ment [144] in sheep, inner thigh development [145] in 
cattle, and body structure traits [146] in pigs. This region 
has been identified in numerous selection signature stud-
ies based on various methods in different breeds of sheep 
[147–150].

The FAM193A gene on OAR6 was identified as a can-
didate for adaptation in Moroccan sheep [151]. Two 
regions were identified on OAR13, each containing only 
one gene. The gene from the first region (RNF24) is a 
gene responsible for visual function in sheep and has also 
been found as a selection signature by other authors [138, 
152], and the resulting changes are most likely related to 
domestication. Vision plays a critical role in animal sur-
vival, and many studies have shown that visual acuity is 
weaker in domestic animals (e.g., chickens, dogs and 
ducks) compared with their wild ancestors [153–155]. 
Thus, the functional role of this selection signal with 
respect to domestication remains to be explored. The 
second region on OAR13 localized the gene ADAM33, 
which belongs to the disintegrin and metalloprotease 
domain family. It is another gene with a possible func-
tion in environmental adaptation, as it plays a role in 
several biological processes, including muscle develop-
ment and neurogenesis, whereas in humans it is mainly 
associated with the immune response and allergic asthma 
[156–158].

In a study on cattle [159], it was found that the NRXN2 
gene (located on OAR21 in sheep), among several other 
genes, is associated with adaptation, particularly cli-
mate adaptation, such as adaptation to tropical humid-
ity and harsh environments.  An interesting study [160] 
was conducted to investigate the key genes and pathways 
involved in the response to pain in goats and sheep by 
transcriptome sequencing. The analysis was performed 
on the dorsal root ganglion (DRG), which is involved 
in the transmission of pain to the central nervous sys-
tem and exhibits various pathophysiological changes in 
chronic pain. Transcriptome analysis in sheep revealed 
the higher activity of the gene CDC42BPG, which regu-
lates the activity of small GTPases (which act as molec-
ular switches or timers in many basic cellular processes 
such as signal transduction, protein biosynthesis, trans-
location of proteins across membranes, etc.).  Also on 
OAR21, the gene encoding Hmg-CoA reductase 1 or 
SYVN1 degradation may mediate resistance to diabetic 
retinopathy, as shown in the study on mice [161]. SYVN1 
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is an important member of the E3 ligase complex in the 
ERAD pathway that removes misfolded and non-func-
tional proteins from the ER, keeps the ER stable, and 
reduces ER stress. SYVN1 also inhibits apoptosis induced 
by ER stress [162, 163].

Conclusions
In this study, we identified selection signatures of East 
Adriatic sheep breeds using several methods, including 
reduced local variation, linkage disequilibrium and fre-
quency spectrum (eROHi, iHS, nSL, and CLR). Analysis 
of selection signatures identified numerous and specific 
candidate genomic regions and genes (e.g., desmosomal 
cadherin and desmoglein gene family, and HOXa gene 
family) that may be important not only for economi-
cally important traits but also for adaptation to specific 
production and environmental conditions. The major-
ity of candidate genes were related to meat/production 
and health/immune response traits, which seems to be a 
realistic historical reflection of breeding practices in the 
Croatian Adriatic region. This was also confirmed by GO 
and QTL enrichment analysis. Our results will contrib-
ute to a better understanding of the breeding potential of 
EAS, its unique adaptive genetic architecture and its rela-
tionships with other populations, and eventually provide 
a new opportunity to exploit its genomic background in 
future sustainable breeding programs. Even though these 
procedures (incorporating knowledge about selection 
signatures and population structure) aren’t simple and 
readily executable, we hold the view that incorporating 
this information in breeding programs should become 
a mandatory aspect in addressing worldwide shifts and 
striving for enhanced sustainable production, placing an 
emphasis on improved adaptation to diverse environ-
mental conditions.
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