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Abstract 

Background  Increasing resilience is a priority in modern pig breeding. Recent research shows that general resilience 
can be quantified via variability in longitudinal data. The collection of such longitudinal data on weight, feed intake 
and feeding behaviour in pigs has been facilitated by the development of technologies such as automated feeding 
stations.

The goal of this study was to investigate resilience traits, which were estimated as deviations from longitudinal 
weight, feed intake and feeding behaviour data during the finishing phase. A dataset with 324,207 records between 
the age of 95 and 155 days on 5,939 Piétrain pigs with known pedigree and genomic information was used. We pro-
vided guidelines for a rigid quality control of longitudinal body weight data, as we found that outliers can significantly 
affect results. Gompertz growth curve analysis, linear modelling and trajectory analyses were used for quantifying 
resilience traits.

Results  To our knowledge, this is the first study comparing resilience traits from longitudinal body weight, feed 
intake and feeding behaviour data in pigs. We demonstrated that the resilience traits are lowly to moderately heritable 
for deviations in body weight (h2 = 2.9%–20.2%), in feed intake (9.4%–23.3%) and in feeding behaviour (16.2%–28.3%). 
Additionally, these traits have good predictive abilities in cross-validation analyses. Deviations in individual body 
weight and feed intake trajectories are highly correlated (rg = 0.78) with low to moderate favourable genetic correlations 
with feed conversion ratio (rg = 0.39–0.49). Lastly, we showed that some resilience traits, such as the natural logarithm 
of variances of observed versus predicted body weights (lnvarweight), are more robust to lower observation frequencies 
and are repeatable over three different time periods of the finishing phase.

Conclusions  Our results will help future studies investigating resilience traits and resilience-related traits. Moreover, 
our study provides first results on standardization of quality control and efficient data sampling from automated 
feeding station data. Our findings will be valuable for breeding organizations as they offer evidence that pigs’ general 
resilience can be selected on with good accuracy. Moreover, this methodology might be extended to other species to 
quantify resilience based on longitudinal data.
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Background
Resilience in livestock usually refers to the ability of 
animals to be minimally affected by (environmental) 
stressors and/or to cope with these stressors and quickly 
return to their optimal production level [1–5]. As such, 
resilience is becoming an important breeding goal in pig 
breeding [6]. Increasing resilience is particularly inter-
esting as it can simultaneously tackle animal welfare 
concerns, reduce labor and treatment costs [1, 5–8]. 
Moreover, the need for robust, easy-to-handle animals 
rises with an increased number of animals per farmer. 
This is evidenced in the European Union, where the aver-
age size of pig farms keeps growing [9]. Although the 
need for more resilient pigs is evident, it has been dif-
ficult and/or costly to phenotype informative traits for 
pigs’ (general) resilience [7]. On one hand, most routinely 
phenotyped resilience indicators are scored as binary 
(e.g.,  ‘dead’ versus  ‘alive’) or ordinal (e.g.,  ‘no’,  ‘mild’ 
or ‘severe’ disease) traits. These traits often have low fre-
quencies, with low variability and low heritabilities [10, 
11]. On the other hand, immunological traits, such as 
viral load or antibody levels, show moderate to high her-
itabilities and a good association with animal health, but 
are costly to phenotype and in practice challenging to 
obtain [12, 13].

Recently however, several studies showed that increas-
ing within-family and within-individual uniformity can 
improve animals’ general resilience. Blasco et al. [14] and 
Formoso-Rafferty et al. [15] independently executed two 
successful selection experiments on respectively litter 
size uniformity in rabbits and birth weight uniformity in 
mice. For lines with increased (within-family) uniformity, 
both studies found a correlated selection response with 
a higher survival in these uniform lines and a favorable 
association with disease susceptibility traits. Scheffer 

et al. [5] and Berghof et al. [1] proposed to derive resil-
ience traits from longitudinal phenotypes by quantifying 
the variability in longitudinal data. Here, the hypothesis 
is that animals with a higher within-individual uniformity 
over time will have a higher resilience as they will show 
less deviations from their optimal production level in the 
presence of (environmental) disturbances [1, 5]. Recent 
studies have reported that these within-individual devia-
tions of longitudinal data are lowly to moderately herit-
able (Table  1). Moreover, these studies generally found 
favourable genetic correlations between within-individ-
ual uniformity and resilience-related traits, such as mor-
tality and disease incidence. Hence, less deviations in 
longitudinal data (higher within-individual uniformity), 
was linked with higher survival and lower disease inci-
dence (Table 1). However, the number of studies investi-
gating this relationship is currently limited.

Thanks to technological developments, longitudinal 
data can be collected on a large scale in practice [5]. For 
instance, the use of automatic feeding stations (AFS) 
enables individual recording of pigs’ feed intake, feed-
ing behaviour (duration and time of visits) and body 
weight. Despite the elevated cost of AFS, most pig breed-
ing organizations have invested in this technology [1]. In 
addition, advances in wearables and computer vision sys-
tems may create longitudinal data in pigs for a variety of 
traits [4, 5] including body temperature, respiration rate 
[26] and activity levels [27]. The integration of genom-
ics and other ‘omics’ techniques could further aid the 
development of efficient selection programs for increased 
resilience [7].

In this study we will investigate the genetic background 
of resilience proxies based on longitudinal body weight, 
feed intake and feeding behaviour data in a Piétrain pig 
population. This study is the first to examine the value 

Table 1  Overview of genetic studies on within-individual trait deviations based on longitudinal data

Reference Species Deviations in trait h2 Favorable genetic correlations (rg) with resilience-related traits

[16, 17] Pig Feed intake 8%–26% Mortality (rg = 0.37–0.75); Number of therapeutic treatments (rg = 0.56–0.85)

[18] Pig Feed intake 31% -

[18] Pig Time spent at feeder 36% -

[18] Pig Number of visits to feeder 40% -

[19] Pig Feed intake 7%–11% -

[19] Pig Time spent at feeder 16%–20% -

[20] Pig Body weight 3%–4% -

[21] Pig Body weight 31% -

[22] Cattle Milk yield 6%–10% Udder health (rg = −0.36); ketosis (rg = −0.52); longeveity (rg = −0.30); persistency 
(rg = −0.29)

[23] Cattle Milk yield 1%–24% Udder health (rg = −0.22 to −0.32); ketosis (rg = −0.27 to −0.33); body condition 
score (rg = −0.29 to −0.40)

[24] Chicken Body Weight 9%–11% Favorable association between estimated breeding values and lesion scores

[25] Chicken Egg production 10%–12% -
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of body weight deviations based on trajectory analysis 
as a novel proxy for resilience. Moreover, it is unique in 
its comparison and analysis of deviations in weight, feed 
intake and feeding behaviour over time, as previous stud-
ies have only focused on deviations in weight, feed intake 
or feeding behaviour. Lastly, we investigate the influence 
of observation frequency on the stability of resilience 
traits and the influence of observation period on the 
repeatability of resilience traits. Therefore, the repeatabil-
ity of resilience traits over different stages of the finish-
ing period (observation period) was studied as well as the 
impact of less data points per individual (observation fre-
quency). Genetic parameters, such as heritability, genetic 
coefficient of variation and genetic correlations are 
estimated for the resilience traits. In an effort to better 
understand the value of genomics in selection for resil-
ience, we assessed the predictive abilities using pedigree 
relationships or single-step genomic evaluation.

Methods
Animals and data collection
The study was carried out on Piétrain pigs from Hen-
drix Genetics (Hypor Maxter). The nucleus pig test barn 
(France) consisted of 14 compartments with 10 pens per 
compartment and on average 15 pigs per pen (1.0 m2 per 
pig). Water was provided ad libitum in each pen from one 
nipple drinker and feed was provided with an automatic 
feeding system (AFS): Nedap pig performance testing 
feeding station (Nedap N.V.; Groenlo, the Netherlands). 
Individual recordings of weight (accuracy of 0.5 kg), feed 
intake (accuracy of 1  g), visit duration (accuracy of 1  s) 
and number of visits were obtained with the AFS per day. 
The daily records were calculated as summary statistics 
based on a pigs’ daily feeding station visits. Before data 
quality control (QC), the dataset comprised of 7,880 pigs 
born between May 2017 and September 2021. In total, 
these pigs had 522,122 AFS recordings for weight, feed 
intake, feeding duration and number of visits (on average 
66 records per pig for each trait). Moreover, for all these 
pigs with AFS recordings, individual weights were also 
recorded by technicians at birth, 14 days of age, start of 
test (81 ± 5 d and 32.6 ± 7.6 kg) and end of test (161 ± 12 d 
and 114.3 ± 13.1 kg). At the end of test, muscle thickness 
and fat thickness were measured via ultrasound probing 
between 3rd and 4th last rib using Exago (IMV) device for 
these pigs.

Quality control
This study investigates variability in longitudinal data from 
AFS, and links this variability with underlying biological/
genetic factors. Therefore, it is vital that variability due to 
technical errors and/or noise are removed as much as pos-
sible. In a first step of quality control, outlier correction 

limits were designed based on population statistics to 
identify and exclude gross weight recording inaccuracies. 
Specifically, AFS weight recordings below 10 kg (n = 874) 
or above 160 kg before an age of 160 days (n = 9,339) were 
set to missing (511,909 AFS weight records retained). 
Additionally, only pigs with at least twenty AFS weight 
recordings were retained to ensure a sufficient number 
of records per individual for the accurate estimation of 
resilience traits. After this first step of QC, 6,831 pigs and 
505,990 AFS weight records were retained.

Next, inaccurate AFS weight recordings were iden-
tified on a pen level using the root mean square error 
(RMSE), similar to [20]. RMSE was obtained by linear 
regression of weight on age. Weight records of indi-
viduals in outlying pens were visually inspected (Fig. 1) 
and treated as follows: (i) erroneous weight recordings 
within a time period < 20 d were set to missing; (ii) Indi-
viduals with erroneous weight recordings over a longer 
time period were removed from the dataset (6,788 pigs 
and 501,320 AFS weight records retained). Next, a 
10-day rolling median weight was calculated per indi-
vidual. Weight recordings deviating more than 3 kg from 
this median rolling weight were considered as outliers 
and set to missing (Fig.  2; 6,728 pigs and 495,312 AFS 
weight records retained). Furthermore, pigs with gaps 
in weight recordings larger than ten days were removed. 
Hereafter, the RMSE of weight regressed on age was 
re-calculated, and outlying individuals were checked 
again. After these QC steps, the dataset contained 6,457 
pigs, 439,963 weight recordings (82% of pigs and 84% of 
records before QC).

For daily feed intake (FI), visit duration and number of 
visits, values exceeding the average plus four times the 
standard deviation were set to missing (5,550 g/d for FI; 
3.3 h/d for visit duration; 33 visits/d for number of vis-
its). Hereafter, individual and pen RMSE were obtained 
for these traits by regressing them on age. However, no 
outliers were detected using this method. After these 
QC steps, the dataset contained 6,457 pigs with 438,132 
feed intake records, 437,753 visit duration records and 
436,886 number of AFS visit records.

Next, only AFS records were kept between an age 
of 95–155  d to standardize age limits across animals. 
These thresholds were selected because most of our AFS 
recordings fall within this range (Fig.  3) and because 
most pigs show a learning curve after entering the pen 
with AFS, which disappears around d 95 in our data-
set. Finally, data were further standardized by removing 
pigs with (i) starting age > 110  d (n = 75), (ii) maximum 
age < 120  d (n = 226 pigs), (iii) > 30% missing records for 
weight or feed intake (n = 240 pigs) and (iv) < 20  d with 
AFS records (n = 188 pigs). The final dataset after QC 
comprised 5,939 pigs (5,811 boars and 128 sows) with 
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324,478 AFS weight recordings, 323,775 feed intake 
recordings, 323,304 visit duration recordings and 322,910 
number of visit recordings between 95 and 155  days of 
age (75% of pigs and ~ 62% of records before QC). The 
pigs originated from 1,273 dams and 130 sires (2,105 
unique litters). Pedigree consisted of 9,369 pigs with 
a pedigree depth ranging from 13 to 19 generations. 
Genomic information (45,436 SNPs) was available for 
6,726 pigs in total, of which 5,160 pigs (87% of dataset) 
had own phenotypic records. The evolution of weight in 
function of age for data after QC is shown in Fig. 4a.

Derivation of traits
After QC, traits were operationalized. Average daily gain 
(ADG) was estimated as

Average feed intake (AFI) per individual was estimated 
as total feed intake divided by number of days with a feed 

ADG (kg/d) =
weight kg at maximum age AFS − weight (kg) at minimum age AFS

maximum age AFS (d)−minimum age AFS (d)

intake record. Feed conversion ratio (FCR) was estimated 
by dividing ADG by AFI.

An overview of resilience trait definitions is given 
in Table  2. A number of resilience traits was opera-
tionalized based on deviations in weight trajecto-
ries. First, this was established by individually fitting 
a Gompertz growth curve [28] based on AFS weights 
between 95–155 days of age, supplemented with birth 
weight, weight at 14 d, weight at start and end of test. 
Expected weights were estimated with R [29] using the 
nls function and the Gompertz growth curve formula 
(Additional file 1: Fig. S1):

where Ai, Bi and ki are the growth curve parameters for 
individual i, tij is day j for individual i and εij is residual 

weightij = Ai × e−Bi×e
ki×tij

+ εij

Fig. 1  Outlier detection on pen level by analyzing root mean squared error of weight (RMSEweight). a Histogram of RMSEweight in function of age 
on a pen level before quality control. Pens with high RMSEweight estimates were visually inspected for (technical) errors. b Example of a pen with 
no severe outlying weights at the pen level, although some individual weight recordings are outlying. Weight evolution of individual pigs are 
represented with a specific color. c Example of a pen with outlying weights at start of trajectory. Such outliers are often due to an adaptation 
phase of the pigs, i.e., upon entering the automated feeding station, pigs tend to enter the station with their penmates, inflating the daily weight 
estimates. Weight evolution of individual pigs are represented with a specific color. d Example of technical issues causing outlying weights and high 
RMSEweights. In these cases, outliers were set to missing, or outlying individuals were removed from the dataset. Weight evolution of individual pigs 
are represented with a specific color



Page 5 of 20Gorssen et al. Journal of Animal Science and Biotechnology          (2023) 14:101 	

Fig. 2  Example of 10-d rolling median approach combined with second order polynomial regression to detect outliers. Observed weights outlying 
predicted weight ± 3 kg were considered as outliers (red) and set to missing

Fig. 3  Distribution of number of weight records. a Number of individuals with automatic feeding station weight recordings in function of age (d). 
Red lines indicate thresholds of 95 and 155 d. b Histogram of number of records per pig after selecting the age range of 95–155 d. The maximum 
amount of records is 60
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error. For every individual, we quantified lnvarweight as the 
natural logarithm of the variance in the daily differences 
between observed weights versus expected weights via 
Gompertz modeling (calculated with ln function in R), 
as well as skewness (skewweight; calculated with skewness 
function) and the lag-one autocorrelation (lag1weight; cal-
culated with acf function) (Fig. 5), following Berghof et al. [1].

Next, similar to Putz et  al. [16], a linear regression of 
weight on age was used to estimate the root mean squared 
error (RMSE) of observed versus expected body weight 
deviations (calculated with lm function in R). As growing 
pigs (95–155 d) are more or less in a linear phase of their 
growth curve [30], this linear approach seems justified 
(Fig.  5a). Hereafter, we calculated the natural logarithm 
of the MSE (lnMSEweight). Here, we used MSE instead of 
RMSE to make lnMSEweight equivalent to lnvarweight.

A major challenge with modelling has to do with some 
circularity: expected weights are also estimated based 
on the observed weights, and these “expectations” might 
come from a biased curve [1, 22]. To circumvent this 
issue, two different approaches were used. First, follow-
ing Berghof et al. [24], all weights were standardized by 
age with a mean of zero and a standard deviation of one 
for each single day of age (Fig.  4b, Fig.  5c and g). From 

these standardized weights per day, the natural logarithm 
of the variance was then calculated (lnvarweight_standardized). 
Pigs with a high lnvarweight_standardized hence showed great 
variations in weight over time, compared to the popu-
lation mean. Second, additional deviation traits were 
derived from trajectory analysis using the trajr package 
in R [31] (Fig. 5d and h). Trajectory analysis can be used 
to estimate deviations from expected patterns. Here, we 
estimated mean speed (TrajDerivatives function) and the 
straightness (TrajStraightness function). The trajr pack-
age estimates mean speed as:

whereas straightness index was estimated as:

Hence, an animal with more body weight deviations 
will have a higher mean speed and a lower straightness 
index, as the total path length of weight trajectory will 
increase due to more deviations. The maximum straight-
ness index value is 1, with values below one indicating 
more deviations from a straight line. The straightness 

Mean speed =

Total path length of weight trajectory

Age difference between start and end point

straightness =
Euclidean distance between start and end point

Total path length of weight trajectory

Fig. 4  Evolution of weight and standardized weight in function of age. a Evolution of weight in kg in function of age in d for the dataset after 
quality control. The mean weight per age (d) is shown in solid red line, a one standard deviation difference from the mean is shown in dashed red 
lines. b Standardized weights with a mean of zero and a standard deviation of 1 per age in days. For example, a score of ‘2’ indicates a pig had a 
weight which was two standard deviations above the mean of the population on that specific age. The mean standardized weight per age (d) is 
shown in solid red line, a one standard deviation difference from the mean is shown in dashed red lines
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index and mean speed are related, but can differ due to 
different ADG between animals. For example, two ani-
mals with a straightness index of 1 might still differ in 
mean speed, as a faster growing animal will have a higher 
mean speed as it will have more’distance traveled’ over 
the same time.

For daily feed intake, visit duration and number of 
visits, the natural logarithm of MSE after linear mod-
eling was calculated using the same methodology as for 
lnMSEweight, respectively leading to the traits lnMSEFI, 
lnMSEdur and lnMSEn_visit (Fig.  6). Moreover, following 
Putz et  al. [16], the number of off-feed days was calcu-
lated as the number of days during which feed intake 
(QRFI) and/or visit duration (QRdur) was in the 5% low-
est quantile using quantile regression (QR) on age over all 
pigs (Additional file 2: Fig. S2).

Finally, after estimating these traits per pig from the 
daily AFS recordings, estimates deviating by more than 
four standard deviations from the mean were set to 
missing (184 for A; 55 for B; 30 for k; 27 for FI; 35 for 
ADG; 73 for FCR; 2 for lag1weight; 11 for skewweight; 0 for 
lnvarweight; 1 for lnMSEweight; 2 for lnvarweight_standardized; 0 

Table 2  Trait definition for the resilience traits

Resilience trait Definition

lnvarweight The natural logarithm of the 
variance of pigs’ daily differences 
between observed weights versus 
expected weights via Gompertz 
modeling of weight versus age 
(example shown in Fig. 5). A higher 
value indicates more deviations and, 
hence, a lower resilience

lnMSEweight The natural logarithm of the 
mean squared error (equivalent to 
variance) of pigs’ daily differences 
between observed weights versus 
expected weights via linear mod-
eling of weight versus age. A higher 
value indicates more deviations and, 
hence, a lower resilience

lnvarweight_standardized The natural logarithm of the vari-
ance of a pigs’ standardized weights 
versus age (mean is zero, standard 
deviation is one; Fig. 4b, Fig. 5c and 
g). A higher value indicates more 
deviations and, hence, a lower 
resilience

Skewweight The skewness of pigs’ daily differ-
ences between observed weights 
versus expected weights via 
Gompertz modeling of weight 
versus age

Lag1weight The lag1 autocorrelation of pigs’ 
daily differences between observed 
weights versus expected weights 
via Gompertz modeling of weight 
versus age

Straightness The straightness index, estimated 
after trajectory analysis of a pigs’ 
observed weight versus age. 
Straightness index is estimated as 
the Euclidean distance between 
start and end point divided by the 
total path length covered by the 
weight trajectory. Maximum value 
is one (straight line), minimum 
value is zero (infinite body weight 
deviations). A lower value indicates 
more deviations and, hence, a lower 
resilience

Mean speed The Mean speed, estimated after tra-
jectory analysis of a pigs’ observed 
weight versus age. Mean speed is 
estimated as the total path length 
covered by the weight trajectory 
divided by the age difference (d) 
between end and start. A higher 
value indicates more deviations and, 
hence, a lower resilience

lnMSEFI The natural logarithm of the 
mean squared error (equivalent to 
variance) of pigs’ daily differences 
between observed feed intake ver-
sus expected feed intake via linear 
modeling of feed intake versus age. 
A higher value indicates more devia-
tions and, hence, a lower resilience

Table 2  (continued)

Resilience trait Definition

lnMSEdur The natural logarithm of the 
mean squared error (equivalent to 
variance) of pigs’ daily differences 
between observed visit duration 
versus expected visit duration via 
linear modeling of visit duration 
versus age. A higher value indicates 
more deviations and, hence, a lower 
resilience

lnMSEn_visit The natural logarithm of the 
mean squared error (equivalent to 
variance) of pigs’ daily differences 
between observed number of visits 
versus expected number of visits via 
linear modeling of number of visits 
versus age. A higher value indicates 
more deviations and, hence, a lower 
resilience

QRFI The number of off-feed days, 
calculated as the number of days 
during which feed intake was in the 
5% lowest quantile using quantile 
regression on age over all pigs. A 
higher value indicates more off-feed 
days and, hence, a lower resilience

QRdur The number of off-feed days, calcu-
lated as the number of days during 
which visit duration was in the 
5% lowest quantile using quantile 
regression on age over all pigs. A 
higher value indicates more off-feed 
days and, hence, a lower resilience
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for straightness; 7 for mean speed; 2 for lnMSEFI; 1 for 
lnMSEdur; 0 for lnMSEn_visit).

Genetic modelling
The blupf90 suite of programs [32] was used to estimate 
genetic parameters. Heritability (h2) was estimated as 
the proportion of additive genetic variance divided by 
total variance. Likewise, the common environmental 
effect (c2) was estimated as the proportion of variance 
explained by random contemporary group effects (c), 
divided by total variance. For the resilience traits, the 
genetic coefficient of variation (GCV) was estimated as 
a measure of evolvability or possible selection response 

of a trait [33]. For the lnvar and lnMSE traits, GCV was 
estimated as: GCV =

√

σ 2
a  , as described by [18, 34, 35] 

for an exponential model.
All single trait animal models were of the form:

where y is the vector with phenotypes for the studied 
trait; b is the vector containing the fixed effects (sex, 2 
levels; farm, 2 levels) and covariates (maximum age); a 
is the vector of additive genetic effects (9,371 animals 
in pedigree, 6,723 with genotype information), which 
is assumed to follow a normal distribution for the pedi-
gree matrix (A) using only pedigree relationships:

y = Xb + Za +Wc + e

Fig. 5  Example of trait construction for two pigs (a–d versus e–h). The upper pig (a–d) showed little deviations in observed versus expected body 
weight, whereas the lower pig (e–h) showed many deviations in observed versus expected body weight. These examples are the same animals as 
shown in Fig. 6. a and e Example of Gompertz growth curve modelling on automated feeding station data of individual pigs. The Gompertz growth 
curve is shown as a solid red line, observed daily weights are given as black dots. b and f Deviations of observed versus predicted weights after 
Gompertz modeling: lnvarweight, lag1weight and skewweight are estimated based on these deviations. c and g Example of standardized weights with 
mean zero and standard deviation one for the population on a daily basis. The variance of these standardized weights for an individual was used to 
calculate lnvarweight_standardized. d and h Trajectory analysis of weight. Here, weight gain/loss is seen as a trajectory from start until end, with age in d 
as x-coordinate and weight as y-coordinate. From this trajectory, mean speed and straightness were calculated as resilience traits
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Or a normal distribution for the H matrix, combining 
both pedigree (A) and genomic (G) relationship matrices 
following [36–38] using single-step genomic evaluation:

c is the vector of contemporary group effects (113 
levels), assumed to follow a normal distribution 
c ∼ N (0, Iσ 2

c ) , with I the identity matrix; e is the vector 
of residual effects, assumed to follow a normal distri-
bution e ∼ N (0, Iσ 2

e ) ; X, Z and W are incidence matri-
ces for respectively fixed effects, random animal effects 
and random contemporary group effects. The random 

a ∼ N (0,Aσ 2
a)

a ∼ N (0,Hσ 2
a)

contemporary group effect c is a combination of farm, 
compartment and date of entrance at farm. Contempo-
rary groups with less than ten pigs were combined in a 
remainder group (165 pigs).

Likewise, genetic correlations (rg) between traits were 
estimated via bivariate animal models of the form:

Similar to the single-trait animal model, y1 and y2 
are the vectors with phenotypes for the studied traits; 
b1 and b2 are the vectors containing the fixed effects 
and covariates; a1 and a2 are the vectors of additive 
genetic effects, which is assumed to follow a normal 
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⎦
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⎦
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⎢
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⎥
⎦

Fig. 6  Example of feed intake, visit duration and number of daily visits for two pigs (a–c versus d–f). These examples are the same animals as shown 
in Fig. 5, and were selected based on body weight deviations, where the upper pig showed little deviations in observed versus expected body 
weight, whereas the lower pig showed many deviations in observed versus expected body weight. Red lines indicates the regression line from 
linear modeling. a and d Evolution of feed intake (kg/d) versus age (d). Based on the linear regression, lnMSEFI was quantified. b and e Evolution 
of visit duration (s/d) versus age in d. Based on the linear regression, lnMSEdur was quantified. c and f Evolution of number of daily visits to feeder 
versus age (d). Based on the linear regression, lnMSEn_visit was quantified



Page 10 of 20Gorssen et al. Journal of Animal Science and Biotechnology          (2023) 14:101 

distribution for the H matrix using single-step genomic 
evaluation:

c1 and c2 are the vectors of contemporary group 
effects (113 levels), assumed to follow a normal distribu-

tion 
[

c1

c2

]

∼ N (

[

0

0

]

,

[

σ 2
c1 σc1,c2

σc1,c2 σ 2
c2

]

⊗ I) ; e1 and e2 are 

the vector of residual effects, assumed to be indepen-

dently normal distributed 
[

e1

e2

]

∼ N (

[

0

0

]

,

[

σ 2
e1 0

0 σ 2
e2

]

) ; 

X1, X2, Z1, Z2, W1 and W2 are incidence matrices for 
respectively fixed effects, random animal effects and 
random contemporary group effects.

Cross validation
Cross validation was performed using three data mask-
ing strategies: within family masking, across family 
masking and temporal masking. For within and across 
family masking, we decided to use 5-fold cross-vali-
dation with random masking of 20% of the data (based 
on [39]), resulting in validation datasets of ~ 1,200 pigs. 
Moreover, ten replications were used to avoid random 
sampling effects [39], resulting in 50 models (10 × 5-fold 
validation) per trait. For within family masking strat-
egy, one out of five offspring was randomly masked per 
sire. In our dataset, every sire had a mean of 45.7 off-
spring (range = 1–182, SD = 42.9), leading to a mean of 
9 masked offspring per sire. For the across family mask-
ing strategy, all progeny from one out of five sires was 
randomly masked. As a result, the within-family strat-
egy is valuable to estimate predictive ability from close 
relationships, whereas across-family masking allows to 
estimate predictive ability of distant relationships [39]. 
For the temporal cross-validation strategy, animals 
born after 01-10-2020 were masked (~ 30% of dataset). 
Temporal cross-validation allows to estimate forward 
(future) predictive ability.

The process of cross-validation was as follows. First, a 
univariate animal model (as specified before) was used on 
the full dataset using the remlf90 software. Observed phe-
notypes were adjusted for fixed and non-genetic random 
effects based on these results using the predictf90 software:

Predictive abilities were estimated as the Pearson correla-
tion between breeding values of a validation dataset (with 
masked phenotypes) and the adjusted phenotypes ( y∗ ):

[

a1
a2

]

∼ N (

[

0
0

]

,

[

σ 2
a1 σa1,a2

σa1,a2 σ 2
a2

]

⊗H)

y∗ = y − (̂b + ĉ) = â + ê

Predictive ability = r(EBVmasked , y
∗)

Next, predictive abilities were expressed as a cross vali-
dation accuracy. This was done by dividing the predictive 
ability by the square root of the estimated h2:

Evaluating the impact of observation frequency 
and observation period
Finally, the impact of observation frequency and observa-
tion period were evaluated. First, the influence of obser-
vation frequency on parameter stability was evaluated. 
Based on the full dataset, subsets were made with 1 out 
of 4 records per animal (~ 2 records per week), 1 out of 
7 records per animal (1 record per week) and 1 out of 14 
records per animal (1 record every two weeks) (Fig.  7). 
Phenotypic and genetic correlations were estimated 
for the full model versus reduced datasets using bivari-
ate animal models. These (genetic) correlations indicate 
to what extent traits are sensitive to changes in obser-
vation frequency. Second, to assess influence of obser-
vation period, the full 60-day dataset with all records 
was divided in three age groups of twenty days: (i) 
95–115 days of age (early), (ii) 115–135 days of age (mid-
dle) and (iii) 135–155 days of age (late). Based on these 
subsets, all traits were recalculated leading to, for exam-
ple, lnvarweight-early, lnvarweight-middle and lnvarweight-late. 
Hereafter, bivariate animal models were run within 
each trait to estimate phenotypic and genetic correla-
tions between periods. These (genetic) correlations indi-
cate the repeatability of a trait and whether a given trait 
genetically shifts over time.

Results
An overview of the main trait distributions and their 
estimated h2 and variance components is given in 
Table  3. All estimated phenotypic and genetic correla-
tions are given in Table  4. Heritabilities for Gompertz 
growth curve parameters A, B and k were low (6.8%–
10.3%). The body weight deviation traits skewweight 
(2.9%) and lag1weight (6.2%) were also lowly heritable. 
Standardizing weights before estimating lnvar increased 
h2 (12.1% for lnvarweight_standardized versus 11.0% for 
lnvarweight). However, h2 estimates for body weight devia-
tions were highest for trajectory parameters straightness 
(15.5%) and mean speed (20.2%), which were moderately 
heritable. Deviations related to feed intake and feed-
ing behaviour had higher h2 (20.7%–28.3%) than body 
weight deviations (8.9%–20.2%). Despite low to mod-
erate h2, the resilience trait indicators had high genetic 
coefficients of variation: 20.5%–30.2% for body weight 

Predictive ability accuracy =
r
(

EBVmasked , y
∗
)

h
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deviations and 29.1%–33.4% for feed intake and feed-
ing behaviour deviations. QRFI (h2 = 9.4%) and QRdur 
(h2 = 16.1%) had low to moderate h2 estimates.

Phenotypic and genetic correlations (Table  4) between 
lnvarweight and most other body weight deviation traits 
were high (rp = 0.58–0.88; rg = 0.53–0.93), except for 
skewweight (rp = 0.01; rg = 0.32). Furthermore, lnvarweight 
was phenotypically and genetically also moderately to 
highly correlated with deviations in feeding duration 
(lnMSEdur; rp = 0.49; rg = 0.36) and feed intake (lnMSEFI; 
rp = 0.69; rg = 0.78). Deviations in feed intake (lnMSEFI) 
were moderately correlated with deviations in feeding 
duration (lnMSEdur; rp = 0.69, rg = 0.49) but lowly corre-
lated with deviations in number of daily visits (lnMSEn_vis; 
rp = 0.16, rg = −0.34). ADG was moderately correlated with 
straightness (rp = 0.32; rg = 0.38) and mean speed (rp = 0.32; 
rg = 0.50). Additionally, ADG was negatively correlated 
with the number of days with a very low feed intake (QRFI; 
rp = −0.51, rg = −0.70), indicating that pigs with high ADG 
have less off-feed days. A similar pattern was observed for 
AFI. For FCR, a low to moderate favourable correlation 
was found with lnvarweight (rp = 0.17; rg = 0.37) and lnMSEFI 
(rp = 0.20; rg = 0.49), indicating that pigs with more devia-
tions in weight and feed intake have a higher FCR.

An overview of estimated predictive abilities per 
trait using both pedigree relationships and single-step 
genomic evaluation for three cross-validation strategies 
is given in Table  5 as cross validation accuracy and in 
Additional file 4: Table S2 as correlation.

Predictive ability accuracies of skewweight were low for 
all strategies (0.00–0.23). For the body weight devia-
tion traits, the trajectory parameters mean speed and 
straightness showed the highest predictive ability accu-
racies with single-step genomic evaluation (0.38–0.60). 
Feed intake deviations showed higher predictive ability 
accuracies than body weight deviations, and single-step 
genomic evaluation seemed to relatively increase predic-
tive abilities for feed intake deviations more. Predictive 
abilities for lnMSEdur, for example, increased by 54%, 21% 
and 33% respectively when adding genomics to across, 
within and temporal masking strategy.

Phenotypic correlations per trait for different observa-
tion frequencies are given as pairwise correlation plots in 
Additional file 5: Fig. S3. An overview of genetic correla-
tions within traits estimated by using different observa-
tion frequencies ranging from 1 in 4 to 1 in 14 is provided 
in Table 6. As expected, ADG does not change substan-
tially with lower data density (rp = 0.85 and rg = 0.95 

Fig. 7  Example of different observation frequency and observation period settings for an individual pigs’ weight data. a All daily weight records 
within the 95–155 days of age interval, colored per observation period 95–115 d (early, red), 115–135 d (middle, orange), 135–155 d (late, green). 
b A subset sampled from the full dataset with only 1 out of 4 data points, which corresponds to about two records per week. c A subset sampled 
from the full dataset with only 1 out of 7 data points, which corresponds to about one record per week. d A subset sampled from the full dataset 
with only 1 out of 14 data points, which corresponds to about one record every two weeks
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with 1 in 14 density), as it is estimated as the average 
gain over a long period. FCR fluctuates more with lower 
observation frequency: when considering only 1 in 14 
data points, the phenotypic and genetic correlations 
with the full dataset drop (rp = 0.45 and rg = 0.76) and h2 
drops from 22.1% to 10.1%. For the resilience traits, lnvar 
and lnMSE estimates were least dependent on observa-
tion frequency with rp = 0.44–0.76 and rg = 0.79–0.96 
in the most extreme scenario, although the h2 esti-
mates decreased substantially from h2 = 10.6%–23.3% to 
h2 = 5.1%–10.1%. Skewweight and lag1weight were strongly 
impacted by differences in observation frequency, with 
rp = 0.05–0.08 and rg = 0.02–0.14 in the most extreme 
scenario. The trajectory parameters mean speed and 
straightness were moderately affected by data density 
(rp = 0.29–0.33 and rg = 0.50 with one in 14 data points), 
but showed a smaller decrease in h2 estimate from 
h2 = 15.0%–21.4% to h2 = 13.1%–17.7%.

The influence of observation period was studied by 
dividing the full 60-day dataset (95–155  days of age) in 
three 20-day time periods during the finishing phase 
(early, middle and late). Phenotypic correlations per trait 
over time periods are given as pairwise correlation plots 
in Additional file 7: Fig. S4. Genetic correlations for each 
time period versus the full dataset within each trait are 
given in Additional file  6:  Table  S3. For ADG and FCR, 
early, middle and late estimates are moderately to highly 
correlated with the full dataset (respectively rp = 0.59–
0.63; rg = 0.71–0.82 and rp = 0.48–0.55; rg = 0.65–0.85), 
although genetic correlations are low to moderate within 
time periods (respectively rp = 0.04–0.17; rg = 0.24–0.41 
and rp = −0.03–0.05; rg = 0.34–0.66). This is in contrast 
to AFI, where correlations were also moderate to high 
between time periods (rp = 0.45–0.68; rg = 0.65–0.87). 
The body weight deviation traits lnvarweight, lnMSEweight, 
lnvarweight_standardized, straightness and mean speed show 

Table 3  Descriptive statistics and genetic parameters

Parameters were estimated from pigs of 95–155 days of age. Heritability (h2) and common environmental effect (c2) estimates are given in percentages. Genetic 
parameters were estimated via single-step genomic evaluation, integrating both pedigree and genomic relationships. Additive genetic standard deviation (σa), 
common environmental standard deviation (σc) and residuals standard deviation (σe) are given in trait units. Estimates of the k-parameter of Gompertz modeling are 
multiplied by a factor 1,000 (k × 1,000). ADG: average daily gain; AFI: average feed intake; FCR: feed conversion ratio; A, B and k: Gompertz growth curve parameters; 
lnvarweight: natural logarithm of variance of observed versus predicted weights; lnMSEweight: natural logarithm of mean squared error of weight in function of age; 
lnvarweight_standardized: natural logarithm of variance of standardized weights; skewweight: skewness of observed versus predicted weight distribution; lag1weight: lag1 
autocorrelation of observed versus predicted weight distribution; straightness: straightness index of weight in function of age after trajectory analysis; mean speed: 
mean speed of weight in function of age after trajectory analysis; lnMSEFI: natural logarithm of mean squared error of feed intake in function of age; lnMSEdur: natural 
logarithm of mean squared error of visit duration in function of age; lnMSEn_visit: natural logarithm of mean squared error of number of daily visits in function of age; 
QRFI: number of days with feed intake below 5% of quantile after quantile regression; QRdur: number of days with visit duration below 5% of quantile after quantile 
regression

Trait Mean (sd) Range h2 (se) c2 (se) σa σc σe

Weightstart, kg 46.5 (7.5) 15.5–83.0 - - - - -

Weightend, kg 108.9 (12.2) 42.5–156.8 - - - - -

ADG, g/d 1,038 (155) −16–1,840 16.5 (2.6) 33.6 (3.4) 67 96 117

AFI, g/d 2,326 (319) 1,006–3,619 33.8 (3.5) 22.0 (2.9) 201 162 229

FCR, g/g 2,240 (240) 1,380–3,200 22.9 (3.3) 21.8 (2.9) 111 108 172

A 243.4 (124.4) 36.2–945.5 6.8 (2.3) 24.7 (2.9) 33.5 63.9 106.5

B 6.75 (2.75) 2.73–28.27 8.9 (1.8) 15.4 (2.1) 0.81 1.07 2.36

k × 1,000 14.8 (6.0) 2.2–46.0 10.3 (2.3) 23.9 (2.9) 1.9 2.9 4.8

Fat depth, mm 9.4 (1.5) 4.8–17.4 52.7 (4.2) 5.6 (1.2) 1.2 0.4 1.1

Muscle depth, mm 82.6 (6.5) 59.3–105.1 36.6 (3.8) 10.9 (1.9) 3.9 2.1 4.7

lnvarweight 0.85 (0.72) −2.01–3.61 11.0 (2.8) 24.3 (2.9) 0.22 0.32 0.52

lnMSEweight 1.08 (0.73) −1.97–3.94 8.9 (2.5) 23.3 (2.8) 0.21 0.33 0.57

lnvarweight_standardized −2.86 (0.85) −5.67–0.45 12.1 (2.8) 17.0 (2.4) 0.30 0.36 0.73

Skewweight −0.29 (0.44) −2.08–1.48 2.9 (0.9) 10.4 (1.7) 0.08 0.14 0.41

Lag1weight 0.56 (0.17) −0.05–0.97 6.2 (1.8) 19.2 (2.5) 0.04 0.08 0.15

Straightness 0.80 (0.08) 0.57–0.97 15.5 (2.9) 21.6 (2.7) 0.03 0.03 0.05

Mean speed 1.85 (0.19) 1.24–2.51 20.2 (3.2) 15.2 (2.2) 0.07 0.06 0.13

lnMSEFI −1.16 (0.69) −3.71–0.48 23.3 (3.4) 19.8 (2.6) 0.29 0.27 0.46

lnMSEdur 13.42 (0.64) 11.24–15.91 28.3 (3.3) 16.1 (2.3) 0.33 0.25 0.47

lnMSEn_visit 1.90 (0.68) −0.78–4.25 20.7 (3.5) 17.9 (2.3) 0.33 0.30 0.56

QRFI, d 2.30 (2.67) 0.00–15.00 9.4 (2.1) 20.9 (2.7) 0.82 1.22 2.23

QRdur, d 2.28 (2.99) 0.00–15.00 16.2 (3.0) 18.0 (2.5) 1.2 1.3 2.4
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high correlations between time periods and the full 
dataset (rp = 0.47–0.74; rg = 0.63–0.92) and moderate to 
high correlations within time periods (rp = 0.23–0.50; 
rg = 0.45–0.78). In contrast, lag1weight and skewweight show 
in general low correlations over time periods (rp = −0.02–
0.11; rg = −0.15–0.35). Feed intake deviations lnMSEFI, 
lnMSEduration and lnMSEn_visit showed moderate to high 
(genetic) correlations (rp = 0.32–0.65; rg = 0.73–0.97).

Discussion
Increasing resilience is becoming priority in modern pig 
breeding [1, 6]. Therefore, this study investigated resil-
ience traits based on weight, feed intake and feeding 
behaviour in pigs which were estimated as perturbations 
in longitudinal data. We demonstrate that these resilience 
traits are lowly to moderately heritable and have good 
predictive abilities in cross-validation analyses. Moreo-
ver, deviations in individual body weight and feed intake 
trajectories are genetically highly correlated and show 

low to moderate favourable genetic correlations with feed 
conversion ratio. Lastly, we show that the observation 
frequency and observation period impact some resilience 
traits more severely than others. lnvarweight_standardized and 
lnMSEFI, for example, were more robust to low obser-
vation frequencies (as low as one data point in fourteen 
days) and showed moderate repeatability over three 
20-day time periods of the finishing phase.

In the first part of our study, we quantified and evalu-
ated several resilience traits. The body weight devia-
tion traits lnvarweight, skewweight, lag1weight were based on 
[1, 5] after Gompertz growth curve modelling, whereas 
lnvarweight_standardized was based on Berghof et  al. [24] 
after standardizing weights per age. The main differ-
ence between the two lnvar traits is that lnvarweight uses 
the pigs’ individual data as a reference (based on growth 
curve modelling), whereas lnvarweight_standardized takes the 
population statistics as a reference. The deviations in feed 
intake and behaviour (lnMSEFI, lnMSEdur, lnMSEn_visit, 

Table 5  Predictive ability accuracy for cross validation scenarios: masking across or within family and temporal masking

Predictive ability accuracy was estimated by dividing the predictive ability correlation by the square root of the estimated heritability. These predictive abilities as a 
correlation and standard deviation of these estimates are provided in Additional file 4: Table S2. For temporal masking, there was only one estimate, and hence, no 
standard deviation was calculated. BLUP: Best linear unbiased prediction. Genetic parameters estimated with pedigree relationships; ssGBLUP: single-step genomic 
BLUP: genetic parameters estimated with single-step genomic evaluation. ADG: average daily gain; AFI: average feed intake; FCR: feed conversion ratio; A, B and k: 
Gompertz growth curve parameters; lnvarweight: natural logarithm of variance of observed versus predicted weights; lnMSEweight: natural logarithm of mean squared 
error of weight in function of age; lnvarweight_standardized: natural logarithm of variance of standardized weights; skewweight: skewness of observed versus predicted 
weight distribution; lag1weight: lag1 autocorrelation of observed versus predicted weight distribution; straightness: straightness index of weight in function of age 
after trajectory analysis; mean speed: mean speed of weight in function of age after trajectory analysis; lnMSEFI: natural logarithm of mean squared error of feed 
intake in function of age; lnMSEdur: natural logarithm of mean squared error of visit duration in function of age; lnMSEn_visit: natural logarithm of mean squared error 
of number of daily visits in function of age; QRFI: number of days with feed intake below 5% of quantile after quantile regression; QRdur: number of days with visit 
duration below 5% of quantile after quantile regression

Trait Across Family Within Family Temporal

BLUP ssGBLUP BLUP ssGBLUP BLUP ssGBLUP

ADG 0.22 0.42 0.54 0.62 0.27 0.42

AFI 0.22 0.52 0.45 0.64 0.26 0.57

FCR 0.38 0.56 0.61 0.69 0.31 0.50

A 0.12 0.19 0.23 0.27 0.12 0.27

B 0.13 0.30 0.37 0.47 0.17 0.44

K 0.22 0.37 0.50 0.56 0.19 0.41

Fat 0.36 0.62 0.55 0.69 0.21 0.45

Muscle 0.31 0.58 0.51 0.66 0.31 0.55

lnvarweight 0.27 0.36 0.60 0.57 0.39 0.42

lnMSEweight 0.27 0.34 0.60 0.57 0.40 0.44

lnvarweight_standardized 0.20 0.34 0.49 0.52 0.26 0.34

Skewweight 0.00 0.12 0.23 0.23 0.12 0.23

Lag1weight 0.20 0.28 0.40 0.44 0.12 0.28

Straightness 0.25 0.38 0.58 0.58 0.36 0.48

Mean speed 0.29 0.40 0.53 0.60 0.31 0.49

lnMSEFI 0.33 0.52 0.62 0.68 0.41 0.58

lnMSEdur 0.39 0.60 0.56 0.68 0.53 0.71

lnMSEn_visit 0.37 0.53 0.59 0.64 0.42 0.53

QRFI 0.26 0.36 0.46 0.52 0.46 0.49

QRdur 0.32 0.47 0.52 0.60 0.45 0.60
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QRFI, QRdur) were based on Putz et al. [16], although we 
chose to use MSE instead of RMSE, as this allowed us to 
directly estimate GCV [18]. In addition to these previ-
ously described resilience traits, we deducted resilience 
traits from linear modelling and trajectory analysis to our 
weight data in the finishing phase of pigs (lnMSEweight, 
straightness, mean speed). We believe this approach is 
justified, as an expected weight evolution in the finishing 
phase of pigs is more or less linear [30]. Our hypothesis 
is that any deviation from this linear trajectory is prob-
ably due to an external challenge which can impact a pigs’ 
optimal production potential and challenges its resil-
ience. Although trajectory analysis was developed for the 
analysis of (wild) animals’ actual trajectories in time and 
space [31], we believe this methodology could be trans-
lated to weight patterns of finishing pigs. The start weight 
of a pig can be regarded as the starting point, following a 
specific path over time to reach an end weight. Moreo-
ver, trajectory analysis is appealing as it does not require 
any complex modelling of expected (weight) trajecto-
ries. The main issue with modelling is that the predicted 

values tend to follow the observed values, complicating 
the prediction of the optimal production curve for chal-
lenged animals [1, 22]. Figure 5e, for example, shows that 
the modelled Gompertz growth curve is more or less the 
mean of the observed values, which results in an overes-
timation of positive deviations, and an underestimation 
of negative deviations [1].

To our knowledge, this is the first study to report h2 for 
body weight deviation traits lnvarweight, lnvarweight_standard-

ized and lnMSEweight in pigs (Table  3). Our h2 estimates 
range 8.9%–12.1% for these traits, which is similar to the 
h2 estimate of 9%–11% in similar body weight deviations 
in layer chickens [24]. h2 and GCV for lnvarweight_standard-

ized were higher (h2 = 12.1%; GCV = 30.2%) compared to 
lnvarweight (h2 = 11.0%; GCV = 21.6%) and lnMSEweight 
(h2 = 8.9%; GCV = 20.5%). This might be because 
lnvarweight_standardized corrects for a scaling effect, since 
changes in mean levels tend to change variance levels 
as well [1, 40, 41]. Remarkably, straightness and mean 
speed had slightly higher h2 estimates (15.5% and 20.2%), 
whereas h2 of lag1weight (2.9%) and skewweight (6.2%) was 

Table 6  Genetic parameters of full dataset versus reduced datasets (1 in x data points)

 Heritability estimates (h2) of traits and genetic correlation (rg) estimates between traits estimated on full dataset versus traits estimated on reduced datasets are given. 
Pairwise Pearson correlation plots for each trait over different observation frequencies are given in Additional file 5: Fig. S3. Genetic parameters were estimated via 
pedigree evaluation, using only pedigree relationships. ADG: average daily gain; AFI: average feed intake; FCR: feed conversion ratio; A, B and k: Gompertz growth 
curve parameters; lnvarweight: natural logarithm of variance of observed versus predicted weights; lnMSEweight: natural logarithm of mean squared error of weight in 
function of age; lnvarweight_standardized: natural logarithm of variance of standardized weights; skewweight: skewness of observed versus predicted weight distribution; 
lag1weight: lag1 autocorrelation of observed versus predicted weight distribution; straightness: straightness index of weight in function of age after trajectory analysis; 
mean speed: mean speed of weight in function of age after trajectory analysis; lnMSEFI: natural logarithm of mean squared error of feed intake in function of age; 
lnMSEdur: natural logarithm of mean squared error of visit duration in function of age; lnMSEn_visit: natural logarithm of mean squared error of number of daily visits in 
function of age; QRFI: number of days with feed intake below 5% of quantile after quantile regression; QRdur: number of days with visit duration below 5% of quantile 
after quantile regression

Trait (full dataset) 1 in 4 1 in 7 1 in 14

h2(se) rg(se) h2(se) rg(se) h2(se) rg(se)

ADG 17.0 (2.8) 0.99 (0.00) 17.0 (2.9) 0.98 (0.00) 17.1 (2.7) 0.95 (0.01)

AFI 21.5 (2.9) 0.99 (0.00) 19.4 (2.6) 0.97 (0.00) 15.2 (2.2) 0.93 (0.00)

FCR 22.1 (2.9) 0.92 (0.02) 14.0 (2.1) 0.84 (0.01) 10.1 (1.8) 0.76 (0.03)

A 11.1 (2.6) 0.92 (0.02) 10.3 (2.4) 0.86 (0.04) 9.1 (2.5) 0.65 (0.07)

B 5.7 (1.7) 0.95 (0.03) 4.3 (1.8) 0.90 (0.04) 3.8 (1.3) 0.79 (0.07)

k 12.0 (2.4) 0.97 (0.02) 9.6 (2.2) 0.92 (0.03) 9.3 (1.9) 0.87 (0.05)

lnvarweight 14.7 (2.7) 0.96 (0.01) 9.2 (1.8) 0.92 (0.02) 5.8 (1.3) 0.79 (0.06)

lnMSEweight 10.6 (2.4) 0.97 (0.01) 6.6 (1.6) 0.93 (0.00) 5.1 (1.3) 0.79 (0.02)

lnvarweight_standardized 12.9 (2.7) 1.00 (0.00) 10.4 (2.0) 0.99 (0.00) 9.3 (1.9) 0.96 (0.01)

Skewweight 3.4 (1.1) 0.66 (0.08) 2.8 (0.8) 0.50 (0.11) 3.5 (0.9) 0.14 (0.13)

Lag1weight 5.4 (0.7) 0.47 (0.08) 5.8 (0.8) 0.23 (0.09) 5.5 (0.8) 0.02 (0.09)

Straightness 15.0 (0.8) 0.76 (0.08) 14.0 (0.0) 0.63 (0.06) 13.1 (0.0) 0.50 (0.05)

Mean speed 21.4 (2.9) 0.69 (0.08) 21.2 (3.0) 0.56 (0.09) 17.7 (2.8) 0.50 (0.10)

lnMSEFI 21.6 (2.9) 0.97 (0.00) 12.4 (2.1) 0.93 (0.01) 5.5 (1.3) 0.84 (0.09)

lnMSEdur 20.6 (2.8) 0.96 (0.01) 13.4 (2.3) 0.95 (0.00) 7.8 (1.8) 0.90 (0.03)

lnMSEn_visit 23.3 (3.1) 0.98 (0.00) 18.5 (2.9) 0.97 (0.01) 10.1 (2.2) 0.91 (0.03)

QRFI 4.3 (1.1) 0.91 (0.01) 4.1 (1.6) 0.87 (0.06) 2.8 (0.9) 0.62 (0.16)

QRdur 9.2 (1.7) 0.94 (0.01) 8.6 (2.0) 0.91 (0.04) 5.1 (1.6) 0.57 (0.05)
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very low, similar to Poppe et al. [23]. The estimated h2 of 
feed intake deviations (QRFI, lnMSEFI; h2 = 9.4%–23.3%) 
and feeding behaviour deviations (QRdur, lnMSEdur, 
lnMSEn_visit; h2 = 16.2%–28.3%) were also comparable to 
previous studies in pigs by Putz et al. [16] (h2 = 8%–26% 
for feed intake), Homma et  al. [18] (h2 = 31% for feed 
intake; h2 = 36%–40% for feeding behaviour), and Kav-
lak and Uimari [19] (h2 = 7%–11% for feed intake; 
h2 = 16%–20% for feeding behaviour). Estimated GCV for 
lnvarweight and lnMSEweight were 21%–22% and were lower 
than GCV estimates of 29%–33% for lnvarweight_standardized, 
lnMSEFI, lnMSEdur and lnMSEn_visit, but in the same range 
as (22%–39%) [18]. These high genetic coefficients of var-
iation indicate a large potential for genetic improvement 
of these traits [1, 35].

There are no standard guidelines yet on how to per-
form quality control of weight data from AFS. The qual-
ity control procedure in the current paper was based on 
the structure and identified issues from our dataset, com-
bined with the methodology from previous work [20]. 
We would like to stress the importance of rigid quality 
control on an individual level when quantifying resilience 
traits, especially for body weight deviations. In contrast to 
feed intake and feeding behaviour, weight is accumulated 
over time, i.e. you can only gain or lose weight gradually. 
However, erroneous weights, such as sudden drops and 
rises, do often appear in raw data from AFS. These errors 
can be technical (machine error) or due to a learning 
curve of the pigs after introduction to AFS [20] (Fig. 1). 
Without any quality control, estimated h2 for lnvarweight, 
straightness and mean speed were very low (h2 = 1.8%–
4.0%; results not shown). Applying a limited quality 
control on a population level, for example applying mini-
mum and maximum thresholds for weight as a function 
of age, increased h2 estimates to h2 = 5.7%–7.1% (results 
not shown). However, these estimates are still consider-
ably lower than what is achieved in a dataset with a rigid, 
individual quality control. Here, standard guidelines on 
quality control of AFS data might be valuable, although 
there might be no “one size fits all” approach. Our advice 
is to always visually check the weight trajectories of indi-
vidual animals with outlying resilience traits, for example 
lnvarweight > 3 standard deviations from mean, even after 
quality control.

The data in Table  4 suggests a strong connection 
between resilience traits for feed intake and weight, 
as shown by the estimated genetic correlation of 0.78 
between lnvarweight and lnMSEFI. This correlation implies 
that individual deviations in feed intake are rapidly 
reflected in weight perturbations. However, the correla-
tion does not equal one, indicating that these various 
indicators of resilience may signify different aspects of 

pigs’ resilience. Here, changes in feed intake might be 
considered as a short term response to a challenge, as a 
challenged animals’ appetite is usually directly affected 
[1, 2]. Variations in weight can be considered as a mod-
erate term response since weight gain/loss is mainly 
determined by food and water intake and several other 
factors over time. Moreover, we estimated a favour-
able genetic correlation between lnMSEweight or lnMSEFI, 
and FCR (rg = 0.39–0.49). As feed efficiency is one of 
the most important traits in pig breeding, this favour-
able correlation would facilitate an implementation of 
resilience traits into breeding programs. Correlations 
between lnvarweight and most other body weight deviation 
traits were high (rp = 0.58–0.88; rg = 0.53–0.93) except 
for skewness (rp = 0.01; rg = 0.32). These correlations 
indicate different traits mostly capture the same genetic 
variation, but some differences exist between traits. Since 
the weight trajectory parameters straightness and mean 
speed showed higher h2 and do not rely on complex mod-
eling, these traits might be more interesting to implement 
in breeding programs. Additionally, straightness has a 
favourable genetic correlation with FCR (rg = −0.41) and 
ADG (rg = 0.38). Notably, lnMSEn_visits was lowly to nega-
tively correlated with lnMSEFI (rp = −0.05, rg = −0.34) and 
lnMSEdur (rp = 0.16, rg = 0.00). Similar genetic correlations 
were found by [18]. These findings might imply that more 
deviations in daily visits to feeding station do not neces-
sarily lead to more variation in the time spent at the AFS 
and might even reduce deviations in feed intake which is 
counterintuitive.

It should be noted that our data were collected in 
purebred pigs in a high health breeding farm. This is in 
contrast to commercial crossbred finishing pigs, which 
are typically raised in a more challenging environment 
with, for example, a higher disease pressure and more 
social stressors such as a higher pig density. The com-
mercial conditions might elicit more easily differences 
in resilience [1]. Nonetheless, our data show considera-
ble heritable variation for resilience traits with reasona-
ble predictive ability. However, the purebred-crossbred 
correlation (rpc) of these resilience traits in pigs is not 
yet known. Research on this topic is essential for pig 
breeding programs, as an rpc < 0.80 indicates cross-
bred information should be taken into account [42]. 
For example, in a study on egg production data in layer 
chicken, an rpc was estimated ranging from 0.16–0.47 
(lnvar of egg production) to 0.56–0.63 (lag1 autocor-
relation) [25]. Furthermore, the main limitation of the 
present study is that we could not corroborate our 
resilience traits with resilience related factors such as 
mortality, disease prevalence, treatments, etc., as done 
by Putz et al. [16].
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Predictive ability analysis using three masking strate-
gies indicated good prospects for selection on most resil-
ience traits (Table 5). The across family masking strategy 
generally yielded lower predictive abilities compared 
to the within family masking strategy, as family rela-
tionships are more distant in the across family masking 
strategy. Moreover, adding genotypes to the analysis in 
general improved predictive abilities. Interestingly, tra-
jectory parameters straightness and mean speed yielded 
the highest predictive abilities for body weight devia-
tions, demonstrating their potential use for breeding 
programs. Moreover, resilience indicators for feed intake 
and feeding behaviour yielded higher predictive abilities. 
Using single-step genomic evaluation generally improved 
predictive ability, mainly for the across-family (aver-
age increase of +62.2%) and temporal (+67.8%) masking 
strategy compared to within-family masking (+13.2%). 
This was expected, as these masking strategies use more 
distant family information, without own phenotypes 
and, hence, adding extra genomic information relatively 
improves predictive ability more [39]. Sae-Lim et al. [40] 
previously showed that predictive ability of (untrans-
formed) body weight uniformity in salmon could be 
improved by adding genomic information.

As indicated by Berghof et  al.  [1], the frequency of 
observations and observation length are crucial to deter-
mine good resilience traits. In our study, we used daily 
recordings from AFS over a 60-day period within a pigs’ 
finishing phase (95–155  d). However, AFS may be used 
more efficiently and/or a limited number of manual 
weight recordings might be a suitable alternative. Moreo-
ver, AFS have not yet been developed and generally used 
for many livestock species. Therefore, we examined the 
influence of frequency of observations (Table 6 and Addi-
tional file  5:  Fig. S3) and length of observation period 
(Additional file 6: Fig. S4 and Additional file 7: Table S3) 
by using different data densities and by splitting the data-
set in three 20-day periods. If only one record every two 
weeks or daily records for a short time period would be 
informative for some resilience traits, these observations 
could also be collected manually. For example,  Berghof 
et  al. [24] used seven weight recordings with a 4-week 
interval in layer chickens, whereas [43] only had five 
manual weight recordings of Nile tilapia over a 162-day 
period. Another option would be to more efficiently use 
the expensive technology (e.g., AFS), by rotating it over 
animals so it can be used more efficiently, or by only 
recording a shorter observation period, although this 
might pose practical/sanitary issues in pigs. Interest-
ingly, lnvarweight_standardized seemed to be very stable with 
rp > 0.76 and rg > 0.96 between full dataset and only one 
weight recording every two weeks (±5 records in total). 

These results reiterate the need for data standardiza-
tion, particularly for traits with a changing average and 
variance over time such as weight. Whereas trajectory 
parameters straightness and mean speed seem to have 
highest h2 and predictive ability for body weight devia-
tions, these traits are also more sensitive to low data den-
sities, with rp = 0.29–0.33 and rg = 0.50 for 1 in 14 data 
density compared to the full dataset. Further, lnMSEFI 
showed to be quite stable with lower data densities with 
rp = 0.44 and rg = 0.84 between full data and 1 in 14 sce-
nario. Moreover, phenotypic and genetic correlations for 
deviations in feed intake were high over different time 
periods, with rp = 0.48 and rg = 0.80 between lnMSEFI_early 
and lnMSEFI_late, and rp = 0.73–0.87 and rg = 0.90–0.97 
between 20-day time periods and the total 60-d period. 
These results show that, similar to FI, feed intake devia-
tions are moderately repeatable over time: pigs with a 
high variability in feed intake at the start of the finishing 
phase, will generally also have a high variability in feed 
intake at the end of the finishing phase. Observational 
period and frequency had a large impact on skewweight 
and lag1weight. Therefore, these indicators might not be 
useful for data with a low observation frequency and/or a 
short observation period.

In light of our findings, we provided suggestions on 
the choice of resilience traits to include in a breed-
ing program. The inclusion of resilience traits based on 
feed intake and feeding behaviour deviations show to 
be most promising, with highest h2, GCV and predic-
tive ability. Additionally, these traits seem to be robust to 
changes in observation frequency and period. However, 
our study also suggests to include body weight devia-
tions as resilience indicator in breeding programs, as the 
(genetic) correlations with feed intake and feeding behav-
iour resilience traits substantially differed from one. We 
hypothesize that body weight deviations reflect more 
moderate term responses to external challenges, whereas 
feed intake and feeding behaviour better reflect short 
term responses to external stressors. For body weight 
deviation traits, we recommend to perform a rigid qual-
ity control of body weights, as we found that outliers can 
significantly affect results. Although we provide some 
guidelines for QC of AFS body weight data, most stud-
ies currently still perform an ad-hoc QC. Future work on 
(more) uniform guidelines for QC could further improve 
standardization and replicability of results across stud-
ies. Regarding quality control of body weights based on 
AFS data, future studies should focus on more uniform 
guidelines. We also recommend standardizing weights 
over time. Finally, the trajectory analysis traits straight-
ness and mean speed showed promise as body weight 
resilience traits as they had the highest h2 and predictive 
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ability and a favourable (genetic) correlation with FCR. 
However, these traits seem more sensitive to observation 
frequency.

Conclusions
To our knowledge, this is the first study comparing 
resilience traits from longitudinal body weight, feed 
intake and feeding behaviour data in pigs. We showed 
these resilience traits are lowly to moderately heritable 
(h2 = 3%–28%) with good predictive abilities. Moreover, 
we suggested new, promising resilience indicators based 
on trajectory analysis with higher h2 and predictive ability, 
although these traits were more sensitive to observation 
frequency. Next, we were the first to report the influence 
of observation frequency and observation period on these 
resilience traits and showed that feed intake and feeding 
duration deviations are very robust to low data density 
and moderately repeatable over time. Within body weight 
deviation traits, lnvarweight_standardized seemed most robust 
to low data density, stressing the need for weight stand-
ardization over age when quantifying body weight devia-
tions. Our results can help the design of future studies 
to look at the relationship between these resilience traits 
and resilience-related traits such as mortality and disease 
incidence, and to estimate the purebred-crossbred corre-
lation. We believe our findings will be very useful for pig 
breeding programs, and will aid in the improvement of 
pigs’ general resilience by selective breeding. We recom-
mend the inclusion of resilience indicators from both feed 
intake and body weight deviations in breeding programs, 
as they could offer valuable insights into different aspects 
of pigs’ resilience. Moreover, we are confident our method-
ology can be extended to other species as well.
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