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Abstract 

Background The development of a sustainable business model with social acceptance, makes necessary to develop 
new strategies to guarantee the growth, health, and well‑being of farmed animals. Debaryomyces hansenii is a yeast 
species that can be used as a probiotic in aquaculture due to its capacity to i) promote cell proliferation and differen‑
tiation, ii) have immunostimulatory effects, iii) modulate gut microbiota, and/or iv) enhance the digestive function. To 
provide inside into the effects of D. hansenii on juveniles of gilthead seabream (Sparus aurata) condition, we inte‑
grated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine 
condition, through histological and microbiota state, and its transcriptomic profiling.

Results After 70 days of a nutritional trial in which a diet with low levels of fishmeal (7%) was supplemented with 
1.1% of D. hansenii (17.2 ×  105 CFU), an increase of ca. 12% in somatic growth was observed together with an improve‑
ment in feed conversion in fish fed a yeast‑supplemented diet. In terms of intestinal condition, this probiotic modu‑
lated gut microbiota without affecting the intestine cell organization, whereas an increase in the staining intensity of 
mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain 
lectins were noted in goblet cells. Changes in microbiota were characterized by the reduction in abundance of several 
groups of Proteobacteria, especially those characterized as opportunistic groups. The microarrays‑based transcrip‑
tomic analysis found 232 differential expressed genes in the anterior‑mid intestine of S. aurata, that were mostly 
related to metabolic, antioxidant, immune, and symbiotic processes.

Conclusions Dietary administration of D. hansenii enhanced somatic growth and improved feed efficiency param‑
eters, results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools 
indicated. This probiotic yeast stimulated host‑microbiota interactions without altering the intestinal cell organization 
nor generating dysbiosis, which demonstrated its safety as a feed additive. At the transcriptomic level, D. hansenii pro‑
moted metabolic pathways, mainly protein‑related, sphingolipid, and thymidylate pathways, in addition to enhance 
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antioxidant‑related intestinal mechanisms, and to regulate sentinel immune processes, potentiating the defensive 
capacity meanwhile maintaining the homeostatic status of the intestine.

Keywords Debaryomyces hansenii, Intestine condition, Low fish meal diet, Microbiota, Transcriptomics, Yeast 
probiotic

Background
Yeasts are single-celled members of the fungi kingdom, 
widely distributed in nature, capable of living in extreme 
environments. Its biological relevance is determined by 
1,500 species described so far, with a high impact on both 
plant and animal life [1], being also a pillar in the human 
food industry. Used for millennia due to their fermentative 
activity to produce highly demanded foods (bread, cheese, 
wine, beer, among others), for some years now yeasts have 
also been in the crosshair of the pharmaceutical industry 
[2]. Some authors have suggested their use as transport 
vehicles for bioactive compounds [3], drug delivery [4], or 
what is more widely considered, as natural probiotics for 
humans, livestock, and aquaculture species [5, 6]. Some 
of them have been isolated from the intestine of several 
species as part of their commensal microbiota, including 
fish [7]. In this sense, the reasons why some yeast species 
are highly interesting for their use as probiotics is because 
they may promote somatic growth, modulate the intestinal 
microbiota, as well as enhance host health and condition 
due to their contents in immunomodators like β-glucans 
among other bioactive compounds [8–10].

Several studies have recommended the inclusion of 
yeasts in livestock and aquaculture feeds, as an additive, 
due to their beneficial effects in key performance indica-
tors related to growth and feed efficiency, and in terms 
of antioxidant performance, and immunity enhancement, 
among which is the resistance to infections [11–13]. On 
the other hand, yeasts and their metabolic products from 
food industry by-products could also be used to produce 
high quality alternative protein sources within a sustain-
able and circular economy approach [14–16]. It is known 
that yeasts are a rich source of nutrients and protein-
related compounds with a wide range of bioactive activi-
ties. In this sense, yeasts cells contain different types of 
wall-related compounds, like glucans and polyamines 
(biologically active amines), which are essential for the 
maintenance of life [17]. Specifically, amines have been 
observed to be relevant to the normal cell development 
and are involved in several cellular processes, along with 
systemic benefits for the animals [18–20].

Among all yeast species, Saccharomyces cerevisiae 
might be the most studied yeast as a probiotic or alterna-
tive protein source. However, another yeast species that 
has received a lot of attention for its probiotic effect is 
Debaryomyces hansenii [21]. Contrary to other species, 

D. hansenii belongs to the normal microbiota of wild and 
cultivated animals [22], and it has been reported that it 
also promotes growth and development in various spe-
cies at different stages, results that have been attributed 
to its glucans and polyamine content [21]. This probiotic 
has been tested at early life stages in aquatic species with 
promising results; for instance, larvae of Seriola rivo-
liana [23], Danio rerio [24], Dicentrarchus labrax [25] 
and Penaeus monodon [26] showed improved survival 
and development when fed a diet supplemented with D. 
hansenii. Similarly, other studies focused on juveniles and 
adults showed that a diet supplemented with this yeast 
had a positive effect on the host in terms of its physi-
ological and immune responses, showing its capacity to 
counteract possible stress impacts as well as to enhance 
disease resistance [17, 27, 28], along with an improve-
ment of the intestinal health and function [29]. However, 
little is known about the effects on fish performance, and 
especially about the modes of action on the intestinal 
mucosa, beyond a purely immunological aspect.

The aim of this study was to evaluate the effect of a feed 
supplemented with D. hansenii on gilthead seabream (Spa-
rus aurata) on common key performance indicators (KPI) 
associated to somatic growth and feed efficiency coupled 
with the analysis of the transcriptomic profile and the his-
tological organization of the anterior-mid intestine, and its 
autochthonous microbiota in order to provide inside into 
the effects of this yeast on host condition. The convergence 
offered in this study by the integration of these analytics 
in the intestinal mucosa in one of the most highly valued 
species in the Mediterranean [30], is highly relevant for the 
introduction and management of sustainable feeding strat-
egies for the growing aquaculture industry.

Material and methods
Diet composition
To evaluate the effects of D. hansenii as a probiotic in 
aquafeeds, two diets were formulated with similar lev-
els of protein content (48.4% crude protein), lipid con-
tent (17.2% crude fat), and energy levels (21.7  MJ/kg 
gross energy) (Table 1). Both diets, named Control and 
Yeast diets, were formulated with low levels of fish-
meal (7%) where fishmeal was replaced by a blend of 
plant-based meals (wheat, corn, pea and soy) (Table 1). 
Diets only differed in the inclusion of D. hansenii (CBS 
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8339) at an inclusion rate of 1.1% (17.2 ×  105 CFU). D. 
hansenii was provided by CIBNOR (La Paz, Mexico) 
and grown as described in Tovar-Ramírez et al. [25].

Both diets (2 mm pellet size) were manufactured by 
SPAROS Lda (Olhão, Portugal) in a temperature-con-
trolled low-shear extruder as detailed in Gisbert et al. 
[31]. Samples of each diet were taken for proximate 
composition, and feeds were stored at 4  °C along the 
experimental feeding trial to prevent their oxidation.

Experimental model and design
A total of 500 S. aurata juveniles (body weight, 
BW = 14.5 ± 1.2  g; mean ± SD) were obtained from a 

commercial farm (PISCIMAR S.L.; AVRAMAR, Burriana, 
Spain). Fish were transported to IRTA-La Ràpita research 
facilities (La Ràpita, Spain), and acclimated for two weeks 
in two tanks of 2,000 L connected to a IRTAmar® recircu-
lating system under natural photoperiod and constant tem-
perature (23.0 ± 1.0 °C). During acclimatation, fish were fed 
with a commercial diet containing 48.5% protein, 18% lipid, 
and 18.5 MJ/kg digestible energy (Optibream, Skretting).

Before the trial, 200 fish (25 fish per tank; 4 tank repli-
cates per diet) were gently anesthetized (50 mg/L tricaine 
methanesulfonate, MS-222, Sigma-Aldrich, Madrid, Spain) 
and individually measured in BW and standard length 
(SL) to the nearest 0.1 g and 1 mm, respectively. The trial 
lasted for 70 d, during which fish were fed at 3.5% of the 
stocked biomass by means of automatic feeders (ARVO-
TEC T Drum 2000; Arvotec, Finland). The daily feed ratio 
was evenly distributed in 4 meals at 08:00, 11:00, 13:00 
and 16:00  h (at each meal, the corresponding feed ration 
was distributed during 1  h). One hour after each meal, 
uneaten pellets were collected, dried overnight (120  °C), 
and weighted (g) for calculating daily feed ingesta values, 
while feed ration was adjusted to guarantee 10%–15% of 
uneaten pellets; thus, confirming that fish were fed at satia-
tion. This trial was run in a recirculating system IRTAmar® 
under natural photoperiod conditions (14 h light/8 h dark), 
constant temperature (23.3 ± 1.3  °C), salinity (35–36 ppt), 
dissolved oxygen (5.7 ± 0.2 mg/L ) (OXI330, Crison Instru-
ments, Spain), and pH (8.2 ± 0.1) (pHmeter 507, Crison 
Instruments). Ammonia (0.13 ± 0.1 mg NH+

4 /L) and nitrite 
levels (0.18 ± 0.1 mg NO−

2 /L) (HACH DR 900 Colorimeter, 
Hach Company, Spain) were weekly controlled.

Growth and feed performance indicators were calcu-
lated using the following formulae:

– 

Specific growth rate in body weight, BW (SGR, % BW∕d) =

100 ×
[(

ln BWf − ln BWi) ∕ d
)]

; where BWf and BWi

are the final and initial mean BW of fish.   
– Survival rate (SR, %) = 100 × (Final number of fish ∕ Initial number of fish). 
– Feed conversion ratio (FCR) = Feed ingesta (g) ∕ Increase in fish biomass (g). 

At the end of the trial, all fish were individually cap-
tured, anaesthetised (100 mg/L MS222) and their BW and 
SL measured as previously described. In addition, fifteen 
fish per tank were euthanised (300  mg/L MS222) and 
their digestive tract removed for further transcriptomic 
and microbiome studies as described below. In this sense, 
the anterior-mid intestine was chosen for transcriptomic 
purposes because of its immunological relevance in com-
parison with other intestinal sections [32, 33].

Histological and histochemical analysis
Samples from the anterior-mid intestine (n = 12 ran-
domly selected fish per experimental diet; 3 fish 
per tank) were embedded in paraffin and sagittally 

Table 1 Ingredients and proximal composition of the 
experimental diets

a Fishmeal LT70, Norvik 70, Sopropêche, France
b SOYCOMIL®, ADM Animal Nutrition, Quincy, USA
c SAVINOR UTS, Trofa, Portugal
d Vitamin and mineral premix (PREMIX Sparos Lda, Portugal): Vitamins (IU or mg/
kg diet): DL-alpha tocopherol acetate, 100 mg; sodium menadione bisulphate, 
25 mg; retinyl acetate, 20,000 IU; DL-cholecalciferol, 2,000 IU; thiamin, 30 mg; 
riboflavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 0.1 mg; n-icotinic acid, 
200 mg; folic acid, 15 mg; ascorbic acid, 500 mg; inositol, 500 mg; biotin, 3 mg; 
calcium panthotenate, 100 mg; choline chloride, 1,000 mg, betaine, 500 mg. 
Minerals (g or mg/kg diet): copper sulfate, 9 mg; ferric sulfate, 6 mg; potassium 
iodide, 0.5 mg; manganese oxide, 9.6 mg; sodium selenite, 0.01 mg; zinc 
sulfate,7.5 mg; sodium chloride, 400 mg; excipient wheat middlings

Ingredients, % Diets

Control Yeast

Fishmeal  LT70a 7.0 7.0

Soy protein  concentrateb 21.0 21.0

Pea protein concentrate 12.0 12.0

Wheat gluten 12.0 12.0

Corn gluten 12.0 12.0

Soybean meal 48 5.0 5.0

Wheat meal 10.4 10.4

Fish  oilc 15.0 15.0

Vit & Min premix (PV01)d 1.0 1.0

Soy lecithin (Powder) 1.0 1.0

Binder (guar gum) 1.0 1.0

Monocalcium phosphate 2.0 2.0

L‑Lysine 0.3 0.3

L‑Tryptophan 0.1 0.1

DL‑Methionine 0.2 0.2

Total, % 100 100

Supplementation
 Yeast (Debaromyces hansenii), % ‑ 1.1

Feed basis proximate composition
 Crude protein, % feed 48.4 48.4

 Crude fat, % feed 17.2 17.2

 Fiber, % feed 1.53 1.53

 Ash, % feed 5.89 5.89

 Gross energy, MJ/kg feed 21.7 21.7
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sectioned (5–6 μm). A total of 576 sections (2 per each 
sample × 24 samples × 12 histochemical techniques) 
were used for histological and histochemical purposes. 
Two sections per each sample were stained with hae-
matoxylin–eosin for descriptive purposes; the rest were 
used for evaluating the histochemical properties of epi-
thelial and mucous cells. In brief, Schiff, Periodic Acid 
Schiff (PAS), diastase-PAS and Alcian Blue (AB) pH 
2.5, 1 and 0.5 (carboxylated and sulphated glycoconju-
gates/glycoproteins) techniques were used for studying 
carbohydrate distribution. Furthermore, several horse-
radish peroxidase (HRP) conjugated lectins (Sigma-
Aldrich, Spain) were used for proper characterization 
of different glucidic residues bound to the glycoconju-
gates; in particular, Canavalia ensiformes/ConA (man-
nose and/or glucose), Ulex europeus/UEA-I (L-fucose), 
Triticum vulgaris/WGA (N-acetyl-D-glucosamine 
and/or N-acetyl-neuraminic acid, NeuNAc/sialic acid/
NANA), Glycine max/SBA (a-N-acetyl-D-galactosa-
mine) and Sambucus nigra/SNA (NeuNAc/sialic acid/
NANA). Lectin concentrations ranged between 15 μg/L 
to 30  μg/mL. Regarding negative controls, omission of 
the respective lectin, substitution of lectin-HPR con-
jugates by TBS and treatments with different enzymes 
were performed according to Sarasquete et al. [34]. The 
peroxidase activity was visualized with 3,3-diaminoben-
zidine tetra hydrochloride/DAB and hydrogen peroxide 
(0.05%). All the techniques were performed according 
to Underwood [35] and following proper standardized 
techniques and protocols [36]. All reagents were pur-
chased from Sigma-Aldrich (St Louis, MO, USA).

Histological images (600 dpi) were taken with a Leitz 
Wetzlar microscope with a built-in SPOT Insight Color 
camera (Ernst Leitz Wetzlar GmbH, Germany). Results 
were manually registered using a semi-quantitative 
assessment scoring based on color intensity scores 
(0, negative; 1, weak; 2, moderate; 3, intense; 4, very 
intense) from four independent observers, comparing 
the sections of the control with the experimental diet. 
The mucous cell count was determined in four differ-
ent sites of each histological section, and the number 
of cells expressed per length unit of the basal lamina of 
the mucosal epithelium (1 mm) according to Yamamoto 
et al. [37].

Intestinal microbiota
DNA extraction and sequencing by Illumina MiSeq 
technology
The complete intestine of S. aurata (n = 8 per dietary 
condition) was taken for microbiome analyses. Samples 
were stored at −20 °C, thawed gradually on ice and the 
mucus intestinal contents (autochthonous microbiota) 
were collected for further analyses. A 1-mL aliquot 

per sample of intestinal contents were collected with 
1  mL PBS. Total DNA was extracted from each sam-
ple according to protocol described in Tapia-Paniagua 
et  al. [38], with minor modifications. DNA concentra-
tion and purity were quantified fluorometrically with 
Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA) and by spectrophotometric 
and electrophoretic methods to study the degree of 
purity, quality, and DNA integrity. Isolated DNA was 
stored at –20  ºC until further processing and 30  ng 
used for subsequent analyses. 16S rRNA of samples was 
sequenced on Illumina MiSeq platform (Illumina, San 
Diego, CA, USA) with 2 × 300 bp paired-end sequenc-
ing in the Ultrasequencing Service of Malaga (Malaga, 
Spain). Sequencing was carried out using the primers 
341F and 805R directed to the variable regions V3–
V4 of the 16S rRNA gene [39]. Raw read sequences of 
the 16S rRNA gene from S. aurata intestinal micro-
biota are publicly available in the NCBI SRA deposi-
tory (SRS16609731—SRS16609735) within BioProject 
PRJNA914904, with BioSample accession numbers 
SAMN32318396-SAMN32318408.

Bioinformatic analysis
Primers were removed and quality control were per-
formed with cutadapt and FastQC software respec-
tively. Barcoding sequences were processed using R 
DADA2 library. Briefly, forward and reverse reads were 
truncated with decreasing quality metrics while main-
taining sequence overlap. Paired reads were assembled 
after error modelling and correction, creating amplicon 
sequence variants (ASVs). Chimeric ASVs were removed 
by reconstruction against more abundant parent ASVs. 
Taxonomy was assigned to representative sequence vari-
ants using SILVA release 138 database, clustered at 99% 
identity, and trimmed to the amplified region. Abun-
dance of ASV of the intestinal microbiota was processed 
using phyloseq and vegan library in R statistical package. 
Shannon’s alpha diversity indices, to evaluate taxonomic 
diversity and PCoA to beta diversity were performed. 
ASVs with abundance minor to 10 reads in at least of 10% 
of samples were filtered to taxonomy analyses. R library 
ggplot was used to represent the abundance of different 
taxonomy categories and differential abundance of taxa 
was carried out using the R package DESeq2 with a false 
discovery rate (FDR < 0.05).

Gut transcriptional analysis
RNA isolation and quality control
Total RNA from the anterior-mid intestine of nine randomly 
selected fish per dietary treatment (n = 4 fish per tank) was 
extracted using the RNeasy® Mini Kit (Qiagen, Germany). 
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Total RNA was eluted in a final volume of 35 μL nuclease-
free water and treated with DNAse (DNA-free™ DNA 
Removal Kit; Invitrogen, Lithuania). Total RNA concen-
tration and purity were measured using Nanodrop-2000® 
spectrophotometer (Thermo Scientific, USA) and stored 
at −80 °C until analysis. Prior to hybridization with microar-
rays, RNA samples were diluted to 133.33 ng/μL concentra-
tion, checked for RNA integrity (Agilent 2100 Bioanalyzer; 
Agilent Technologies, Spain) and selected by the criteria of a 
RIN value > 8.5. Three different pools of samples per dietary 
treatment were established (n = 4 fish each pool); this choice 
of pooling individual samples resulted in the loss of infor-
mation derived from individual sample variability.

Microarray hybridization and analysis
Anterior-mid intestine transcriptional analysis from both 
experimental groups was carried out using the Aquagen-
omics Sparus aurata Oligonucleotide Microarray v2.0 
(4 × 44 K) (SAQ) platform. Detailed information and tran-
scriptomic raw data are available at the Gene Expression 
Omnibus (GEO) public repository at the US National 
Center for Biotechnology Information (NCBI), accession 
numbers GPL13442, and GSE162504, respectively. Sample 
labelling, hybridization, washes, and scanning was per-
formed as described in Firmino et al. [40]. Briefly, a one-
color RNA labelling was used (Agilent One-Color RNA 
Spike-In kit; Agilent Technologies, USA). RNA from each 
sample pool (200 ng) was reverse-transcribed with spike-
in. Then, total RNA was used as template for Cyanine-3 
(Cy3) labelled cRNA synthesis and amplified with the 
Quick Amp Labelling kit (Agilent Technologies). cRNA 
samples were purified using the RNeasy® micro kit (Qia-
gen). Dye incorporation and cRNA yield were checked 
(NanoDrop ND-2000® spectrophotometer). Then, Cy3-
labeled cRNA (1.5  mg) with specific activity > 6.0  pmol 
Cy3/mg cRNA was fragmented at 60  °C for 30  min and 
hybridized with the array in presence of hybridization 
buffer (Gene expression hybridization kit, Agilent Tech-
nologies) at 65 °C for 17 h. For washes, microarrays were 
incubated with Gene expression wash buffers, and stabi-
lization and drying solution according to manufacturer 
instructions (Agilent Technologies). Microarray slides 
were then scanned (Agilent G2505B Microarray Scan-
ner System), and spot intensities and other quality control 
features extracted (Agilent Feature Extraction software 
version 10.4.0.0). The extracted raw data were imported 
and analysed with GeneSpring (version 14.5 GX soft-
ware, Agilent Technologies). To standardize the arrays 
intensity, 75% percentile normalization was used, and 
data were filtered by expression levels. The differential 
expressed genes (DEGs) were obtained from a gene-level 
differential expression analysis. Expression values with 
up-value < 0.05 were considered statistically significant. 

The DEGs were grouped according to their fold-change 
value (P-value < 0.05) and represented using the GraphPad 
softwarev7.0 for Windows. The 3D principal component 
analysis (PCA) was carried out using GeneSpring software 
(Agilent), four eigenvectors were calculated to describe the 
aggrupation of diets control and yeast in a 3D plot. The 
gene expression values (log-expression ratios) were repre-
sented by a hierarchical clustering heatmap analysis using 
GeneSpring software (Agilent).

The Search Tool for the Retrieval of Interacting Genes 
(STRING) public repository version 11.0 (https:// string- 
db. org), and the application ClueGO (v2.5.9) and CluePe-
dia (v1.5.9) using Cytoscape (v3.9.1) software, were used 
to generate the anterior-mid intestine transcripteractome 
and cluster aggrupation for the DEGs of fish fed the yeast-
supplemented diet. A protein–protein interaction (PPI) 
Networks Functional Enrichment Analysis for all the dif-
ferentially expressed genes (DEGs) was conducted with a 
medium-confidence interaction score (0.4) using Homo 
sapiens as model organism [40]. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis of all the DEGs obtained were also 
assessed through STRING (P < 0.05). In order to confirm 
match of gene acronyms between both Homo sapiens and 
S. aurata species, human orthology identification based 
on gene/protein name was accessed through the Gene-
cards (www. genec ards. org) [41] and Uniprot (www. unipr 
ot. org) databases. Additionally, protein–protein BLAST 
(BLASTp) was run (E <  10−7; query cover > 95%).

Statistical analysis
Data on growth, feed performance indicators and gob-
let cell density in the intestinal epithelium are expressed 
as mean ± standard deviation, and a probability value of 
P < 0.05 was considered as significant by means of a Stu-
dent’s t-test. Regarding microbiota studies, F diversity 
indexes were compared between both dietary groups by 
means of a Student’s t-test (P < 0.05).

Results
Growth and feed performance indicators
At the end of the trial, fish fed low fish meal diet sup-
plemented with D. hansenii (1.1%, 17.2 ×  105 CFU; Yeast 
diet) had significant differences compared with the fish 
fed the Control diet in terms of somatic growth. Data 
showed improved  BWf, BWG and the SGR values in fish 
fed the Yeast diet compared with those fed the Control 
diet (Table  2; P < 0.05). Furthermore, FCR values were 
significantly lower in fish fed the Yeast diet when com-
pared to the control ones (1.26 ± 0.07 vs. 1.06 ± 0.05, 
respectively). No significant differences in the FI and SR 
were found between both groups (Table 2; P > 0.05).

https://string-db.org
https://string-db.org
http://www.genecards.org
http://www.uniprot.org
http://www.uniprot.org
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Morphological organization of the anterior‑mid intestine 
and histochemical properties of mucins produced 
by goblet cells
The mucosal layers from the anterior-mid intestine of fish 
fed both experimental diets were similar. In brief, both 
were lined by a simple columnar epithelium with basal 

nuclei, basophilic cytoplasm, and prominent brush bor-
der, with scattered goblet cells. No signals of histological 
alterations associated with inflammatory processes nor 
lymphocyte infiltrations in the anterior-mid intestine 
were observed in fish fed the Yeast diet compared to the 
control group (Fig.  1a and b). No significant differences 
in goblet cell density were detected when comparing 
both treatments (Fig. 2).

Regarding the histochemical properties of mucins 
produced by goblet cells from the anterior-mid intes-
tine, results showed a variable richness of neutral glyco-
proteins (PAS and diastase-PAS positive) (Table  3). In 
addition, mucins showed a mixture of carboxylated (AB 
pH = 2.5) and sulphated acidic groups (weak and strongly 
ionized; AB pH = 1.0 and 0.5, respectively) (Table  3 and 
Fig. 1c). Regarding lectin histochemistry, a specific affin-
ity for WGA, SNA, ConA and SBA lectins was detected 
in the mucinous content of goblet cells (Table  3 and 
Fig. 3). Moreover, no variations were detected in the dis-
tribution of mucosal cell glycoconjugates between the 
upper and the bottom areas of the intestinal folds. When 
comparing both dietary groups, the dietary admin-
istration of D. hansenii modified the composition of 

Table 2 Growth and feed performance indicators in gilthead 
sea bream (Sparus aurata) fed experimental low fishmeal diets 
containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast 
diet) or devoid of the probiotic (Control diet)

Data are shown as the mean ± standard deviation (SD). The asterisk (*) denotes 
statistically significant differences between both groups (Student’s t-test, 
P < 0.05; n = 4)

Control diet Yeast diet P‑value

Final body weight  (BWf), g 84.4 ± 2.92 95.6 ± 4.64 0.007*

Body weight gain (BWG), g 69.9 ± 2.92 81.1 ± 4.65 0.007*

Specific growth rate (SGR), %BW/d 2.52 ± 0.05 2.69 ± 0.07 0.006*

Survival rate (SR), % 92.0 ± 3.3 93.0 ± 2.0 0.620

Feed intake (FI), g/fish 86.9 ± 3.77 84.3 ± 6.65 0.526

Feed conversion ratio (FCR), BWG/FI 1.26 ± 0.07 1.06 ± 0.05 0.003*

Fig. 1 Histological organization of the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed experimental low fishmeal diets containing 
Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) (a) or devoid of the probiotic (Control diet) (b). Histochemical properties of mucins 
produced by intestinal goblet cells regarding their content on carboxylated and/or sulphated acidic groups from fish fed the Control diet (c) and 
the Yeast diet (d). Abbreviations: mc, mucous cells; bb, brush border. Staining: hematoxylin–eosin (a, b), Alcian Blue pH = 2.5 (c, d). Scale bar = 50 µm
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glycoproteins of mucins produced by goblet cells, with an 
increase in the staining intensity of mucins rich in car-
boxylated and weakly sulphated glycoconjugates (Table 3 
and Fig. 1c and d). In addition, an increase in affinity for 
SBA lectin and a decrease in the affinity for the WGA 

lectin was found in the mucinous content of goblet cells, 
whereas no changes were detected regarding ConA, SNA 
and UEA-I lectins (Table 3 and Fig. 3).

Intestinal microbiota
Sequencing data analysis
After bioinformatic processing, an average of 117,038.2 
reads per sample were obtained (minimum reading 
71,378 and maximum 162,602 reading) that were classi-
fied into 1,594 ASVs.

The Shannon and Simpson alpha diversity indexes 
were calculated for each sample of experimental groups 
(Table  4). The alfa diversity values in the experimental 
groups did not show significant differences (P > 0.05). 
The PCoA analysis to check the beta diversity between 
the detected sequences did not show a clearly separated 
grouping of samples based on the diet (Additional file 1: 
Fig. S1).

Taxonomic composition of the intestinal microbiota
At phylum level, the predominant phyla detected in 
all fish fed both experimental diets were Proteobacte-
ria, followed by Firmicutes (Fig.  4A), whereas the most 
abundant classes in all cases were alpha- and gamma-
Proteobacteria (Fig.  4B). However, no significant differ-
ences were found among diets. A comparative analysis 
at genus level (abundance > 0.5%) showed a very similar 
abundance of sequences between specimens from both 
diets (Fig.  5), whereas  Pseudoalteromonas, Acinetobac-
ter, Pseudomonas, Shewanella and Vibrio were the most 
abundant genera.

DESeq2 analysis was applied to evaluate the signifi-
cant differences (FDR < 0.05) between the abundance 
of the microbial taxa. Significant differences were 
detected regarding to the genera included in Proto-
bacteria, and with abundance higher than 0.5% such 
as Acinetobacter, Comamonas and Pseudomonas, 
which showed decreased abundances in fish from the 
Yeast diet in comparison to those fed the Control diet 
(Fig. 6). Other significant differences were also detected 
within the Proteobacteria phylum, and particular in 
bacteria from the genus Anaerococcus, Ascidiaceihab-
itans, Hydrogenophaga and Variovorax that displayed 
lower abundances of ASVs in fish from the Yeast diet, 
whereas an increase of ASVs related to the genus Bacil-
lus were found in the intestine of fish fed the Yeast diet 
(Fig. 6).

Transcriptomics of the anterior‑mid intestine
Transcriptomic profile
To evaluate the modulatory effects of the dietary admin-
istration of D. hansenii at 1.1% upon intestine transcrip-
tome, we performed a microarray-based transcriptomic 

Fig. 2 Box‑plot graph of goblet cell density in the anterior‑mid 
intestine of gilthead seabream (Sparus aurata) fed experimental 
low fishmeal diets containing Debaryomyces hansenii (1.1%, 
17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). 
No statistically significant differences were detected among dietary 
treatments (Student’s t‑test; P > 0.05). Mean line within the boxplot 
indicate the average value of the series; O and ◻ = outlier points of 
the series

Table 3 Histochemical results and affinity for different lectins 
in the anterior‑mid intestinal mucosa of gilthead seabream 
(Sparus aurata) fed experimental low fishmeal diets containing 
Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or 
devoid of the probiotic (Control diet)

Semi-quantitative assessment scoring based on color intensity scores: 0, 
negative (non-detected); 1, weak; 2, moderate; 3, intense; 4, very intense

Control diet Yeast diet

General histochemistry
 Neutral glycoproteins 1–2 1–2

 Carboxylated glycoproteins 1–3 1–4

 Weakly inonised sulphated glycoconju‑
gates

2–3 3

 Strongly ionised sulphated glycoconju‑
gates

2–3 2–3

Lectin histochemistry
 ConA (Man/Glu) 0–1 0–1

 WGA (βGlcNAc > NeuNAc/sialic acids/
NANA)

2–3 1–2

 SNA (Neur5Acα2; sialic acids/NANA) 0–1 0–1

 SBA (α/β GalNAc) 0–3 2–3

 UEA‑I (L‑Fuc) 0 0
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analysis. As shown in Fig.  7 and listed in Additional 
file  1: Table  S1, a total of 232 differentially-expressed 
genes (DEGs) were found in the anterior-mid intestine 
when comparing samples from both diets (P < 0.05). 
Among these, 177 DEGs were up-regulated, and 55 DEGs 
were down-regulated showing both different levels of 
fold-change (FC) (Fig.  7A). The percentage expression 

pattern was similar in both up- and down-regulated 
genes, although in numerical terms most of the DEGs 
found were up-regulated with a FC > 2 (12 DEGs up-
regulated vs. 1 DEG down-regulated), even some of 
these being expressed with a FC of 4, 6 or 10 (Fig. 7A and 
Additional file 1: Table S1). The 3D PCA analysis showed 
a clear grouping for both the Control and Yeast diets 

Fig. 3 Histochemical localization of glycoconjugates containing sugar residues in the anterior‑mid intestine of gilthead seabream (Sparus aurata) 
fed experimental low fishmeal diets containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). 
Presence of glycoconjugates containing α/β‑N‑acetyl‑D‑galactosamine in mucous cells of S. aurata fed a Control (a) or a Yeast diet (b). Results 
denote a moderate increase in affinity for the SBA lectin in the mucous cells and in the intestinal epithelium from Yeast diet. Glycoconjugates 
containing N‑acetyl‑D‑glucosamine and/or N‑acetylneuraminic acid residues in mucous cells of S. aurata fed the Control or the Yeast diet 
(d). Results denote a moderate decrease in affinity for the WGA lectin in the mucous cells from the Yeast diet. Histochemical detection of 
glycoconjugates containing N‑acetylneuraminic acid/sialic acid residues in the intestine from the Control (e) or Yeast (f) groups. Note the decrease 
in affinity for the SNA lectin in the anterior‑mid intestinal epithelium of S. aurata fed the Yeast diet. Glycoconjugates containing a‑mannose/
a‑glucose residues in anterior‑mid intestine from S. aurata fed Control (g) or Yeast diets (h). Observe the increase in affinity for the ConA lectin in the 
intestinal epithelium of S. aurata fed the Diet Y. Abbreviations: e: epithelium; mc: mucous cells. Scale bar = 50 μm
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(Fig.  7B), meanwhile the hierarchical clustering heat-
map confirmed the conservative response of the arrays, 
showing a clear differential expression profile of DEGs 
between both dietary groups (Fig. 7C).

A biological network (transcripteractome) considering 
the complete DEGs annotated list was prepared in order to 
have an overview of the relationships between them (Fig. 8). 
The gene network resulted in 157 nodes/DEGs and 210 
edges/interactions (with an expected number of 145 edges), 
excluding from the analysis the remaining DEGs (n = 75; 
32% of the total DEGs), classified as unknown genes.

Functional enrichment analysis
The functional enrichment analysis of the transcripter-
actome helped us to identify several biological processes 
and pathways for the DEGs in the anterior-mid intestine 
of S. aurata fed the Yeast diet in comparison to their con-
geners from the control group (Control diet). Thus, 54 
GO were identified (P < 0.05; Additional file 1: Table S2), 
whereas the top-10 representative processes per num-
ber of DEGs were as listed: “Nitrogen compound meta-
bolic process” (60.5% of the total DEGs: 83 up-regulated 
vs. 12 down-regulated; GO:0006807), “Organic sub-
stance biosynthetic process” (30.6% of the total DEGs: 
42 up-regulated vs. 6 down-regulated; GO:1901576), 
“Cellular response to chemical stimulus” (28.2% of 
the total DEGs: 35 up regulated vs. 9 down-regulated; 
GO:0070887), “Nucleic acid metabolic process” (24.8% 
of the total DEGs: 37 up-regulated vs. 2 down-regulated; 
GO:0090304), “Negative regulation of gene expression” 
(20.4% of the total DEGs: 27 up-regulated vs. 5 down-
regulated; GO:0010629), “Cellular catabolic process” 
(18.5% of the total DEGs: 28 up-regulated vs. 1 down-
regulated; GO:0044248), “Heterocycle biosynthetic 
process” (14.0% of the total DEGs: 21 up-regulated vs. 
1 down-regulated; GO:0,018130), “Cellular response to 
oxygen-containing compound” (13.4% of the total DEGs: 
16 up-regulated vs. 5 down-regulated; GO:1901701), 

Table 4 Alpha diversity indices of microbiota intestine 
population of gilthead seabream (Sparus aurata) fed 
experimental low fishmeal diets containing Debaryomyces 
hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the 
probiotic (Control diet)

Mean ± standard deviation. No significant differences were found (Student’s 
t-test, P > 0.05)

Observed Shannon Simpson Chao1 ACE

Con‑
trol 
diet

206.6 ± 46.6 3.77 ± 0.19 0.94 ± 0.03 216.4 ± 38.5 216.4 ± 38.5

Yeast 
diet

203.2 ± 51.5 3.83 ± 0.38 0,95 ± 0.03 203.2 ± 38.5 203.2 ± 51.5

Fig. 4 Values of relative abundance at the phylum (A) and class (B) level, obtained for the anterior‑mid intestine microbiota of gilthead seabream 
(Sparus aurata) fed experimental low fishmeal diets containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic 
(Control diet)
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“DNA metabolic process” (12.1% of the total DEGs: 17 
up-regulated vs. 2 down-regulated; GO:0006259) and, 
“Symbiotic process” (11.5% of the total DEGs: 15 up-reg-
ulated vs. 3 down-regulated; GO:0044403) (Additional 
file 1: Table S3).

According to the results reported by the enrichment 
analysis, representative clusters of genes were classified 
as shown in Figs. 9, 10, 11, 12 and 13 and Additional file 1: 
Table  S4. A significant number of genes were observed 
to be shared among the metabolic category: Protein 
Metabolism (31.2% of known genes; Fig.  9), Nucleotide 
Metabolism (8.3% of known genes; Fig.  10), and Lipid 
Metabolism (5.7% of known genes; Fig.  11). The other 
clustered categories contained genes related to the Reg-
ulation of Antioxidant Capacity (6.4% of known genes; 
Fig.  12), and to the Regulation of Immune Response 
(10.8% of known genes; Fig.  13). This clusters suggest a 
strong relationship between processes that favours meta-
bolic and immune responses to the dietary inclusion of 
D. hansenii.

Three significative cellular components GO groups 
(80.2% of the total DEGs in GO:0043227; 73.9% in 

GO:0043231; 10.2% in GO:0005740) were associated 
with the single or double lipid bilayer membrane, which 
indicated that most of DEGs belong to the above-men-
tioned structures. On the other hand, it is also worth 
noting that some of these DEGs participate in mito-
chondrial processes (GO:0005739), proteasome com-
plex (GO:0000502) and DNA replication (replication 
fork: GO:0005657; replisome: GO:0030894). For further 
details see Additional file 1: Table S5.

Discussion
Low fishmeal along with high plant-content meal diets 
are of common practices for the aquaculture feed indus-
try. However, reducing the dependence on marine raw 
materials is still associated with variable side effects on 
fish nutrient metabolism, mucosal health, and disease 
resistance [42], especially due to the presence of anti-
nutritional factors and the lack of essential amino acids 
and fatty acids in those alternative sources. Thus, it is 
necessary to develop complementary nutritional tools 
to reduce the negative-side effects associated with the 
substitution of traditional ingredients. In this sense, the 

Fig. 5 Values of relative abundance at genus level, obtained for the anterior‑mid intestine microbiota of gilthead seabream (Sparus aurata) fed 
experimental low fishmeal diets containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet)
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use of functional feeds seems to be an appropriate strat-
egy [43]. When considering new additives, yeasts are 
among those promising candidates showing a wide range 
of benefits on animal health and growth [21, 44]. In this 
sense, the present study aimed to determine the effects 
on growth and intestinal condition of a functional feed 
with a low fishmeal formula (7%) that was supplemented 
with D. hansenii in S. aurata, the main marine fish spe-
cies farmed in the Mediterranean basin [30].

Effects of D. hansenii on fish performance
Under present experimental conditions, we found a sig-
nificant body weight increase  in fish fed the Yeast diet 
coupled to a lower feed conversion rate and similar feed 
intake values compared with those fish fed the Con-
trol diet. Considering that feeding costs represent up 
to 50%–70% of total production costs in intensive fish 
farms [45], and fishmeal being amongst the most expen-
sive raw materials in aquafeeds [46]; the nutritional 
strategy tested in our study that consisted of combin-
ing a diet containing low fishmeal levels (7%) with the 
supplementation of a live probiotic seemed very prom-
ising when KPIs related to growth and feed utilization 
were considered. Furthermore, these results are of spe-
cial relevance since this is the first study in fish juve-
niles showing the benefits of supplementing low fish 

meal diets with D. hansenii in terms of somatic growth 
and feed efficiency parameters. In this context, several 
previous studies had reported that the dietary inclu-
sion of D. hansenii (intact or hydrolysed) in aquafeeds 
with high levels of fishmeal (39%–41%) did not result 
in significant differences in terms of fish growth perfor-
mance in Atlantic salmon (Salmo salar) and tropical gar 
(Atractosteus tropicus) [27, 47]. Present findings when 
using low fishmeal diets may be due to the presence 
in D. hansenii of growth factors like biogenic amines, 
capable of promoting growth and intestinal function-
ality [21, 29, 48]. Biogenic amines or polyamines are 
essential metabolites found in almost all living organ-
isms [49]. In particular, D. hansenii is especially rich 
in putrescine, spermidine, spermine and cadaverine 
[17, 50]. These polyamines are essential for many cell 
functions and play a key role in vertebrate development 
and cell growth [17, 51]. In particular, Tovar-Ramírez 
et al. [25] observed in European sea bass (Dicentrarchus 
labrax) an increase of larval survival and an enhance-
ment of the digestive function, whereas Teles et al. [23] 
found that longfin yellowtail (Seriola rivoliana) larvae 
had higher growth and survival rates, and an earlier 
digestive tract maturation when fed with a diet sup-
plemented with D. hansenii. These results found in 
fish larvae were similar to those found in the current 

Fig. 6 Logarithmic fold change of differentially abundant ASVs (DESeq2, FDR < 0.05) at the genus level in the anterior‑mid intestine microbiota of 
gilthead seabream (Sparus aurata) fed experimental low fishmeal diets containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid 
of the probiotic (Control diet)
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study regardless of the developmental stage considered. 
Furthermore, although it is described that polyamines 
in high concentrations can generate adverse effects on 
animal health, their probiotic administration through 
D. hansenii in feed might be of great benefit to fish as 

reported in several studies [21, 25, 29, 48]. In addition, 
by participating in the protein metabolism, these poly-
amines could be of special interest in carnivorous spe-
cies with high protein demand [51], since their dietary 
provision by D. hansenii may modulate the amino acid 

Fig. 7 Transcriptomic response of the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed experimental low fishmeal diets 
containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). A The green (up‑regulated) and red 
(down‑regulated) colour scheme indicate the gene modulation according to its magnitude interval (fold‑change). B 3D principal component 
analysis (PCA). Control (red spheres) and D. hansenii groups (yellow spheres) are represented (each array included in the study is represented by 
one sphere). C Hierarchical clustering heatmap representing the 232 DEGs. The results of each microarray analysed for the control and yeast groups 
are shown. The green (up‑regulation) and red (down‑regulation) colour scheme indicates the gene normalized intensity values according to its 
magnitude interval
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metabolism in fish, which could result in the promotion 
of fish growth by a better use of dietary proteins [52], as 
shown in our study.

Effect of D. hansenii diet on intestinal condition
The intestine is a complex organ composed of the diges-
tive epithelium with its typical tissue organization in dif-
ferent mucosal layers, its associated lymphoid tissue, and 
the mucus layer covering the simple intestinal epithelium 
with its commensal microbiota. Furthermore, entero-
cytes form a selectively permeable barrier for water, elec-
trolytes, and nutrients, while maintaining an effective 
defence against pathogens and tolerance towards dietary 
antigens [53]. Thus, studying the effect of the diet on tis-
sue condition and its commensal microbiota is of impor-
tance when evaluating new nutritional strategies. In this 
context, the intestinal microbiota has been extensively 

studied in a multitude of fish species since microbial 
gut communities are essential for proper gastrointesti-
nal development and are implicit in aiding digestive and 
immunological functions and disease resistance [54, 55]. 
However, how host-microbiota symbiosis and/or how 
feed and feed additives can modulate the normal micro-
biota in the host remains poorly understood, since gut 
microbial communities are strongly affected by dietary 
or environmental factors [56, 57]. Despite that, results 
in terms of phyla obtained in our study were in agree-
ment within those from other authors [40, 58, 59]. In 
those studies, Proteobacteria has been reported as the 
most abundant phylum in the intestine of S. aurata, fol-
lowed by Firmicutes, Actinobacteria, and Bacteroidetes. 
This conservative pattern at phyla level of microbial com-
munities in the intestine was maintained in our study 
regardless of the diet evaluated.

Fig. 8 Biological network of the differentially expressed genes (DEGs) in the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed 
experimental low fishmeal diets containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). Node 
fill with a continuous mapping colour from red (down‑regulated DEGs) to green (up‑regulated DEGs), represents the fold change (FC) intensity. 
Edge score was represented by doted lines with a continuous mapping from 0.35 (light Blue) to 1.00 (dark blue). The transcripteractome was 
obtained using Cytoscape (v3.9.1) platform with String (v1.7.1). For details, please refer to Additional file 1: Table S1
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At a lower taxonomic level, Pseudomonas spp. and 
Acinetobacter spp. were the dominant genera in the gut 
microbiome from both dietary groups. Pseudomonas 
spp. and Acinetobacter spp. are a part of the typical 
fish microbiota [60], whereas some strains have been 
reported as antagonistic against pathogenic microor-
ganisms [61, 62]. However, under stressful conditions 
such as malnutrition and overcrowding their abun-
dance and the presence of some opportunistic and 
pathogenic species may increase [63–65]. Under cur-
rent experimental condition, the reduction in the rela-
tive abundance of these genera in fish fed the Yeast diet 
suggested that the dietary administration of D. hanse-
nii may be a strategy for dealing with infections caused 
by opportunistic and antimicrobial-resistant bacteria, 
such as Pseudomonas spp. and Acinetobacter spp. [66–
70]. Furthermore, D. hansenii supplementation also 
resulted in an increase of the relative abundances of 
ASVs related to the genus Bacillus in comparison to fish 
fed the Control diet. This Gram-positive endospore-
forming genus has been widely tested as a probiotic on 
several aquatic cultured organisms, enhancing growth, 
modulating immune response, and promoting disease 
resistance [71, 72]. Similar to other species, D. hanse-
nii are normally found as cohabitants in the gut of wild 

and farmed fish [21, 73], and seems to interact with the 
host, maintaining intestine microbiota homeostasis, 
and aiding to its recover in case of dysbiosis [74, 75]. 
Although in the current study, the low fishmeal diet 
did not result in any dietarily-induced inflammatory 
disorder of the intestinal mucosa or dysbiosis of the 
gut microbiome, these interactions in terms of DEGs 
related to membrane-linked organelles and symbiotic 
biological processes were identified by the transcrip-
tomic functional analysis conducted, and further dis-
cussed in "Effect of D. hansenii diet on gut metabolism, 
homeostasis, and immunity".

The mucus layer that covers enterocytes is consid-
ered as the first line of innate host defence as well as the 
site where commensal microbiota attaches, preventing 
the colonisation of pathogenic organisms by occupying 
empty niches. The dynamic relationship between com-
mensal bacteria and mucins secreted by goblet cells plays 
an important role in gut health and condition [76]. Com-
mensal microbiota is adapted to the glycan rich environ-
ment of mucus, stablishing host-microbiota interactions, 
influencing on the quantitatively and qualitatively mucin 
glycosylation [77]. In the current study, the dietary 
administration of D. hansenii did not modify the histo-
chemical properties of mucins produced by goblet cells in 

Fig. 9 Protein metabolism cluster of the functional enrichment network for biological processes based on the related functions of the differentially 
expressed genes (DEGs) in the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed experimental low fishmeal diets containing 
Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). The node size determinate the significance 
(Bonferroni step‑down correction; small P < 0.05; medium P < 0.005; large P < 0.0005), the node colour determinate the principal GO process 
aggrupation, and the node numbers indicate different GO process classified in Additional file 1: Table S4
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terms of neutral glycoproteins, but resulted in a slightly 
higher richness of carboxylated and weakly ionised sul-
phated glycoconjugates in fish fed the Yeast diet. These 
results are of special relevance since the pattern of O-gly-
cosylation in mucin glycoproteins and their polypeptide 
backbone structure linked to some physical properties 
of the mucus layer as its viscosity and depth, are key ele-
ments in gut health and condition modulation [78]. Thus, 
the increase in carboxylated and weakly ionized acid sul-
phated grlycoproteins produced by goblet cells in fish fed 
the Yeast diet may be interpreted as beneficial due to an 
increase in mucus viscosity that would protect the host 
form opportunistic pathogenic bacterial [79, 80]. Fur-
thermore, the inclusion of D. hansenii in the diet changed 
the glycosylation patterns of intestinal mucins, being of 
special relevance the increase in SBA lectin affinity rather 
than WGA, changes that may be partially associated to 
different rates of mucin glycosylation and goblet cell dif-
ferentiation along the intestinal mucosa [34]. However, 
these results are of special relevance since lectins with 

affinity for SBA, which bind to GalNAc residues may 
contain sialic acid residues in the backbone region of the 
mucin [81], have been postulated to have an antipara-
sitic effect in turbot (Scophthalmus maximus) [82] and 
pathogenic organisms [78, 83]. Furthermore, the above-
mentioned changes in lectin affinity may be supported 
by differential expression of b4galt3 and b3galt2 genes, 
which both participates in the elongation and branch-
ing biosynthetic steps of glycosylation pathways [84], and 
the up-expression of a Golgi mannosyl-oligosaccharide 
1,2-α-mannosidases gene (man1a1), whose activity is a 
prerequisite for the formation of complex or hybrid gly-
cans of mucins [85].

Overall, the results obtained showed the ability of D. 
hansenii to modulate the gut microbiota without affect-
ing the intestine cell organization in S. aurata, mainly 
reducing several groups of Proteobacteria abundances, 
especially those opportunistic groups, and changing gly-
cosylation patterns of intestinal mucins. It is suggested 
that these results, which can be attributed to the potential 

Fig. 10 Nucleotide metabolism cluster of the functional enrichment network for biological processes based on the related functions of the 
differentially expressed genes (DEGs) in the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed experimental low fishmeal diets 
containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). The node size determinate the 
significance (Bonferroni step‑down correction; small P < 0.05; medium P < 0.005; large P < 0.0005), the node colour determinate the principal GO 
process aggrupation, and the node numbers indicate different GO process classified in Additional file 1: Table S4
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Fig. 11 Lipid metabolism cluster of the functional enrichment network for biological processes based on the related functions of the differentially 
expressed genes (DEGs) in the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed experimental low fishmeal diets containing 
Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). The node size determinate the significance 
(Bonferroni step‑down correction; small P < 0.05; medium P < 0.005; large P < 0.0005), the node colour determinate the principal GO process 
aggrupation, and the node numbers indicate different GO process classified in Additional file 1: Table S4

Fig. 12 Regulation of Antioxidant Capacity cluster of the functional enrichment network for biological processes based on the related functions 
of the differentially expressed genes (DEGs) in the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed experimental low fishmeal 
diets containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). The node size determinate the 
significance (Bonferroni step‑down correction; small P < 0.05; medium P < 0.005; large P < 0.0005), the node colour determinate the principal GO 
process aggrupation, and the node numbers indicate different GO process classified in Additional file 1: Table S4
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role of D. hansenii as a probiotic, involve some of the 
yeast cell wall components, such as β-glucan, polyamines 
and mannan molecules that have, apart from these attrib-
utes, the ability to modulate the response of the immune 
system [21, 86, 87]. However, the functional benefits of 
these findings need further attention, including the role 
of D. hansenii and the microbiota or their interactions, in 
terms of glycosylation patterns variation.

Effect of D. hansenii diet on gut metabolism, homeostasis, 
and immunity
In parallel with the improved performance and the mod-
ulation of the intestinal condition, several authors have 
suggested that the dietary administration of D. hansenii 
result in a concomitant modification of systemic physi-
ological responses, and especially those related to the 
digestive function and immunity [17, 88]. In this sense, 
the dietary inclusion of D. hansenii modulated the 
expression of different genes in the anterior-mid intes-
tine of S. aurata that were associated with biological pro-
cesses related to gut metabolism, antioxidant defence, 
and immunity.

Compared with terrestrial animals, fish have higher 
protein requirements due to their biological lifestyle 
characteristics [89]. For this reason, it is not surprising 
that most of the DEGs with metabolic functions were 
mainly related to protein biosynthesis, turnover and deg-
radation to cope with their increased growth rate. In our 
study, we found that the ubiquitin–proteasome system 
(UPS) was modulated by the regulation of some ubiquitin 
enzyme and ligases genes (uchl3, trim 25, trim39, ubr7 
and ube2i) and proteasome subunits (psma4, psma6, 
psmb10, psmc2 and rad23a), which act as protein bind-
ing signalling and protein degradation, respectively. 
Both activities are suggested to be important mecha-
nisms of aging, immune activity, cell quality control and 
protection, tissue regeneration, or DNA repair and gene 
transduction [90, 91]. On the other hand, we found sev-
eral DEGs related to protein synthesis and modifica-
tion, especially genes involved in ribosomal subunit 
components (rpl22, rpl38, mrps2, mrps9, and mrpl54), 
and amide-related biosynthetic processes. The regula-
tion of several genes involved in amide biosynthesis may 
be attributed to the amine and polyamine content of D. 

Fig. 13 Regulation of Immune Response cluster of the functional enrichment network for biological processes based on the related functions 
of the differentially expressed genes (DEGs) in the anterior‑mid intestine of gilthead seabream (Sparus aurata) fed experimental low fishmeal 
diets containing Debaryomyces hansenii (1.1%, 17.2 ×  105 CFU; Yeast diet) or devoid of the probiotic (Control diet). The node size determinate the 
significance (Bonferroni step‑down correction; small P < 0.05; medium P < 0.005; large P < 0.0005), the node colour determinate the principal GO 
process aggrupation, and the node numbers indicate different GO process classified in Additional file 1: Table S4
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hansenii included in the diet [17], which would support 
the above-mentioned benefits in terms of growth perfor-
mance as described in several species [21].

Linked to the increased gut metabolic activity, we 
found other DEGs not directly related to protein metabo-
lism that were associated with nucleotide metabolism 
and DNA elongation and repair. According to current 
results, dietary D. hansenii enhanced thymidylate nucle-
otide metabolism as indicated by the up-regulation of 
dtymk, tyms, dut, and dck genes. Thymidylate is neces-
sary to synthetise deoxythymidine triphosphate (dTTP), 
an essential building block of DNA [92]. In particular, 
studies in larvae showed that TYMK, the protein codded 
by dtymk gene, and its deoxyribonucleotide triphosphate 
(dNTP) product, are vital in early embryogenesis and 
essential for neurodevelopment, and genome integrity in 
adult fish [93, 94]. These results would be in agreement 
with the reported beneficial effect of D. hansenii larval 
development and morphogenesis [23, 25].

The third main metabolic cluster identified in our study 
was related to lipid metabolism, mainly involving DEGs 
related to sphingolipid or ceramide metabolic processes 
(aldh3a2, elovl6, asah1, degs1, b3galt2 and b4galt3). 
Sphingolipids and ceramides are constituents of eucary-
otic cell membranes with a wide variety of functions and 
properties. It is reported that sphingolipids have antimi-
crobial and immunomodulatory properties [95], along 
with bioactive signalling functions [96]. The DEG asah1 
encodes for an acid ceramidase N-acylsphingosine ami-
dohydrolase 1 (ASAH1), which catalyses the degradation 
of ceramide into sphingosine and free fatty acid and sug-
gested to maintain ceramide homeostasis in the lysosome 
[97]. Furthermore, participates in sphingosine recycling 
pathway along with degs1 gene, which controls the step 
from dihydroceramides to ceramides, and suggested to 
be a promising biomarker of redox state [98].

An increase in the metabolism could lead to increased 
production of oxidative radicals, that in an unbalanced 
situation with the antioxidant defence capacity would 
produce oxidative damage [99]. In parallel to the above-
mentioned enhancement of gut metabolic activity, we 
also found an increased expression of some genes from 
the electron chain and others also involved in mito-
chondrial respiration. Their activity produces chemi-
cal energy for the normal cell behaviour, but as a result 
the superoxide anion ( O−

2  ), the precursor of most other 
reactive oxygen species (ROS), are also obtained [100]. 
To possibly counteract with this situation, we found 
the up-regulation of mgst3 and gsto1 genes in fish fed 
the Yeast diet, which both together are related with the 
glutathione cycle, in charge of detoxifying hydrogen 
peroxide  (H2O2) [101], and selenot, which mediates oxi-
doreductase functions involved in redox homeostasis 

[102]. Magalhães et  al. [103] reported in S. aurata dif-
ferent antioxidant levels depending on the organ ana-
lysed, being the enzymatic activity of catalase (CAT), 
superoxide dismutase (SOD) and glutathione reduc-
tase (GR) higher in the intestine, and glutathione per-
oxidase (GPx) in liver. The authors discussed that this 
pattern is expected due to the elevated cell turnover 
rate in the intestine that favours oxidative processes in 
a non-stressful situation, which is also proposed in our 
study by the supposedly increased gut cell metabolism 
linked to the increased somatic growth observed. As 
 H2O2 plays important cellular functions, e.g., as a pro-
moter for cell cycle progression, the activity of the glu-
tathione cycle enzymes and cytochrome P450 (cyp1a1), 
also takes part in metabolic pathways like arachidonic, 
leukotriene, prostaglandin metabolism, or in estro-
gen metabolism [51, 104], as well as protecting lipids 
and proteins to be oxidised [105]. In that way, the up-
regulation of malate/oxoglutarate carrier (slc25a11) 
that is related with the TCA cycle and also plays a key 
role maintaining GSH levels in the mitochondria [106], 
would reinforce this hypothesis. Thus, the up-regula-
tion of these genes could be more related to metabo-
lism than to a possible oxidative damage produced by 
the inclusion of yeast in the diet. This idea is also sup-
ported by some down-regulated genes related to oxida-
tive stress like: serpinb1, which is suggested to protect 
the cell from proteases released into the cytoplasm dur-
ing stress [107]; sin3a, whose expression is promoted 
under hypoxia stress [108]; and the anti-inflammatory 
cytokine IL-10, that is modulated under redox/oxi-
dant perturbations [109]. Regarding antioxidant func-
tions, dietary live yeast administration in D. labrax 
larvae, induced lower activity and expression levels 
of glutathione peroxidase and superoxide dismutase 
compared to fish fed control diet, assuming a possible 
involvement of superoxide anion retention in fish lar-
vae, which could represent importance to the host to 
increase cell or tissue responsiveness to growth- and/or 
differentiation-enhancing factors [110].

As reviewed in Angulo et  al. [21], D. hansenii dietary 
supplementation has been shown to promote gut pro-
tection in several aquatic and terrestrial species at 
immunological and gene expression levels. An exhaus-
tive analysis of the DEGs promoted by the Yeast diet in 
our study showed different regulatory responses of the 
S. aurata gut immune system. Among them, we found 
regulatory viral genes up-regulated like the lsm14a, a 
sensor for both viral DNA and RNA which is important 
to initiate the IFN-β induction [111]; the trim25 gene, 
that encodes the TRIM25 E3 ubiquitin ligase protein, 
which mediates an essential step to initiate the antivi-
ral responses in the cell through the pattern recognition 
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receptor RIG-I [112]; and the phb2, a gene that encodes 
a prohibitin 2 protein related to the mitochondrial-medi-
ated antiviral innate immunity by activating the RIG-I 
signalling pathway [113]. Yeast dietary inclusion also 
promoted the up-regulation of regulatory genes required 
for T and B cell development and proinflammatory 
mediators (nsd2, rabl3, inhbb, and parp1), a lymphocyte 
activator (slamf8), and genes involved in proteasomal 
generation of antigenic peptides (psma4 and psma6). 
All these genes might participate in the first steps of the 
immune response, promoting the regulation of sentinel 
immune responses, maintaining the immune cells qui-
escent to avoid autoimmunity, but prepared for a rapid 
activation [114]. Contrary to those up-regulated genes, 
we found down-regulated genes directly related with 
the activation of immune system processes: serpinb1, 
which is suggested to be activated upon an infection 
[115]; the tyrobp gene, which participates in the activa-
tion of immune cells involved in inflammatory reactions 
and as a component of NK cells with anti-viral functions 
[116]; and the cfh gene, which regulates the alternative 
pathway of the complement system [117]. We also found 
two cytokines down-regulated, a pro-inflammatory il15 
gene, which promotes Th1 responses and T-cell matu-
ration [118], and il10, an anti-inflammatory gene that is 
expressed under infection with stimulatory and inhibi-
tory activities on several immune cells [119]. Altogether, 
it may be postulated that yeast supplementation in a low 
fish meal feed could promote the regulation of sentinel 
immune processes by increasing the potentiation of the 
innate immunity rather than activating a response of the 
immune markers. A good example of this hypothesis was 
shown by the down-regulation of psmb10, which is an 
IFN-inducible immunoproteasome, mainly activated dur-
ing an immune response [120]. In that sense, it has been 
postulated that D. hansenii might modulate host’s immu-
nity through its wall-related β-glucan and polyamine 
content, increasing functional and decreasing deleteri-
ous immune responses in fish [121]. How these compo-
nents act or in which pathways are involved is still poorly 
studied. However, as β-glucans are considered pathogen-
associated molecular patterns, there seems to be a con-
sensus in its effects potentiating cellular responses and 
gene expression signalling pathways, activating the com-
munication and activity of the adaptive immune system 
in several marine species [122–124], which could explain 
the vast response of the intestine at transcriptomic level.

Conclusions
The present multi-integrative study of the intestinal 
response to the probiotic D. hansenii when administered 
to S. aurata juveniles in diets with low fishmeal lev-
els provided new insights into the use of this yeast and 

its metabolic and immunomodulatory components on 
farmed fish. Under current experimental conditions, we 
demonstrated that dietary administration of D. hanse-
nii (1.1%, 17.2 ×  105  CFU) enhanced somatic growth 
and improved feed efficiency parameters, results that 
were coupled to an improvement of intestinal condition 
as histochemical, microbiota and transcriptomic tools 
indicated. In particular, D. hansenii stimulated host-
microbiota interactions without altering the intestinal 
cell organization nor generating dysbiosis, which demon-
strated the safety use of the yeast as a probiotic. At the 
transcriptomic level, D. hansenii promoted metabolic 
pathways, mainly protein-related, sphingolipid, and thy-
midylate pathways, in addition to enhance antioxidant-
related intestinal mechanisms, and to regulate sentinel 
immune processes, potentiating the defensive capacity 
meanwhile maintaining the homeostatic status of the 
intestine. These findings confirm the probiotic benefits 
of D. hansenii in the diet, and its use on cultured marine 
species beyond their larval stages.
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