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Abstract 

Background Genotype‑by‑sequencing has been proposed as an alternative to SNP genotyping arrays in genomic 
selection to obtain a high density of markers along the genome. It requires a low sequencing depth to be cost effec‑
tive, which may increase the error at the genotype assigment. Third generation nanopore sequencing technology 
offers low cost sequencing and the possibility to detect genome methylation, which provides added value to gen‑
otype‑by‑sequencing. The aim of this study was to evaluate the performance of genotype‑by‑low pass nanopore 
sequencing for estimating the direct genomic value in dairy cattle, and the possibility to obtain methylation marks 
simultaneously.

Results Latest nanopore chemistry (LSK14 and Q20) achieved a modal base calling accuracy of 99.55%, whereas pre‑
vious kit (LSK109) achieved slightly lower accuracy (99.1%). The direct genomic value accuracy from genotype‑by‑low 
pass sequencing ranged between 0.79 and 0.99, depending on the trait (milk, fat or protein yield), with a sequenc‑
ing depth as low as 2 × and using the latest chemistry (LSK114). Lower sequencing depth led to biased estimates, 
yet with high rank correlations. The LSK109 and Q20 achieved lower accuracies (0.57–0.93). More than one million 
high reliable methylated sites were obtained, even at low sequencing depth, located mainly in distal intergenic (87%) 
and promoter (5%) regions.

Conclusions This study showed that the latest nanopore technology in useful in a LowPass sequencing framework 
to estimate direct genomic values with high reliability. It may provide advantages in populations with no available 
SNP chip, or when a large density of markers with a wide range of allele frequencies is needed. In addition, low pass 
sequencing provided nucleotide methylation status of > 1 million nucleotides at ≥ 10 × , which is an added value 
for epigenetic studies.
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Introduction
Advances in genotyping platforms over the past two 
decades have enabled the prediction of genetic value in 
individuals for the implementation of genomic selection 
in animal and plant populations [1]. They also allowed 
the prediction of polygenic risk scores in human popu-
lations that predict the probability of suffering certain 
diseases [2]. Initially, genotyping arrays consisted of a 
few hundreds or thousands of SNPs, but improvements 
in the technology soon after allowed for the incorporaion 
of hundreds of thousands of SNPs in genotyping arrays. 
Methods for genotype imputation have also contributed 
to the use of different genotyping platforms or different 
densities of genotyping arrays [3, 4]. A major disadvan-
tage of SNP arrays is that their design is often based on 
few animals/populations, which limits their use in other 
populations not considered in the design. In addition, 
low frequency and rare variants are seldom included in 
the genotyping arrays, which may miss linkage disequi-
librium with relevant causal variants of certains diseases 
and traits. More recently, genotype-by-sequencing has 
allowed capturing millions of variants along the genome 
[5]. Genotype-by-sequencing techniques can be used 
to align DNA reads against a reference genome and 
detect polymorphic positions with bioinformatics tools 
throughout the genome, regardless of whether they 
have been previously detected or included in an array 
design. The precision of this genotype-by-sequencing is 
mainly determined by the sequencing depth. However, 
the limitations in precision at low sequencing depth can 
be compensated for by imputation strategies, as its more 
affordable cost allows sequencing many more individu-
als in the population, improving the statistical power of 
genomic selection and genomic studies [6]. Detecting a 
larger number of variants at different minor allele fre-
quencies helps to discover association signals in genome-
wide association studies and estimate the genetic value of 
individuals with a similar precision as SNP chips [7, 8]. 
Genetic imputation has also been applied to genotype-
by-sequencing data, which needs to deal with artifact 
errors due to low depth or low-pass sequencing (LPS). 
Some methods have already been proposed to palliate 
this limitation [6, 9–11].

Third-generation sequencing techniques such as 
Oxford Nanopore Techonology (ONT) have been 
explored as an option for genomic selection using infor-
mation at low sequencing depth [12]. This technique 
allows for fast and low-cost sequencing at the expense of 
a higher error rate compared to Sanger or sequencing by 
synthesis. However, the latest nanopore chemistry offers 
higher accuracy which may increase the accuracy of the 
prediction of genetic values using this technique. Addi-
tionally, nanopore sequencing can simultaneously detect 

epigenetic modifications at the nucleotide level, and it is 
obtained at no additional cost. This information can be 
used in breeding programs and epigenetic studies in live-
stock and plants [13].

Nanopore sequencing has already been used for patho-
gen identification, metagenomic studies, and the assem-
bly of reference genomes. However, its higher sequencing 
error rate has discouraged its use for predicting the genetic 
value of individuals. Since the accuracy and yield of the 
technique has improved in recent years, along with its low 
cost, better portability, the ability to obtain modified bases, 
and specific bioinformatics tools, it is now more attrac-
tive for exploring its performance in genomic prediction 
under a genotype-by-low pass sequencing framework that 
includes epigenetic information. It is also an alternative 
tool to genomic research involving epigenetics.

The aim of this study was to determine the accuracy 
of epi-genotype low pass sequencing (EpiGLow) using 
Nanopore  Technology in terms of basecalling, imputa-
tion, and prediction of genetic merit, in comparison to 
SNP genotyping arrays within a genomic selection frame-
work. Both older and more recent nanopore chemistries 
were compared, and the potential to include epigenetic 
information was also evaluated.

Materials and methods
Samples and DNA extraction
Blood samples were obtained from 32 Holstein female 
calves during routine practices in a commercial farm 
of 1,000 lactating cows in the Northeast regions of 
Spain. The calves were born in the same year-season 
and were daughters of 8 different sires. These samples 
were obtained by a veterinarian during the routinary 
process for genomic evaluations within the official Hol-
stein breeding program in Spain (https:// www. conafe. 
com). One sample from each animal was sent to the offi-
cial genotyping lab, and was genotyped using the Illu-
mina EUROG MD genotyping microarray that contains 
approximately 62,000 markers. Another sample was sent 
to the department of animal breeding at INIA-CSIC, 
where DNA was extracted using the Monarch® HMW 
DNA Extraction Kit for Cells Blood (New England Bio-
Labs, Ipswich, MA, USA). This DNA was then prepared 
for sequencing.

Sequencing
The purified DNA was sequenced in either a Min-
ION Mk1B or GridION X5 Mk1 from Oxford Nanop-
ore Technologies (ONT) (Oxford, UK). The individual 
DNA libraries were prepared starting with 3 µg of DNA, 
and then following the manufacturer recommenda-
tions. Twelve samples were sequenced using the kit 
SQK-LSK109 (LSK109) in R9.4 flow cells, multiplexing 

https://www.conafe.com
https://www.conafe.com
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6 samples per flow cell. Other twelve samples were 
sequenced using the kit SQK-LSK110 (Q20) in R9.4 flow 
cells, also multiplexing 6 samples per flow cell. This kit 
uses a motor protein with a slower translocation speed 
through the nanopore, which increases the basecall-
ing accuracy. Finally, the remaining six samples were 
sequenced following the protocol from the kit SQK-
LSK114 (LSK114) in R10.4.1 flow cells, multiplexing 2 
samples per flow cell. This kit used an improved motor 
protein and a wider nanopore type. Two samples from 
LSK109 were discarded for not yielding enough reads 
to start the bioinformatic analyses. The samples were 
intented to be as balanced as possible according to sire 
and kit, with representation of the sires with more than 
one daughter in all kits.

Bioinformatic pipeline
Basecalling was performed with guppy toolkit version 
6.4.2 using SUP mode. Reads with length ≤ 150  bp or 
ONT quality score < 10 were discarded. Remaining reads 
were aligned against Bos taurus reference genome (ARS-
UCD1.2) using minimap2 aligner, with option -ax map-
ont [14], a general-purpose alignment program to map 
DNA or long mRNA sequences. Coverage statistics were 
calculated with samtools coverage [15]. After the align-
ment, the content and percentage of mismatches by read 
were computed. The CIGAR string samtools and the edit 
distance from the reference or number of mismatches 
per pair  (NMtag value) from the alignment were used to 
extract the total length of insertions and deletions and 
single nucleotides mismatches for each read. The  NMtag 

value is the sum of total mismatch score (TMS) and length 
of insertions and deletions. Thus, TMS was computed as:

The accuracy of each read was then calculated as:

Then, variants were called using Clair3 v0.1-r11 [16]. 
Variants with sequencing depth ≤ 2 were discarded for 
downstream analysis unless the variant was equal to the 
alternate allele in the 1,000 bull genomes reference pop-
ulation. A heterozygous position was called if the allele 
frequency was larger than 0 and lower than 90%. The 
resulting variants were then imputed to whole genome 
sequencing using the 1000 Bull Genomes (Run 6) Pro-
ject [17] and Beagle version 5.2 [18], using the Holstein 
reference population (844 animals) as reference. We 
kept those common variants (38,747) in the Illumina 
Bovine50K beadchip that were included in the official 
genomic evaluations of milk yield (MY), fat yield (FY) 

(1)
TMS = NMtagvalue − (length of insertions) − (length of deletions)

(2)Accuracy = 1−
TMS

readlength

and protein yield (PY) from the Spanish Holstein Associ-
ation (CONAFE). Accuracy of imputation was evaluated 
as the mismatch rate between LPS and SNP genotypes.

Computing direct genomic values
Direct genomic values  (DGVit) for each individual i and 
trait (t = MY, FY, PY) (either from SNP beadchips or LPS) 
were calculated as:

where µt is some intercept value specific for each trait, xj 
is either the SNP genotype or the dosage allele (DA) from 
imputed ONT sequencing, and βjt is the allele substitu-
tion effect for SNPj and trait t,  provided by CONAFE. 
The closeness between DGVs estimated from LPS and 

(3)DGV it = µt +

p

j=1

xjβjt

Table 1 Summary information for the samples sequenced 
including kit, sequencing depth, genome coverage and number 
of variants detected after filtering

Sample Kit Sequencing 
depth

Coverage Number of variants

Sample 1 LSK109 0.36 27 69,700

Sample 2 LSK109 0.51 36 139,412

Sample 3 LSK109 0.41 29 84,872

Sample 5 LSK109 0.54 37 143,414

Sample 6 LSK109 0.54 37 151,828

Sample 8 LSK109 0.61 41 169,916

Sample 9 LSK109 0.45 32 108,916

Sample 10 LSK109 1.04 58 495,019

Sample 11 LSK109 0.88 53 361,627

Sample 12 LSK109 1.07 60 490,223

Sample 13 Q20 0.41 29 115,022

Sample 14 Q20 0.30 22 65,840

Sample 15 Q20 0.38 27 93,316

Sample 16 Q20 0.31 22 67,232

Sample 17 Q20 0.33 24 76,340

Sample 18 Q20 0.36 26 91,323

Sample 19 Q20 0.86 49 419,787

Sample 20 Q20 0.47 32 145,412

Sample 21 Q20 0.74 44 321,066

Sample 22 Q20 0.31 22 74,607

Sample 23 Q20 0.49 30 140,729

Sample 24 Q20 0.38 26 94,729

Sample 25 LSK114 2.43 82 1,924,878

Sample 26 LSK114 2.10 76 1,533,807

Sample 27 LSK114 1.87 73 1,311,229

Sample 28 LSK114 1.92 73 1,375,101

Sample 29 LSK114 1.78 71 1,246,664

Sample 30 LSK114 2.93 87 2,420,455
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SNP chips was evaluated through the R2 obtained from 
regressing DVGs from SNP chips (as benchmark) on 
DGVs obtained from LPS. The intercept and slope of the 
linear regression were also evaluated.

Detection of modified based
Modified bases (5mC) were extracted from samples 
sequenced with LSK114 kit. Methylation marks were 
detected from bam files produced by the built-in Grid-
ION MinKnow basecaller (version 22.12.5) using mod-
bam2bed tool provided by Nanopore software [19]. 
Genetic features and coordinates were annotated using 
the R package ChIPseeker [20]. Promoter regions were 
called using the function getPromoter using the tran-
scription annotated genome for Bos taurus and the 
annotation package org.Bt.eg.db. The transcription start 
site (TSS) region was defined as −3,000 to 3,000 base 
pairs from the transcription start site. Sequencing depth 
thresholds of 4 × , 7 × and 10 × were compared to deter-
mine the variation in the genetic features lost when 
establishing a more stringent filter. The genetic feature 
in which the methylation marks are located were called 
using the plotAnnoBar function. Then, heatmaps depict-
ing the distribution of methylation marks in the promoter 
regions were obtained using the tagHeatmap function.

Results
Descriptive summary
A summary of the samples kept after quality control 
is shown in Table  1. The kit LSK109 showed higher 
yield than Q20, which translated into a higher average 
sequencing depth (0.6 × vs. 0.4 ×) and a larger number 
of called variants (221  k vs. 142  k). Samples sequenced 
with the LSK114 kit showed a higher average sequencing 
depth (2.1 ×  ± 0.4 × SD) and a larger initial number of var-
iants (1,635 k ± 455 k SD). Improved yield from LSK114 
was partially determined because only two samples were 
multiplexed per flowcell. However, it is equivalent to a 
0.8 × sequencing depth if six samples per flow cell would 
have been multiplexed as in LSK109 and Q20 kits. This 
circumstance is evaluated below to evaluate LSK114 
under lower sequencing depth. The samples did not show 
any clusterization according to genetic background and 
kit, based on a PCA plot from the SNP chips genotypes 
(Fig. 1). The ancestry of the samples are not expected to 
have a relevant impact on the results obtained from the 
downstream analyses.

Variant calling accuracy
Basecalling accuracy from each sequencing kit is 
depicted in Fig.  2. Median accuracy was 98.5%, 98.7%, 

Fig. 1 Principal component analysis plot based on the genotypoes from the SNP chips using the first and second principal components. The 
samples are grouped by kit, showing no clusterization depending on the genomic background of the samples
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Fig. 2 Density plot of the basecalling accuracy for each sequencing analysed, measured as Equation (2). Mode value from each kit is depicted 
as a vertical solid line. Median value from each kit is depicted as a dashed vertical line

Fig. 3 Imputed dosage allele obtained after LPS according to the SNP genotype code. Each kit and sequencing depth (from LSK114) is depicted 
in different color. Samples from LSK109 (Q20) had average sequencing depth of 0.6 × (0.4 ×)
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and 99.0% for the LSK109, Q20, and LSK114 kits, respec-
tively. Mode accuracy was 99.1%, 99.6%, and 99.5% for 
the LSK109, Q20, and LSK114 kits, respectively. It must 
be noted that this is a down-limit accuracy because it was 
calculated against the reference genome, so true variants 
are incorrectly counted as errors. Nonetheless, a sig-
nificant number of reads showed basecalling accuracies 
below 95%.

Imputation accuracy
After imputing called variants to whole genome sequenc-
ing, the imputed variants were compared to the geno-
types from the SNP array. Figure 3 shows a high degree 
of concordance between the imputed variant from LPS 
and the genotype. Lower agreement was observed for 
heterozygous genotypes when the LSK109 and Q20 kits 
were used. In these cases, imputation was less accurate. 
Samples sequenced with the LSK114 kit were accurately 
imputed, although wider ranges of DA were observed 
for homozygous SNPs when LPS variants were imputed 
from sequence depths as low as 0.5 × . In contrats to older 

chemistry, more accurate DA was imputed from LSK114 
even for heterozygote genotypes and at similar sequenc-
ing depths ∼ 0.5 × .

Commonly, heterozygous genotypes are called for 
0.8 ≤ DA ≤ 1.2. The percentage of correct and miscalled 
genotypes from LSK114 is shown in Fig.  4 at different 
sequencing depths. A larger amount of correct calls were 
imputed for homozygous positions ranging from 85.2% 
at a sequencing depth of 0.5 × to 91.3% at a sequencing 
depth of 2 × . The mismatches were mainly in only one of 
the alleles, with ≤ 1% of the sites with both alleles imputed 
incorrectly. A larger number of errors were observed for 
heterozygous positions, mainly at a sequencing depth of 
0.5 × , with 27.5% of positions being miscalled with one 
wrong allele. The percentage of mismatches decreased to 
11.8% at a sequencing depth of 2 × .

Closeness between polygenic values estimated from SNP 
chips and LPS
Pearson correlation between DGV calculated from SNP 
chips and LPS (all chemistries) was 0.95, 0.84, and 0.95 

Fig. 4 Proportion of called genotypes from LPS for each genotype code from SNP chip (vertical axes). Values are obtained from LSK114 kit 
at different sequencing depths (0.5 × , 1.0 × , 1.5 × and 2.0 ×)
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for MY, FY and PY, respectively. However, the closeness 
between DGV estimated from LPS was largely influenced 
by the sequencing kit. LSK114 yielded better  R2 for all 
traits (0.92, 0.79 and 0.99 for MY, FY and PY) whereas 
older chemistry LSK109 showed  R2 of 0.70, 0.42 and 

0.58, respectively (Fig. 5, 6 and 7). The Q20 kit achieved 
intermediate R2 values (0.62, 0.57, 0.93 for MY, FY and 
PY). Regression coefficient was equal to 1 for MY using 
kit LSK114, and for PY using Q20 kit. Lower agree-
ment between SNP chips and LPS was observed for FY, 

Fig. 5 Scatter plot between milk yield DGVs obtained from SNP chips (y axis) and genotype‑by‑LPS (x axis) for the different ONT kits evaluated

Fig. 6 Scatter plot between fat yield DGVs obtained from SNP chips (y axis) and genotype‑by‑LPS (x axis) for the different ONT kits evaluated
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probably because the dispersion of this trait in the sam-
ple set was lower than for the other traits. Table 2 shows 
the Spearman (rank) correlations between DGVs calcu-
lated with SNP chips and LPS. Larger correlations were 
calculated for LSK114 (0.94, 0.83 and 0.95), suggesting 
very similar ranking between SNP chips and LPS. Despite 
of the general strong agreement, the intercept estimates 
(> 0) showed that ONT sequencing underestimated 
DGVs for all traits analyzed.

Effect of sequencing depth on similarity to SNP chip 
genotypes
Since LSK114 was the kit performing best, we hypothe-
sized that this might be due to a larger sequencing depth. 
Hence, we evaluated whether the higher DGV estima-
tion reliability estimated from LSK114 was due to the 
higher a sequencing depth in Kit14 or to higher basecall-
ing accuracies. The MY trait was shown here as example, 

although the same behavior was observed in the other 
traits (results not shown). The process consisted of ran-
domly selecting a given number of reads for each sample 
sequenced with the LSK114, to achieve different sequenc-
ing depths (i.e., 0.5 × , 1.0 × , 1.5 × and 2.0 ×). Results are 
depicted in Fig. 8. The R2 ranged between 0.93–0.94 for 
sequencing depth < 2 × and 0.98 for sequencing depth of 
2 × . Lower sequencing depth resulted in more biased 
estimates, which may be the reason of the underestima-
tion of the DGVs mentioned above. Larger sequencing 
depths (2 ×) alleviated this bias in the regression param-
eter and intercept estimation.

Detection of modified bases
An average of 791 millions 5mC modifications were 
detected from LSK114 kit using EpiGLowS. How-
ever, after filtering for variant coverage ≥ 4 × , the aver-
age amount of 5mC detected was 15.7 millions, and 
decreased to 2.3 and 1.6 millions for variant coverage 
filters ≥ 7 × and ≥ 10 × , respectively (Fig.  9). In terms of 
sequencing yield, 5–6  Gb would produce more than 15 
million 5mC methylation states at a coverage ≥ 4 × , and 
at least 1.5 million 5mC sites at coverage ≥ 10 × . We eval-
uated the differences for coverage filters of 4 × , 7 × and 
10 × . A large agreement in the methylation percentage 
was observed in genomic bins of 500  bp: a correlation 
of 0.985 was achieved between filters ≥ 4 × and ≥ 10 × , 

Fig. 7 Scatter plot between protein yield DGVs obtained from SNP chips (y axis) and genotype‑by‑LPS (x axis) for the different ONT kits evaluated

Table 2 Spearman correlations between DGVs calculated from 
SNP chips and nanopore genotype‑by‑LPS for each sequencing 
kit and trait evaluated

Kit Milk yield Fat yield Protein yield

LSK109 0.88 0.74 0.62

Q20 0.92 0.85 0.95

LSK114 0.94 0.83 0.95
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and 0.986 between ≥ 7 × and ≥ 10 × . Figure 10 depicts the 
genome positions that were methylated for each sample 
sequenced with the LSK114  kit after filtering for cover-
age ≥ 4 × . Methylation was detected along the whole 
genome. Samples with a larger genome coverage and 
sequencing yield (samples 25, 26 and 30) also showed a 
larger density of methylated position across the genome 
at a coverage ≥ 4 × . Those samples with lower genome 
coverage still showed a genome- wide methylation ran-
domly distributed along the genome, although with a 
lower density of the methylated sites. Filtering for cover-
age ≥ 10 × led to much sparser methylation marks, which 
may impair the number of methylated sites in those sam-
ples with lower sequencing depth.

These methylation marks were located mainly in dis-
tal intergenic regions, emphasizing the evidence that the 
genome is pervasively transcribed, and that the majority 
of its bases are in primary transcripts, including non-pro-
tein-coding transcripts [21]. Around 5%–6% of methyl-
ated positions were found in promoter regions, and there 
were little variability in this percentage among samples. 
Larger variability was found in the percentage of methyl-
ated sites found in exons and distal intergenic regions.

Filtering for coverage ≥ 10 × led to similar propor-
tions at promoter regions, but a much larger proportion 
of methylated sites in distal intergenic regions (Fig.  11 
and 12). After filtering for coverage ≥ 4 × , the meth-
ylation pattern was as expected with a larger density of 

methylation marks at TSS, and a sudden drop upstream 
(Fig.  13). It also shows the methylation status near the 
TSS of known genes. Some genes showed large propor-
tion of methylation marks at or near-by the TSS, which 
is often maintained upstream during few hundreds bases. 
Interestingly, other genes showed no methylation at the 
TSS or nearby, probably because they are constitutive or 
necessary genes. This deserves further study.

Discussion
Low pass sequencing has captured interest in later 
years due to the large amount of information it pro-
vides in genetic evaluations and because cost are 
decreasing fast (e.g., [22, 23]). This is the first study 
evaluating the similarities between DGVs obtained 
from traditional SNP chips and different ONT chem-
istries in an epi-genotype-by-LPS framework, and 
simultaneously extracting methylation marks, which 
we called EpiGLowS. It complements previous studies 
that used ONT sequencing in canola [24] and Austral-
ian Droughtmaster [12] with the LSK108 or LSK109 
kits. Both studies showed similar basecalling and 
imputation accuracies as our results. Although those 
studies used higher sequencing depths and did not 
detect methylation.

The results from LSK109 and Q20 in our study are 
comparable to a previous study using ONT sequencing 

Fig. 8 Scatter plot between milk yield DGVs obtained from SNP chips (y axis) and genotype‑by‑LPS (x axis) obtained from LSK114 kit at different 
sequncing depths (0.5 × , 1.0 × , 1.5 × and 2.0 ×)
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in a genomic selection framework [12]. However, sam-
ples in [12] were sequenced with LSK109 and at a much 
larger depth than in the present study, with an average 
yield of 22.57 Gb, which is equivalent to > 7 × sequence 
depth. The DGV accuracies for samples sequenced with 
LSK114 was similar to those from full coverage in [12]. 
Based on the results of our study, and in comparison 
to [12], the new chemistry LSK114 may provide simi-
lar results as the old chemistry but with a sequencing 
depth as low as 2 × . Lamb [12] also showed some pre-
diction biased at very low sequencing depths compared 
to SNP chip arrays, and this bias was trait-dependent. 
Although perfect rank agreement with SNP chips 
was not achieved in our small data set, the closeness 
obtained is encouraging to pursue new analytical meth-
ods with a large data set that may show even larger 
agreement for genotypes obtained by LPS. Nonetheless, 
it must be pointed out that the small samples size may 
negatively impact Spearman correlation, underestimat-
ing its true value. Older ONT chemistries posed some 
bias when used at low sequencing depth. However, the 

latest LSK114 chemistry provided a high basecalling 
accuracy that was suitable for breeding value prediction 
in a genomic selection framework. This limitation may 
be alleviated by using DA to estimate DGV or poly-
genic risk scores at a low sequencing depth of 2 × . Very 
low sequencing depths may still provide high ranking 
agreement yet with larger bias.

Our study also showed the possibility to simultaneo-
suly obtain methylation status throughout the genome 
with a high closeness even at a low sequencing depth, 
which comes at no extra cost with genotype-by-LPS. 
This epigenetic information can be used in epigenome-
wide association studies to infer association between 
methylation and phenotypic expression of traits of inter-
est. It can also be included in the mixed models used in 
quantitative genetics to account for epigenetic variance 
or to determine the effect of environmental forces on 
the methylation status [25]. The number of methylated 
regions and its reliability depends on the coverage filters 
applied to EpiGLowS. Too stringent filters may under-
represent methylation in promoter regions, since many 

Fig. 9 Boxplots for the number of methylated sites obtained from EpiGLowS with LSK114 kit after filtering by sequencing 
depth ≥ 4 × , ≥ 7 × or ≥ 10 × . Average sequencing depth from EpiGLowS was 2 × 
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methylated sites are filtered out. Therefore, a minimum 
coverage of 4 × may be enough for whole genome methyl-
ation, considering that it showed very similar results and 
high accordance with a coverage filter ≥ 10 × , and kept 
10-folds more sites.

EpiGLowS is also appealing in populations where 
SNP chips are not available or a high density of markers 
is required (e.g., populations with short linkage dise-
quilibrium range, or studies dealing with rare variants). 
It may also compensate the cost of obtaining SNP vari-
ants and methylation status independently. Additional 
advantages of ONT sequencing include its portabil-
ity, and its ability to sequence long DNA fragments to 
detect structural variants [26]. Despite its affordability, 

EpiGLowS is still less cost effective than SNP genotyp-
ing arrays. Proper multiplexing strategies may contrib-
ute to decrease the cost of LPS, while mantaining high 
accuracies.

It must be pointed out that ONT sequencing has 
increased the basecalling accuracy through both chemis-
try improved bioinformatic analyses [27, 28]. Yet, reads 
with lower basecalling accuracy may introduce error 
variants in downstream analysis. Thus, new computa-
tional tools and more efficient and optimized protocols 
for sequencing at low depths may be available for more 
accurate EpiGLowS analysis in the short term. Our study 
used Beagle 5 for imputation, with a post processing to 
account for error prone reads. There are other tools that 

Fig. 10 Chromosome‑wide methylation sites for each sample sequenced with the LSK114 kit. Positions showed had a coverage ≥ 4 × 
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Fig. 11 Percentage of methylated genomic regions found for each sample sequenced with the LSK114 kit. Positions showed had a coverage ≥ 4 × 

Fig. 12 Percentage of methylated genomic regions found for each sample sequenced with the LSK114 kit. Positions showed had a coverage ≥ 10 × 
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can analyse low coverage sequencing, however they are 
not specifically designed for error prone long reads [6, 29, 
30].

Future strategies might be developed to specifically 
account for low coverage from long read, and future 
developments that integrate ONT sequencing in breed-
ing programs may include in-farm LPS for clinical 
diagnostic or rapid breeding decisions. High perfor-
mance ONT sequencing platforms, such as Promethion 
devices, can also complement Illumina platforms to 
increase the throughput of breeding programs imple-
menting genomic selection. Some computation strate-
gies may be needed to combine short and long reads low 
pass sequencing within the same population. The results 
in other populations with a lower number of individuals, 
and lower genomic prediction accuracies need yet to be 
tested.

Conclusions
The latest LSK114 chemistry provided a high basecall-
ing accuracy that was suitable for breeding value pre-
diction in a genomic selection framework with very 
similar estimated DGVs compared to the tradictional 
SNP chips. In the future, an increased basecalling accu-
racy and sequencing yield may lead genotype-by-LPS 
and EpiGLowS to achieve even higher DGV closeness 
to SNP genotypes, even at low sequencing depths and at 
a competitive cost. New research and field application 

opportunities arise with the proposed genotype-by-LPS 
in livestock breeding programs and also at evaluating 
management practices that may impact on the epigenetic 
status of the animals. Our results showed that EpiGLowS 
is attractive for research including genomic and epig-
enomic variants, despite of few limitations such as a lack 
of full agreement with SNP chip genotypes and low cov-
erage of methylation marks.

Abbreviations
DA  Dosage allele
DGV  Direct genomic value
EpiGLowS  Epi‑genotype by low pass sequencing
FY  Fat yield
LPS  Low‑pass sequencing
MY  Milk yield
ONT  Oxford Nanopore Technologies
PY  Protein yield
SNP  Single nucleotide polymorphism
TMS  Total mismatch score
TSS  Transcription start site

Acknowledgements
The Spanish Holstein Association (CONAFE) is acknowledge for providing SNP 
chip genotypes and allele substitution effects to calculate direct genomic 
values.

Authors’ contributions
OGR, ALC and MC sequenced the samples; OGR, ALC, ANV, RPP and AF 
contributed to the bioinformatic analyses and imputation; OGR designed the 
experiment and write the first version of the manuscript. All authors helped to 
write the final version of the manuscript. The authors read and approved the 
final manuscript.

Fig. 13 Density of methylated position found for each sample according to their distance to the transcription start site (TSS). Samples were 
sequenced with LSK114 kit. The plot shows the position left after filtering by sequencing depth ≥ 4 × . Average sequencing depth from EpiGLowS 
was 2 × 



Page 14 of 14González‑Recio et al. Journal of Animal Science and Biotechnology           (2023) 14:98 

Availability of data and materials
The datasets during and/or analysed during the current study available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The Ethics Committee of INIA‑CSIC waived the need for ethics approval and 
the need to obtain consent for the collection, analysis and publication of the 
data for this non‑interventional study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Dpt. Mejora Genética Animal, INIA‑CSIC, Ctra La Coruña Km 7.5, 
28040 Madrid, Spain. 2 ETSIAAB, Universidad Politécnica de Madrid. Ciudad 
Universitaria S/N, 28040 Madrid, Spain. 

Received: 9 February 2023   Accepted: 17 May 2023

References
 1. Hickey JM, Chiurugwi T, Mackay I, Powell W, Eggen A, Kilian A, et al. 

Genomic prediction unifies animal and plant breeding programs to form 
platforms for biological discovery. Nat Genet. 2017;49:1297–303. https:// 
doi. org/ 10. 1038/ ng. 3920.

 2. Wray NR, Kemper KE, Hayes BJ, Goddard ME, Visscher PM. Complex trait 
prediction from genome data: Contrasting EBV in livestock to PRS in 
Humans: Genomic prediction. Genet. 2019;211(4):1131–41. https:// doi. 
org/ 10. 1534/ genet ics. 119. 301859.

 3. Weigel KA, de los Campos G, González‑Recio O, Naya H, Wu XL, Long 
N. Predictive ability of direct genomic values for lifetime net merit of 
holstein sires using selected subsets of single nucleotide polymorphism 
markers. J Dairy Sci. 2009;92(10):5248–57. https:// doi. org/ 10. 3168/ jds. 
2009‑ 2092.

 4. Zhang Z, Druet T. Marker imputation with low‑density marker panels in 
dutch holstein cattle. J Dairy Sci. 2010;93(11):5487–94. https:// doi. org/ 10. 
3168/ jds. 2010‑ 3501.

 5. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. 
A robust, simple genotyping‑by‑sequencing (gbs) approach for high 
diversity species. PLoS ONE. 2011;5:19379. https:// doi. org/ 10. 1371/ journ 
al. pone. 00193 79.

 6. VanRaden PM, Sun C, O’Connell JR. Fast imputation using medium or 
low‑coverage sequence data. BMC Genet. 2015;16 https:// doi. org/ 10. 
1186/ S12863‑ 015‑ 0243‑7

 7. Gilly A, Southam L, Suveges D, Kuchenbaecker K, Moore R, Melloni GEM, 
et al. Very low‑depth whole‑genome sequencing in complex trait asso‑
ciation studies. Bioinformatics. 2018;35(15):2555–61. https:// doi. org/ 10. 
1093/ bioin forma tics/ bty10 32.

 8. Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing 
and imputation of low‑coverage sequencing data using large refer‑
ence panels. Nat Genet. 2021;53(1):120–6. https:// doi. org/ 10. 1038/ 
s41588‑ 020‑ 00756‑0.

 9. Gorjanc G, Cleveland MA, Houston RD, Hickey JM. Potential of genotyp‑
ing‑by‑sequencing for genomic selection in livestock populations. Genet 
Sel Evol. 2015;47(12):12.

 10. Chan AW, Hamblin MT, Jannink JL. Evaluating imputation algorithms 
for low‑depth genotyping‑by‑sequencing (GBS) data. PLOS ONE. 
2016;11(8):e0160733. https:// doi. org/ 10. 1371/ journ al. pone. 01607 33.

 11. Brouard JS, Boyle B, Ibeagha‑Awemu EM, Bissonnette N. Low‑depth 
genotyping‑by‑sequencing (GBS) in a bovine population: strategies 
to maximize the selection of high quality genotypes and the accuracy 
of imputation. BMC Genet. 2017;18(1):32. https:// doi. org/ 10. 1186/ 
s12863‑ 017‑ 0501‑y.

 12. Lamb HJ, Hayes BJ, Randhawa IA, Nguyen LT, Ross EM. Genomic predic‑
tion using low‑coverage portable nanopore sequencing. PLoS ONE. 
2021;16(12):e0261274.

 13. González‑Recio O. Epigenetics: a new challenge in the post‑genomic era 
of livestock. Genet Sel Evol. 2012;2:106. https:// doi. org/ 10. 3389/ fgene. 
2011. 00106.

 14. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor‑
matics. 2018;34(18):3094–100.

 15. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. 
Twelve years of SAMtools and BCFtools. GigaScience. 2021;10(2):giab008. 
https:// doi. org/ 10. 1093/ gigas cience/ giab0 08.

 16. Zheng Z, Li S, Su J, Leung AW‑S, Lam T‑W, Luo R. Symphonizing pileup 
and full‑alignment for deep learning‑based long‑read variant calling. Nat 
Comput Sci. 2022;2(12):797–803.

 17. Hayes BJ, Daetwyler HD. 1000 Bull Genomes Project to map simple 
and complex genetic traits in cattle: applications and outcomes. 
Annu Rev Anim Biosci. 2019;7:89–102. https:// doi. org/ 10. 1146/ annur 
ev‑ animal‑ 020518‑ 115024.

 18. Browning BL, Zhou Y, Browning SR. A one‑penny imputed genome from 
next generation reference panels. Am J Hum Genet. 2018;103(3):338–48. 
https:// doi. org/ 10. 1016/j. ajhg. 2018. 07. 015.

 19. Epi2me‑labs. Modified‑base BAM to bedMethyl. 2022. https:// github. 
com/ epi2me‑ labs/ modba m2bed

 20. Wang LG, He QY. Chipseeker: an r/bioconductor package for chip 
peak annotation, comparison and visualization. Bioinformatics. 
2015;31:2382–3.

 21. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, 
Margulies EH, et al. Identification and analysis of functional elements 
in 1 % of the human genome by the ENCODE pilot project. Nature. 
2007;447(7146):799–816. https:// doi. org/ 10. 1038/ natur e05874.

 22. Snelling WM, Hoff JL, Li JH, Kuehn LA, Keel BN, Lndholm‑Perry AK, et al. 
Assessment of imputation from low‑pass sequencing to predict merit 
of beef steers. Genes (Basel). 2020;11(11):1312. https:// doi. org/ 10. 3390/ 
genes 11111 312.

 23. Wang D, Xie K, Wang Y, Hu J, Li W, Yang A, et al. Cost‑effectively dissecting 
the genetic architecture of complex wool traits in rabbits by low‑cover‑
age sequencing. Genet Sel Evol. 2022;54(1):75. https:// doi. org/ 10. 1186/ 
s12711‑ 022‑ 00766‑y.

 24. Malmberg MM, Spangenberg GC, Daetwyler HD, Cogan NOI. Assessment 
of low‑coverage nanopore long read sequencing for SNP genotyping in 
doubled haploid canola (Brassica napus L.). Sci Rep. 2019;9:8688. https:// 
doi. org/ 10. 1038/ s41598‑ 019‑ 45131‑0.

 25. Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and 
inheritance of phenotype variation in livestock. Epigenetics Chromatin. 
2016;9:31. https:// doi. org/ 10. 1186/ s13072‑ 016‑ 0081‑5.

 26. Nguyen TV, Vander Jagt CJ, Wang J, Daetwyler HD, Xiang R, Goddard ME, 
et al. In it for the long run: perspectives on exploiting long‑read sequenc‑
ing in livestock for population scale studies of structural variants. Genet 
Sel Evol. 2023;55:9. https:// doi. org/ 10. 1186/ s12711‑ 023‑ 00783‑5.

 27. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technol‑
ogy, bioinformatics and applications. Nat Biotechnol. 2021;39:1348–65. 
https:// doi. org/ 10. 1038/ s41587‑ 021‑ 01108‑x.

 28. Ferguson S, McLay T, Andrew RL, Jeremy JB, Schwessinger B, Borevitz J, 
et al. Species‑specific basecallers improve actual accuracy of nanopore 
sequencing in plants. Plant Methods. 2022;18:137. https:// doi. org/ 10. 
1186/ s13007‑ 022‑ 00971‑2.

 29. Davies RW, Flint J, Myers S, Mott R. Rapid genotype imputation from 
sequence without reference panels. Nat Genet. 2016;48:965. https:// doi. 
org/ 10. 1038/ NG. 3594.

 30. Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, et al. Genomic analyses 
from non‑invasive prenatal testing reveal genetic associations, patterns of 
viral infections, and chinese population history. Cell. 2018;175:347–35914. 
https:// doi. org/ 10. 1016/J. CELL. 2018. 08. 016.

https://doi.org/10.1038/ng.3920
https://doi.org/10.1038/ng.3920
https://doi.org/10.1534/genetics.119.301859
https://doi.org/10.1534/genetics.119.301859
https://doi.org/10.3168/jds.2009-2092
https://doi.org/10.3168/jds.2009-2092
https://doi.org/10.3168/jds.2010-3501
https://doi.org/10.3168/jds.2010-3501
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1186/S12863-015-0243-7
https://doi.org/10.1186/S12863-015-0243-7
https://doi.org/10.1093/bioinformatics/bty1032
https://doi.org/10.1093/bioinformatics/bty1032
https://doi.org/10.1038/s41588-020-00756-0
https://doi.org/10.1038/s41588-020-00756-0
https://doi.org/10.1371/journal.pone.0160733
https://doi.org/10.1186/s12863-017-0501-y
https://doi.org/10.1186/s12863-017-0501-y
https://doi.org/10.3389/fgene.2011.00106
https://doi.org/10.3389/fgene.2011.00106
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1146/annurev-animal-020518-115024
https://doi.org/10.1146/annurev-animal-020518-115024
https://doi.org/10.1016/j.ajhg.2018.07.015
https://github.com/epi2me-labs/modbam2bed
https://github.com/epi2me-labs/modbam2bed
https://doi.org/10.1038/nature05874
https://doi.org/10.3390/genes11111312
https://doi.org/10.3390/genes11111312
https://doi.org/10.1186/s12711-022-00766-y
https://doi.org/10.1186/s12711-022-00766-y
https://doi.org/10.1038/s41598-019-45131-0
https://doi.org/10.1038/s41598-019-45131-0
https://doi.org/10.1186/s13072-016-0081-5
https://doi.org/10.1186/s12711-023-00783-5
https://doi.org/10.1038/s41587-021-01108-x
https://doi.org/10.1186/s13007-022-00971-2
https://doi.org/10.1186/s13007-022-00971-2
https://doi.org/10.1038/NG.3594
https://doi.org/10.1038/NG.3594
https://doi.org/10.1016/J.CELL.2018.08.016

	Evaluating the potential of (epi)genotype-by-low pass nanopore sequencing in dairy cattle: a study on direct genomic value and methylation analysis
	Abstract 
	Background 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Samples and DNA extraction
	Sequencing
	Bioinformatic pipeline
	Computing direct genomic values
	Detection of modified based

	Results
	Descriptive summary
	Variant calling accuracy
	Imputation accuracy
	Closeness between polygenic values estimated from SNP chips and LPS
	Effect of sequencing depth on similarity to SNP chip genotypes
	Detection of modified bases

	Discussion
	Conclusions
	Acknowledgements
	References


