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Abstract 

Background Pan-genomics is a recently emerging strategy that can be utilized to provide a more comprehensive 
characterization of genetic variation. Joint calling is routinely used to combine identified variants across multiple 
related samples. However, the improvement of variants identification using the mutual support information from mul-
tiple samples remains quite limited for population-scale genotyping.

Results In this study, we developed a computational framework for joint calling genetic variants from 5,061 sheep 
by incorporating the sequencing error and optimizing mutual support information from multiple samples’ data. The 
variants were accurately identified from multiple samples by using four steps: (1) Probabilities of variants from two 
widely used algorithms, GATK and Freebayes, were calculated by Poisson model incorporating base sequencing error 
potential; (2) The variants with high mapping quality or consistently identified from at least two samples by GATK 
and Freebayes were used to construct the raw high-confidence identification (rHID) variants database; (3) The high 
confidence variants identified in single sample were ordered by probability value and controlled by false discovery 
rate (FDR) using rHID database; (4) To avoid the elimination of potentially true variants from rHID database, the vari-
ants that failed FDR were reexamined to rescued potential true variants and ensured high accurate identification 
variants. The results indicated that the percent of concordant SNPs and Indels from Freebayes and GATK after our new 
method were significantly improved 12%−32% compared with raw variants and advantageously found low frequency 
variants of individual sheep involved several traits including nipples number (GPC5), scrapie pathology (PAPSS2), sea-
sonal reproduction and litter size (GRM1), coat color (RAB27A), and lentivirus susceptibility (TMEM154).

Conclusion The new method used the computational strategy to reduce the number of false positives, and simulta-
neously improve the identification of genetic variants. This strategy did not incur any extra cost by using any addi-
tional samples or sequencing data information and advantageously identified rare variants which can be important 
for practical applications of animal breeding.
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Introduction
Genetic variation refers to differences in the genetic 
makeup of individuals in the same species. Single nucle-
otide polymorphisms (SNPs) and insertions/deletions 
(Indels) are two common types of genetic variants among 
individuals [1], which contribute to genetic diversity and 
critically influence phenotypic differences, including dis-
eases susceptibility in human [2–4], trait enhancement 
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and disease resistance in animal and plant breeding [5–
7]. The genetic variants related to the phenotypes can 
be used to inform disease prediction [4], identification 
of causal mechanisms of disease [2], and the prioritiza-
tion of biological targets in breeding programs in plants 
and animals [6, 7]. Improving productivity of animal or 
plant breeding will require a better understanding of the 
related genetic variants function in biological processes 
and how they interact with non-genetic components of 
production systems (e.g., nutrition and environment) [8, 
9]. With the drastically decreasing cost of high through-
put sequencing over the past decade, mass sequencing 
data have been used to support the understanding of 
genome to phenome (G2P). The accurate identification of 
genetic variants is a crucial point from mass sequencing 
data.

Several computational pipelines have been devel-
oped to analyze genetic variants, which mainly consist 
of the quality assessment, read alignment, variant call-
ing, and functional annotation [10]. The performance of 
the specific part(s) or the whole analysis process were 
simultaneously improved with the development of suit-
able computational analysis tools. For the identification 
of SNPs and Indels, variant calling is core to the whole 
process or pipeline, and is conducted by variant callers 
based on sequence read alignment. At present, the main-
stream variant callers include GATK [11–13], Freebayes 
[14], and SAMtools/BCFtools [15, 16]. GATK Haplo-
typeCaller is a tool to call SNPs and Indels via local de-
novo assembly of haplotypes in an active region, which 
in some cases discards the existing mapping information 
and completely reassembles and realigns the reads in that 
region. This allows the HaplotypeCaller to be accurate 
within a region that contains different types of variants 
close to each other [12]. Freebayes is a bayesian genetic 
variant detector based on the sequences of reads aligned 
to a particular target, rather than the specific alignment 
[14]. It bypasses the problem of identical sequences that 
might align to multiple locations. BCFtools is a collec-
tion of several commands and generates the mpileup 
from the BAM alignment reads using SAMtools and then 
computes the variant calling by estimating mutation and 
sequencing error probabilities [15, 16].

Accurate identification of genetic variants plays a 
critical role in downstream analysis of G2P. Several fac-
tors contribute to the high accuracy of variant callings, 
including (1) Read quality (read sequencing error and 
read depth): a low sequencing error and a high read 
coverage of overlapping reads at the variant position 
support for high accuracy variants [17]; (2) Mapping 
quality: sequence reads aligned to a suitable and correct 
place in the genome sequence resulted in high mapping 
quality [18]. Recently, statistical models including Bayes 

[19] and Poisson [20, 21] were proposed to improve 
the mapping quality by incorporating base sequencing 
error into alignment; (3) Sample information: joint var-
iant calling for multiple samples to allow mutual sup-
port of identified genotypes [8]; (4) Reference genome: 
a complete and high-quality reference genome can 
improve analysis of genetic variants [22].

Revolutionary next generation sequencing (NGS) 
technologies have remarkably decreased the cost of 
genome sequencing and lead to the brilliant achieve-
ments in genome sequencing projects such as the 1000 
Genomes Project [23], the 1000 Bull Genomes Project 
[24] and the International Sheep Genomics Consortium 
1000 sheep project (https:// www. sheep hapmap. org). 
Population genomic is recently emerging and facili-
tates a more comprehensive characterization of genetic 
variation in population-scale [25]. Population genomic 
approaches have now been used in many species to 
determine the effects of genetic variants [6, 7, 26, 27]. 
To date, joint calling is typically favored for population-
scale genotyping as it generates a set of genetic variants 
[27]. For instance, variants calling in a population with 
GATK is performed by jointly calling from intermedi-
ate files (gVCF), which contain the candidate variant at 
each position of the genome. The identified variants of 
single sample are then combined across all samples to 
generate full variants for the population [11–13]. And 
Freebayes conducts the jointly calling for all samples 
present in the bam files using reads groups [14]. The 
jointly calling combines the variants from each sample 
without full utilization of multiple samples information 
from population.

Here we developed a computational framework for 
improving identification of genetic variants of 5,061 
sheep from Flock54℠ program (https:// www. flock 54. 
com), which is a targeted genotyping panel that allows 
producers to test their flock’s DNA for animal parent-
age and traits associated with disease, production and 
meat quality. The proposed framework incorporated 
the sequencing error and optimized mutual support 
information from multiple samples’ data in popula-
tion scale. Firstly, the probabilities of variants identified 
from GATK and Freebayes were calculated by Poisson 
model incorporating base sequencing error potential 
for each single sample. Then the identified variants 
were ordered by probabilities and controlled by false 
discovery rate (FDR) using the construction of high-
confidence identification dataset from multiple sam-
ples. The new method is illustrated through the high 
accuracy of variants called and the ability to detect 
variants even at low frequencies within the population 
of 5,061 sheep, which is predicted to have a profound 
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impact on the identification of functional variants in 
biological processes or other studies.

Materials and methods
Workflow of variants identification
The workflow of the computational strategy for identi-
fying variants from multiple samples consisted of four 
steps: (i) Probabilities of variants identified from GATK 
and Freebayes were calculated by Poisson model incor-
porating base sequencing error potential for each sin-
gle sample (Fig. 1a); (ii) The variants with high mapping 
quality (> 1,000) or consistently identified from at least 
two samples by both callers (GATK and Freebayes) 
were used to construct the raw high-confidence iden-
tification variants database (rHID); (iii) The variants 
identified in single sample were ordered by probability 
value and controlled by FDR using rHID; (iv) To avoid 
the elimination of true variants from rHID, variants 
that failed after FDR were reexamined to identify any 

variants that might be rescued to ensure high accurate 
identification variants (Fig. 1b).

Sequencing data analysis and variants calling
A total of 5,061 sheep tissue or blood samples were col-
lected for the Flock54 program (https:// www. flock 54. 
com). Extracted DNA was sequenced by a targeted next-
generation sequencing (NGS) panel using Thermo Fisher 
Ion Torrent platform as previous study’s description [28].

The sequencing quality of raw DNA short reads from 
5,061 sheep were assessed and controlled by FastQC 
v0.11.6 (https:// www. bioin forma tics. babra ham. ac. uk/ 
proje cts/ fastqc). Clean sequences were aligned to the 
latest reference genome ARS-UI_Ramb_v2.0 by using 
Bowtie2 v2.4.5 with default parameters [29]. The sta-
tistics of all mapped reads were calculated by flag-
stat of Samtools v1.15 [16], and the duplicate reads of 
alignment bam file were marked by MarkDuplicates of 
Picard v2.25.4 (http:// broad insti tute. github. io/ picard). 

Fig. 1 Workflow of the variant identification. a for a single sample; b for multiple samples

https://www.flock54.com
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And sample group information was added to bam 
files by AddOrReplaceReadGroups of GATK v4.1.7 
[11]. Then the genetic variants were called by GATK 
v4.1.7 [11] and Freebayes v1.3.2 [14], respectively. The 
HaplotypeCaller, GenotypeGVCFs models of GATK 
were used to call variants for each sample with default 
parameters and generate vcf files with parameters 
-stand-call-conf 10. The Freebayes-parallel was used 
for fast parallel calling of SNPs and Indels for all 5,061 
samples with default parameters. The multi-sample 
callers of GATK had the best accuracy particularly at 
5× coverage depth if samples were called together with 
a large number of individuals such as those from 1000 
Genomes Project in previous study [30]. All identi-
fied variants from GATK and Freebayes were filtered 
by vcftools with --minQ 20 --min-meanDP 5 [31], and 
the variants with high mapping quality (> 20) and reads 
coverage depth (> 5) were then extracted into sepa-
rate SNP and Indel files by vcftools with parameters 
--remove-indels and --keep-only-indels, respectively.

For the construction of rHID, the filtered variants 
from each sample were merged by bcftools v1.9 [16], 
and the variant quality score of combined vcf files 
from GATK and Freebayes were recalibrated by Vari-
antRecalibrator and ApplyVQSR [11], respectively. The 
recalibrated variants with quality higher than 1,000 or 
identified in both callers at least two samples were as 
the positive variants in rHID.

Poisson model for SNP identification incorporating 
sequencing error
To distinguish the single position variant from the 
sequence error, the Poisson model of incorporating 
sequencing error was conducted with parameters λ and 
k (Fig.  1a). The Poisson cumulative distribution func-
tion that there is an actual mutation at a particular 
position is defined as follows:

Where M is the reads number that support a muta-
tion for alternative allele at the ith position, and �i is 
the expect reads number with the platform sequenc-
ing error in the ith position, �i = Ni × ri , where Ni is 
the total number of reads covering the ith position and 
ri is the average sequencing error by calculating the 
phred score Q of N reads, ri = 10−Q/10/N  , as descrip-
tion in previous study [32]. For one single sample, 
the observed count of the alternative allele at ith posi-
tion supports the true variant if P(M|λi) stays above a 
certain threshold. To avoid increasing type I error for 

P(M|�i) =
M

k=0

�
k
i

k!
e−�i

multiple samples, all probabilities of identified vari-
ants were calculated in each single sample and the final 
threshold value was determined by the rHID informa-
tion from multiple samples.

Variant identification from multiple samples
False discovery rate (FDR) control is the most com-
mon method for assuring the overall quality of the set 
of identifications [33]. The false positive of variants in 
each sample can be controlled by the global positive 
variants from multiple samples, which provide extra 
and cross validation information for high confidence 
identification of variants. The FDR was defined by the 
expected value of the following formula:

Where F and T are the expected number of false posi-
tive and true positive variants in each sample, which 
were based on the global positive variants from multiple  
samples.

The procedure of FDR control for the identification of 
high confidence variants from multiple samples is:

1. Construction of rHID from multiple samples (Fig. 1b). 
The rHID consists of three parts: (1) the variant with 
mapping quality > 1,000 from GATK, (2) the variant 
with mapping quality > 1,000 from Freebayes, and (3) 
identified in both callers and in at least two samples.

2. Marking positive or negative for the identified vari-
ants in an individual sample. The variants from an 
individual sample that cross validated in rHID were 
marked as positive. Conversely, the variants that were 
absent from the rHID were marked as negative for 
this individual sample.

3. Calculation of FDR values for all identified variants in 
an individual sample. Poisson probabilities of n SNPs 
were sorted by descending in an individual sample. 
FDR of the ith SNP was calculated by FDRi= Fi/(Fi+Ti) 
=∑i

1

(

negative variants number
)

/
∑i

1
(total variants number) . 

With a FDR > 0.01 threshold, variants from 1 to 
(i-1)th, those that were below the threshold of FDR, 
were regarded as Reliable variants (RVar), and the 
variants from ith to nth, those that were above the 
threshold of FDR, were regarded as Failed variants 
(FVar). This was done to identify the few variants 
that may originally have been identified as negative 
but have a high enough quality value to pass the 1% 
FDR threshold and therefore should be retained. Fur-
thermore, a few variants originally identified as posi-
tive but with a low quality value will not pass the 1% 
FDR and not retained. For Indels, mapping qualities 

FDR = E

[

F

F + T

]
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of variants were sorted by descending, other param-
eters were similar to those used in SNPs.

4. Rescue variants. To avoid the elimination of true var-
iants for an individual sample, the mapping quality 
(MQ) and consistent sample number (SN) of variants 
from all the samples were assessed and used to res-
cue the FVar of single sample with high MQ and SN. 
The 150 (Freebayes) and 300 (GATK) of MQ and 10 
of SN were used as threshold values (Fig. S1). In the 
RVar group, the negative variant with mapping qual-
ity less than MQ and sample consistency less than 
SN is removed. In the FVar group, the positive vari-
ant with mapping quality more than MQ and sample 
consistency more than SN is rescued into final identi-
fied variants (FIV), and the unlisted variants of FIV 
that identified in raw variants were marked as final 
removed variants (FRV).

Validation of variants identification from multiple samples
To illustrate and validate the reliability and rationality 
of the final identified variants from multiple samples, 
three metrics were used to validate the process of com-
putational workflow: (1) Poisson probability: the vari-
ants from all sheep samples were divided into two groups 
(Pro = 1 and Pro < 1) according to the probabilities from 
Poisson model incorporating sequencing error, then the 
sequencing error and sequence depth were compared 
between these two groups. (2) Comparison of concord-
ance variants in raw and FIV: concordance variants from 
GATK and Freebayes regarded as high confidence vari-
ants were compared between raw variants and FIV. (3) 
Comparison of variants in FDR control process: The 
mapping quality of variants from pre- and post-FDR 
were compared by eight groups: negative variants in pre-
FDR (Neg), positive in pre-FDR (Pos), FIV, FRV, positive 
in both pre- and post-FDR (pos-FIV), negative in both 
pre- and post-FDR (neg-FRV), positive in pre-FDR but 
negative in post-FDR (pos-FRV), negative in pre-FDR but 
positive in post-FDR (neg-FIV).

Properties of identified FIV from multiple samples
The FIV originally identified from freebayes and GATK 
were independently listed and marked as variant 
type|caller (SNP:INDEL|GK:FB) from the union vari-
ants of both two callers. The FIV then were divided into 
three groups based on the sample’s information: high, 
medium, and low frequency variants. The high frequency 
variants were those that were presented in more than 
90% of all samples (4,555), and low frequency variants 
were uniquely identified in a single individual, all other 
variants were considered of medium frequency. Based on 
multiple samples, the common and specific variants can 

be accurately identified, especially low frequency vari-
ant identification in population scale. To further confirm 
and explain the functions of identified specific variants 
of multiple samples, the distribution and related genes 
of low frequency variants from single sheep were cross 
validated by IGV (Integrative Genomics Viewer) [34] 
and the knowledge of biological function described from 
previous studies. All variants were annotated by custom 
scripts based on the annotation GFF file of reference 
genome ARS-UI_Ramb_v2.0 [35]. The custom scripts 
and code can be found in github (https:// github. com/ 
shang- qian/ Multi_ Var).

Results
Overview of sequencing data
A total of 5,061 sheep from Flock54 program were 
sequenced by targeted sequencing panel of short reads 
platform (Table S1). The length distribution of all 
sequences ranged from 50 to 400 bp, and most of them 
are distributed on the 100–200 bp (Fig. 2a) and the aver-
age sequence length of all samples is 152 ± 8  bp (Table 
S1). There were 207,732,536,962 bp total sequence length 
from 1,359,591,019 total reads in 5,061 samples, which 
covered a 171,567 ± 8,532  bp target sequencing region 
(> 5×) of the panel (Table S1). The min, max and average 
sequencing error in all samples were 0.00439, 0.01268 
and 0.00842, respectively (Table S1). And the aver-
age sequencing quality of all samples were higher than 
phred score 20 (1% sequencing error rate), and some of 
them were even more than 30 (Fig.  2b), which met the 
requirement of quality control for sequencing reads. 
The high-quality reads were then aligned to reference 
ARS-UI_Ramb_v2.0. The average mapped reads rate was 
98.11% ± 0.62%, most of which were uniquely mapped 
reads (the minimum and average unique mapped rate 
were 80.09% and 95.60%) (Fig. 2c and Table S1). The min, 
max and average coverage of mapped reads in targeted 
sequencing regions were 16, 3,473 and 216, respectively. 
And the majority of samples (more than 2,000) were 
mainly distributed between 100 and 200 (Fig. 2d).

Probability from Poisson model incorporating sequencing 
error
The probability of each SNP for individual sample were 
calculated by incorporating the sequencing error rate 
(Fig. 1a). The probabilities of all SNPs from 5,061 sheep 
were divided into two groups: Pro = 1 and Pro < 1, 
and there were 5,679,782 and 36,263 variants in these 
two groups, respectively. The sequencing error rate of 
these two groups were significantly different, where 
the sequencing error rate of base in the high probabil-
ity group was lower than that in low probability group 
(Fig.  3a). The high base sequencing error result in the 

https://github.com/shang-qian/Multi_Var
https://github.com/shang-qian/Multi_Var
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low poisson probability of identified variant and make it  
unreliable. Conversely, the variant identified from the 
low sequencing error bases was more reliable (Fig. 3a). 
Further, the sequencing coverage (depth) of variants 
in high probability group were significantly higher 
than that in low group (Fig. 3b). Moreover, we further 
compared the identified variants with and without 
using poisson model. The variants number from with 
poisson model were less than that from without pois-
son model in majority samples, even the variants from 
1,487 to 2,323 samples in with poisson model were all 
identified in without poisson model in Freebayes and 

GATK, respectively (Table S2). The unique variants from 
with poisson model were filtered in without poisson  
model due to the low mapping quality. Conversely, the 
unique variants from without poisson modes were 
identified by the higher mapping quality than these 
in with poisson model. Actually, the Alt-read number 
in uniquely identified variants of with poisson model 
was higher and more reliable than the unique variants 
from without poisson model (Table S3). Above result 
confirmed the necessary and rationality to consider 
the effect of sequencing errors in the identification  
of variants.

Fig. 2 Statistical information of sequencing data from 5,061 samples. a Sequence length distribution; b Sequence quality distribution; c Unique 
and multiple mapped reads; d Average sequencing coverage for samples

Fig. 3 Comparison of sequencing error and coverage between high and low probability variants. a Sequencing error rate; b Sequencing coverage
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The improvement of genetic variants identification
A total of 8,299,842 and 3,545,335 raw variants were 
identified in Freebayes and GATK, respectively. To vali-
date the improvement of variants identification, the vari-
ants with mapping quality > 20 and sequence coverage > 5 
were selected and compared with the FIV. After initial 
quality and depth control, there were 86,844 and 68,410 
variants identified in Freebayes and GATK, respectively, 
and 36,543 of them were simultaneously identified in 
both callers that accounted for 42.08% and 53.42% in 
Freebayes and GATK (Fig. 4a). The mapping qualities of 
concordant variants (36,543) were significantly higher 
than unique variants identified in Freebayes (50,301) 
and GATK (31,867) (Fig. 4b). The confidence of the com-
mon variants identified from both callers were higher 
than the variants only identified in one caller, which 
provided the basis and evidence for constructing rHID 
dataset from both callers in FDR control procedure. The 
raw total variants identified in all 5,061 sheep included 
48,439 SNPs and 31,373 Indels in Freebayes, and 41,773 
SNPs and 28,992 Indels in GATK. The concordance of 
SNPs and Indels are 46.61% and 23.41% in Freebayes and 
65.20% (SNPs) and 25.33% (Indels) in GATK (Table  1 
and Fig. S2).

The concordance of identified variants from Freebayes 
and GATK were compared between raw variants and 
FIV. There were 4,651 and 4,705 SNPs of FIV identified 
in Freebayes and GATK when incorporating multiple 
sample information, and the concordance of SNPs were 
78.54% and 77.64% in Freebayes and GATK, respec-
tively (Table  1). The percent of concordant SNPs and 
Indels from Freebayes and GATK in FIV were signifi-
cantly improved 12%−32% compared with raw variants 
(Table 1). For each sample, the raw and final average SNP 
number were 1,118/1,296 and 1,079/1,268 in Freebayes/
GATK, respectively (Table S4). The average concordance 
of SNP from 5,061 samples were increased from 94.13% 
to 96.33% in Freebayes and from 81.12% to 81.94% in 
GATK (Table S4). Moreover, the total identified number 
of SNPs and Indels in FIV variants were almost ten times 
less than raw variants, but the SNPs and Indels number 
of each sample were reduced by very little, which indi-
cated the high confidence variants can be cross identified 
in multiple samples and low confidence SNPs uniquely 
identified in samples were effectively removed in the new 
strategy.

Comparison of variants in FDR control process
There were 128,931 variants for 5,061 sheep identified 
using Freebayes and GATK, and 9,979 and 118,952 vari-
ants were determined positive and negative according 
to the rHID database (Table S5). The location of posi-
tive or negative positions were intersected with variants 
of each sample and obtained FIV by using FDR control. 
The identified variants number in eight groups were: 
118,952 (raw negative), 9,979 (raw positive), 10,399 (FIV), 
118,532 (FRV), 8,194 (pos-FIV), 116,747 (neg-FRV), 
1,785 (pos-FRV), 2,205 (neg-FIV) (Fig. 5a and Table S5). 
In the comparison of eight groups, the mapping quali-
ties of positive dataset from rHID and three FIV datasets 

Fig. 4 Concordance of variants identified using Freebayes and GATK. a Raw number of variants; b Comparison of concordant and unique variants 
in Freebayes and GATK

Table 1 Comparison of identified variants from Freebayes and 
GATK

Var type Var source Raw (%concordance) FIV (%concordance)

SNP Concordant 27,236 3,653

GATK 41,773 (65.20%) 4,705 (77.64%)

Freebayes 58,439 (46.61%) 4,651 (78.54%)

Indel Concordant 7,345 1,935

GATK 28,992 (25.33%) 3,703 (52.25%)

Freebayes 31,373 (23.41%) 5,218 (37.08%)
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were significantly higher than negative and FRV datasets 
(Fig. 5a, Fig. S3 and Table S5). The FIV variants from raw 
positive group (pos-FIV) had the highest mapping quality 
that was significantly higher than pos-FRV group, which 
indicated that the FIV variants after FDR control were 
improved and more accurate. Furthermore, the rescued 
variants from neg-FIV group also had significantly higher 
mapping qualities than that in neg-FRV group (Fig.  5a 
and Fig. S3). In FIV dataset, although the total identi-
fied variants (10,399) from pos-FIV group (8,194) and 
neg-FIV group (2,205) were more than the raw positive 
dataset (9,979), the mapping quality between FIV and 
positive were not significantly different (Fig. 5a and Fig. 
S3), which further confirmed the FDR process effectively 
controlled the false positive and improved the genetic 
variants identification of multiple samples.

Identification of rare frequency variants in 5,061 sheep
The total identified 10,301 variants were annotated by gtf 
annotation file from NCBI. There were 166, 9,362, and 
773 variants in high, medium, and low groups, respec-
tively (Table S6). A total of 166 variants from 102 genes 

with high frequency were identified in more than 90% of 
all samples (4,555). The variant (NC_056055.1: 7,483,382) 
at PAPPA gene of chromosome 2 had the highest fre-
quency in all samples (5,053) (Table S6). Moreover, we 
identified 773 rare variants in individual samples, and 14 
variants from 10 genes were with mapping quality > 1,000 
and identified by both Freebayes and GATK callers. All 14 
variants, including 11 heterozygous and 3 homozygous 
genotypes, were confirmed by IGV, and we presented 
the variants with the minimum coverage of heterozygous 
(69) (Fig.  5b) and homozygous (40) in IGV (Fig.  5c and 
d). The related genes with 14 variants have been previ-
ously reported in biological functions including nipples 
number, sub-vital white case, scrapie pathology, seasonal 
reproduction and litter size, coat color, congenital myoto-
nia, and lentivirus susceptibility (Table 2).

Discussion
An accurate and comprehensive identification of genetic 
variants between one sample and the reference sequence 
is the major challenge in many studies [43–45]. Accu-
rate identification of the variants from multiple samples 

Fig. 5 Comparison of mapping qualities from GATK and representative genes in IGV. a Mapping qualities in FDR control; b Confirmation 
of homozygous variant in DENND5A; c Heterozygous variant in TMEM154; d GALNT17 
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in population scale can provide the foundation to stimu-
late the discovery of novel insights and a more accurate 
understanding of the biological mechanisms [25, 45, 46]. 
Possible reasons for unreliable variants identification 
are sequencing errors [20, 21], low-quality alignments 
[18, 19], or samples bias [17]. Our results confirmed that 
the base sequencing error generated by the sequencing 
instrument affects the accuracy of genetic variants identi-
fication (Fig. 2), which requires to consider the influence 
of sequencing errors in the identification of mutation 
sites. Calling as many potential true variants as possible 
and eliminating false positive variants are important ways 
to improve the accuracy of genetic variants identification. 
In this study, we conducted three measures to remove 
unreliable variants and obtain high confidence variants. 
First, sequencing errors were incorporated into the iden-
tification of SNP variants. Second, the mapping quality 
and consistent sample number from multiple samples 
were used to construct the positive dataset rHID for 
FDR control. Third, rescue the true negative variants by 
using the distributions of mapping qualities and consist-
ent sample number from all 5,061 sheep data. The new 
method used the computational strategy to reduce the 
number of false positives, and simultaneously improve 
the identification of genetic variants (Fig.  5a; Table  1). 
This strategy didn’t incur any extra cost by using any 
additional samples or sequencing data information and 
was the best trade-off between accuracy and knowledge 
samples’ information for improving genetic variants 
identification in population scale.

The accuracy of identification of SNPs and Indels 
can be quantified by the number of true positives (TP), 

true negatives (TN), false positives (FP), and false nega-
tives (FN) [33]. In this study, we not only assess the new 
method by using pos-FIV, neg-FIV, pos-FRV, and neg-
FRV as the TP, TN, FP and FN, respectively, but also use 
rescue step to increase the true negative variants. The 
pos-FIV and neg-FIV were both significantly higher than 
pos-FRV and neg-FRV groups (Fig.  5a), and the total 
FIV variants (10,399) from pos-FIV group (8,194) and 
neg-POS group (2,205) were more than the raw positive 
dataset before FDR control (9,979), which illustrated the 
rescued variants are effective and indeed improved the 
genetic variants identification. Furthermore, despite the 
sharp decrease in the total identified SNP number from 
27,236 to 3,653 from all 5,061 samples, the average SNP 
number of each sample only decreased 39 and 28 in Free-
bayes and GATK, respectively, which also confirmed 
that the high confidence variants cross identified in most 
samples were finally listed in FIV and most unique low 
confidence variants from individual were removed. Fur-
thermore, the identified variants with at least 1×, 2×, 
4× and 5× read coverages were assessed and compared 
in 5,061 sheep. For the raw variants from GATK and 
Freebayes, the variants number was decreased with the 
increasing of minimum coverage of read for the identi-
fied variants from 1× to 5×, but the FIV variants from the 
new strategy that optimized the variants identification 
by using multiple sample information was relatively sta-
ble (Table S7 and Table S8). The average and total iden-
tified variants were significantly less affected by the read 
coverage than these in raw identified variants (Table S8), 
and most of variants had a high concordant rate in all 1×, 
2×, 4× and 5× data (Fig. S4). All above assessments and 

Table 2 The variants of single sheep sample

Chr. Pos. Ref Alt Quality Genotype
(Coverage)

Genes Traits References

Chr 3 203,630,734 T A 1,292.64 0/1 (87) ETV6

Chr 4 107,926,030 G A 1,085.64 0/1 (110) CLCN1 Congenital myotonia [36]

Chr 7 53,213,797 C T 1,097.64 0/1 (89) RAB27A Coat color [37]

Chr 7 97,727,843 T C 1,460.64 0/1 (144)

Chr 8 25,802,309 C T 1,545.06 1/1 (48)

Chr 8 70,844,812 C T 1,417.64 0/1 (97) GRM1 Seasonal reproduction and litter size [38]

Chr 10 66,396,204 G A 2,214.64 0/1 (140) GPC5 Number of nipples [39]

Chr 15 43,140,362 G A 1,086.06 1/1 (40) DENND5A

Chr 17 5,200,643 C T 1,041.64 0/1 (69) TMEM154 Lentivirus susceptibility [40]

Chr 21 14,920,907 C T 1,047.86 0/1 (298) TENM4

Chr 22 9,142,767 A C 1,549.64 0/1 (98) PAPSS2 Scrapie pathology [41]

Chr 24 21,211,416 T C 1,369.64 0/1 (75)

Chr 24 29,870,252 A G 1,064.64 0/1 (69) GALNT17 Milk oligosaccharides synthesis [42]

Chr X 92,508,011 T A 2,366.06 1/1 (77)
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comparisons indicated that some low-confidence vari-
ants were effectively filtered by the new strategy, and the 
remaining variants were accurate.

The VQSR was used to recalibrate the combined VCF 
file after merging 5,061 samples by VariantRecalibrator 
and ApplyVQSR. Because there is no resource set for 
the non-human genome. The concordant variants from 
GATK and Freebayes were used to generate the resource 
set to conduct VariantRecalibrator in our study. The full 
procedure pipeline and related parameters can be found 
on github. A total of 3,828 variants of 73,614 in GATK 
were not “PASS” after VQSR, and only 375 variants that 
qualities were higher than 1,000 (Table S9). Besides, only 
194 of 375 variants were identified in both GATK and 
Freebayes. The VQSR result confirmed that the rHID 
construction used to improve variant identification was 
reasonable. In order to identify more low frequency vari-
ants from multiple samples, the initial filter condition for 
variants should be moderately loose. If we initially filter 
the raw variants by VQSR, some variants will be losted in 
rHID construction. In our study, we list the VQSR value 
in one column of FIV and users can decide to keep the 
variant or not according to their actual situation.

The collected data were from the Flock54℠ program 
(https:// www. flock 54. com), which was created by Supe-
rior Farms in coordination with the University of Idaho 
and aimed to promote the usage of marker assisted selec-
tion in breeding [28]. The key component for genotyp-
ing germplasm is finding DNA sequence polymorphisms 
and assaying the markers across a full set of samples, 
and the excellent germplasm resources can be used as 
breeding materials [47]. Some investigations on decod-
ing sheep traits were beginning to emerge from whole 
genome-wide sequencing and association studies, such 
as productivity [48], wool and skin [49–51], weight [52], 
preweaning growth [53], and disease resistance [54]. 
However, studies attempting to understand the impact of 
rare or less common variation on sheep breeding traits 
and diseases remain relatively limited. In this study, we 
identified the common and rare variants from 5,061 sam-
ples and found that low frequency variants of individual 
sheep involved several traits including nipples number 
(GPC5), scrapie pathology (PAPSS2), seasonal reproduc-
tion and litter size (GRM1), coat color (RAB27A), and 
lentivirus susceptibility (TMEM154). Although these 
genes had been reported to be associated with the traits, 
the rare variants were novel and identified with the ben-
efit of the new strategy for calling variants from multiple 
samples in sheep. These rare variants in genes associ-
ated with these traits have the potential to contribute to 
breeding in sheep or other animals.

The genetic variant calling of SNP and Indel are prob-
lematic in population scale, as the exact variant types of 
the same position can be inconsistent among samples. 
The problem of the mixed variants calling was resolved 
by three steps in the new method. Firstly, the variants 
were discovered in each sample by GATK [11–13] and 
Freebayes [14], and the variants were split into sepa-
rate SNP and Indel files. Then the Poisson probabilities 
of SNPs incorporating sequencing error were calculated 
and controlled by FDR to genotype the accurate SNPs 
using positive dataset from multiple samples informa-
tion. For identification of genetic variants in population 
scale, the same variant may be simultaneously called as 
a SNP or Indel among different samples or different call-
ers. we marked the variant types and reported all samples 
variants information without removing any variant types 
in the final list. The specific and detailed variant type in 
which sample requires user to further check and confirm 
based on their biological data and scientific problem.

We introduced a new computational method to iden-
tify genetic variants in targeted deep sequencing data 
from 5,061 samples in population scale, which improved 
variants identification by using the information of mul-
tiple samples. This strategy is not only for the targeted 
sequencing data but also efficient for WGS data. Here, 
we used 5 WGS sheep data from our lab to assess the 
applicability of the new strategy. The variants from long-
est chromosome (chr1) and computation time were 
presented and compared among GATK joint calling, 
Freebayes joint calling and new method (Table S10  and 
Fig. S5). Although the combined variants of 5 samples 
identified from new were less than GATK and Free-
bayes, the reduced number of variants in individuals is 
significantly less than that in total variants from com-
bined VCF. Moreover, 92.88% of variants (1,726,518) 
from the new method were also identified in GATK or 
Freebayes, and the mapping quality of uniquely identi-
fied variants (635,119) from both GATK and Freebayes 
was significantly lower than the identified variants from 
all 3 lists (Fig. S5a and b). These results indicated that 
the low-quality variants were removed and high confi-
dence variants were retained in the new strategy, which 
was consistent with the results from the sheep targeted 
sequencing data. Besides, the computational time of new 
method was between Freebayes and GATK. The most 
time used in GATK joint calling for variants was the 
HaplotypeCaller and GenotypeGVCFs due to the multi-
ple samples. The time spent increases significantly as the 
sample size increases. Because new method separately 
called variants for each individual, so the spent time in 
HaplotypeCaller and GenotypeGVCFs is obvious less 

https://www.flock54.com
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than that in GATK. The most time spent in new method 
is the poisson probability calculation from base sequenc-
ing quality and rHID construction. So far, the new 
method has only been evaluated in sheep. Theoretically, 
it is also suitable for other animals or plants population 
data, and the population-scale whole-genome resequenc-
ing data from other species needs to be investigated in 
future.

Conclusions
With the drastically decreasing cost of high through-
put sequencing, Pan-genomics is recently emerging and 
facilitates a more comprehensive characterization of 
genetic variation in population-scale. In this study, we 
developed a computational framework for joint calling 
genetic variants from 5,061 sheep by incorporating the 
sequencing error and optimizing mutual support infor-
mation from multiple samples’ data. The percent of con-
cordant SNPs and Indels from Freebayes and GATK after 
our new method were significantly improved 12%−32% 
compared with raw variants and advantageously found 
low frequency variants of individual sheep involved sev-
eral traits including nipples number (GPC5), scrapie 
pathology (PAPSS2), seasonal reproduction and litter 
size (GRM1), coat color (RAB27A), and lentivirus suscep-
tibility (TMEM154). The new method used the compu-
tational strategy to reduce the number of false positives, 
and simultaneously improve the identification of genetic 
variants. This strategy did  not incur any extra cost by 
using any additional samples or sequencing data infor-
mation and was the best trade-off between accuracy and 
knowledge samples’ information for improving genetic 
variants identification in population scale.
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