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Abstract 

Background  Breed identification is useful in a variety of biological contexts. Breed identification usually involves two 
stages, i.e., detection of breed-informative SNPs and breed assignment. For both stages, there are several methods 
proposed. However, what is the optimal combination of these methods remain unclear. In this study, using the whole 
genome sequence data available for 13 cattle breeds from Run 8 of the 1,000 Bull Genomes Project, we compared 
the combinations of three methods (Delta, FST, and In) for breed-informative SNP detection and five machine learning 
methods (KNN, SVM, RF, NB, and ANN) for breed assignment with respect to different reference population sizes and 
difference numbers of most breed-informative SNPs. In addition, we evaluated the accuracy of breed identification 
using SNP chip data of different densities.

Results  We found that all combinations performed quite well with identification accuracies over 95% in all scenarios. 
However, there was no combination which performed the best and robust across all scenarios. We proposed to inte-
grate the three breed-informative detection methods, named DFI, and integrate the three machine learning methods, 
KNN, SVM, and RF, named KSR. We found that the combination of these two integrated methods outperformed the 
other combinations with accuracies over 99% in most cases and was very robust in all scenarios. The accuracies from 
using SNP chip data were only slightly lower than that from using sequence data in most cases.

Conclusions  The current study showed that the combination of DFI and KSR was the optimal strategy. Using 
sequence data resulted in higher accuracies than using chip data in most cases. However, the differences were gener-
ally small. In view of the cost of genotyping, using chip data is also a good option for breed identification.

Keywords  Breed identification, Breed-informative SNPs, Genomic breed composition, Machine learning, Whole 
genome sequence data

Background
Breed identification can have several practical applica-
tions including (a) the management of livestock genetic 
resources [1], (b) understanding and evaluating the breed-
ing history and breed purity of a certain animal breed [2, 
3], (c) implementation of breeding strategies and plans 
[4], (d) inference of product provenance to improve sup-
ply chain integrity [5–7], and (e) conservation of local-
specific species [2, 8]. The general principle that makes it 
possible to allocate animals to specific breeds relies on the 
genetic heterogeneity present amongst breeds that might 
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be higher than within breeds [3]. SNPs are increasingly 
popular as breed identification markers because they are 
highly abundant and widespread in the genome. Genome-
wide SNP markers can be discovered and genotyped by 
using a SNP array or genome sequencing [9, 10]. Many 
commercial SNP chips have been used to capture breed-
informative markers useful for several applications [7, 11–
13]. However, there are few studies on breed identification 
based on whole genome sequencing data.

Breed identification usually involves a two-stage 
approach, namely (a) detection of breed-informative 
SNPs based on a reference population consisting of mul-
tiple known breeds and (b) assignment of individuals 
of unknown breed to their corresponding breeds based 
on the breed-informative SNPs [14–16]. Several sta-
tistical methods have been proposed to obtain highly 
breed-informative SNPs among the genome-wide abun-
dant markers, such as Delta [17], which has been used 
in human [18] and pigs [19], pairwise Wright’s FST [20], 
which has been extensively applied to identify breed-
informative SNPs, population structures, and selec-
tion signature in livestock [21–23], and informativeness 
for assignment (In) [24], which takes into account self-
reported ancestry information from sampled individuals 
and has been used in the inference of ancestry [24, 25]. 
Besides, there were some studies that highlighted the 
impact of minor allele frequency (MAF) and linkage dis-
equilibrium (LD) on the selection of breed-informative 
SNPs [11, 26].

Based on the detected breed-informative SNPs, assign-
ment of individuals to their breeds is conducted through 
a classification procedure. With the advent of artificial 
intelligence, some machine learning methods have been 
used in this stage [7, 16, 27], such as Artificial Neu-
ral Network (ANN), Random Forest (RF) [7, 28], Naïve 
Bayes (NB) [12], Support Vector Machine (SVM) [29], 
and K-Nearest Neighbor (KNN) [12]. However, there 
were few investigations on the combination of different 
detection methods of breed-informative SNPs and differ-
ent machine learning methods and the optimal combina-
tion between these methods remains unclear.

Alternatively, breed identification can also be attained 
by estimating genomic breed composition (GBC). In this 
context, a linear regression model is used to estimate the 
GBC of individuals to be identified, where their SNP gen-
otypes are regressed to the allele frequencies of different 
breeds in the reference population. The GBC for a breed 
is estimated as the ratio of that breed’s regression coef-
ficient over the sum of all regression coefficients [15, 16, 
30, 31]. The GBC of an individual for a breed also rep-
resents the probability that the individual belongs to this 
breed. An advantage of the GBC analysis is that it can 
be used to estimate whether an individual is a purebred 

animal of a given breed (if the corresponding probability 
is equal to or close to one, say > 0.9) or a crossbred animal 
with estimated GBC of involved breeds. This is particu-
larly useful for estimating heterosis and breed additive 
effects which facilitates cross breed genetic evaluation 
allowing the comparison to selection candidates across 
breed. This is also important for monitoring the quality 
and genuineness of animal products.

In this study, using the whole genome sequence data 
available for 13 cattle breeds from Run 8 of the 1,000 Bull 
Genomes Project, we evaluated the accuracies of differ-
ent combinations of three methods for breed-informative 
SNPs detection and five machine learning methods for 
breed assignment. In addition, we proposed to integrate 
the different methods for breed-informative SNPs detec-
tion and different machine learning methods. The effects 
of reference population size and number of most breed-
informative SNPs were investigated. Meanwhile, we eval-
uated the identification accuracy using SNP chip data. 
We also performed GBC analysis to evaluate the purity of 
these breeds.

Materials and methods
Animals and genotypes
We accessed the database from Run 8 of the 1000 Bull 
Genomes Project [32]. The original database contains 
sequence data of 4,109 bulls with genotypes of 64,644,013 
SNPs. From this resource, we selected bulls from breeds 
with more than 30 bulls. All bulls with a sequencing 
depth of at least 10× were selected from each of these 
breeds. We obtained SNP data of 1095 bulls of 13 breeds. 
Table  1 shows the number of animals and sequencing 
depths of the 13 breeds. Quality control of the SNP data 
was carried out using PLINK 1.9 [33]. SNPs were filtered 
out if the following requirements were not attained: (i) 
being biallelic, (ii) 100% genotyping rate (several meth-
ods used in this study for detection of informative SNPs 
or classification do not allow any missing values), or (iii) 
locating on autosomes. Finally, a total of 60,062,797 SNPs 
was used in this study.

The 1,095 bulls were divided into a reference popula-
tion and a test population. The reference population 
contained the top 30 bulls of each breed with respect to 
their sequencing depth (390 in total), which was used to 
detect breed-informative SNPs and to train the classifi-
cation model. The test population contained the remain-
ing bulls of each breed (705 in total), which was used to 
evaluate the performance of different methods for breed 
identification.

For each of the 1,095 bulls, we also generated its SNP 
chip data corresponding to the widely used 5 types of 
cattle SNP chips, including Illumina Bovine SNP50 
BeadChip (50K), GGP Bovine HD (80K), GGP Bovine 
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100K (100K), GGP Bovine HDv3 (150K), and Illumina 
Bovine HD BeadChip (777K). To maintain consistency 
with the sequencing data, we first mapped the chip 
SNPs to the bovine reference genome ARS-UCD1.2 
[34], and then extracted SNPs from the original data-
base with 64,644,013 SNP genotypes according to their 
genome position.

Methods for detection of breed‑informative SNPs
Firstly, genotype quality control was carried out with 
PLINK1.9 [33], and SNPs with MAF less than 0.05 or with 
linkage disequilibrium (LD) r2 > 0.2 within a 50-SNPs-win-
dow were excluded, resulting in 789,141 SNPs.

Secondly, we used three methods to detect breed-
informative SNPs by using the reference population, i.e., 
Delta [17], pairwise Wright’s FST [20], and informativeness 
for assignment [24].

Delta
The informative score of a SNP is measured with the Delta 
value, which defined as follows. For any two breeds i and j, 
calculate

where piA and pjA are frequencies of allele A in breeds i 
and j, respectively. This δij value is calculated for all pair-
wise combinations of all breeds, and then the final Delta 
value is the average value of all pair-wise δ values.

δ = |piA − p
j
A|

Pairwise Wright’s FST
Pairwise Wright’s FST is computed in the same way as 
that for Delta. For any two breeds i and j, calculate

where HT = 2pApB is the expected heterozygosity in the 
two breeds together, HS = piAp

i
B + p

j
Ap

j
B is the average 

expected heterozygosity of the two breeds. Here, pA is 
the frequency of allele A in the two breeds, piA and pjA are 
frequencies of allele A in breed i and j, respectively. Nota-
tions for subscript B are defined similarly. Then, all pair-
wise FST values are averaged to get the final FST value.

Informativeness for assignment (In)
The informative score of a SNP is measured with the In 
value as follows:

where N is number of SNPs, K is number of breeds, pij 
is the frequency of SNP j in breed i, and pj is the average 
frequency of SNP j across the K breeds. It is defined that 
0 log20 = 0.

For each method, the informative scores for all 
SNPs were calculated and ranked. The top M SNPs 
were taken as most breed-informative (MBI) SNPs. To 
explore the effect of number of MBI SNPs on the accu-
racy of breed identification, different numbers of MBI 
SNPs (M = 200, 500, 1,000, 1,500, 2,000) were consid-
ered and compared.

The software TRES [18], in which the above three 
methods are implemented, was used to obtain the breed-
informative SNPs and the lists of ranked SNPs.

In addition, we also tried to integrate the three meth-
ods by taking the common SNPs of MBI SNPs revealed 
by the three methods and then regarded these common 
SNPs as the MBI SNPs. We called this method DFI.

Classification methods for breed assignment
The MBI SNPs revealed from the reference population 
were used to train the machine learning models through 
alignment of the SNPs of individuals in the test popula-
tion with the MBI SNPs of the individuals in the refer-
ence population. Five machine learning methods were 
considered: Naive Bayes, Support Vector Machine, 
K-Nearest Neighbor, Random Forest, and Artificial Neu-
ral Network.

FST =
HT −HS

HT

In =

N

j=1

−pjlog2pj +

K

i=1

pijlog2pij /K

Table 1  Numbers of bulls and sequencing depths of the 13 
breeds

Breed Code N Sequencing depth

Min Max Mean (SD)

Normande NMD 31 10.03 30.76 12.68 (4.59)

Yakut YKT 31 10.11 20.97 13.45 (2.93)

Gelbvieh GEL 33 10.03 21.13 14.83 (3.67)

Limousin LIM 39 10.03 20.88 12.73 (3.00)

Montbeliarde MBL 55 10.18 27.73 13.28 (4.30)

Hereford HF 67 10.13 45.48 15.22 (5.48)

Norwegian Red NWR 78 10.01 33.42 11.10 (2.62)

Charolais CHA 72 10.02 21.35 13.48 (3.25)

Simmental SIM 83 10.01 33.90 15.48 (5.21)

Brown Swiss BS 120 10.12 60.01 18.34 (8.84)

Jersey JER 127 10.05 31.55 14.12 (3.76)

Angus ANG 159 10.03 36.91 17.78 (5.36)

Holstein HOL 200 10.00 59.09 17.43 (8.75)
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NB is a kind of simple probabilistic classification meth-
ods based on Bayes’ theorem with the assumption of 
independence between features [35]. The naiveBayes 
function of the R package e1071 (https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​e1071/) was used to perform NB 
classification.

SVM applies a data transformation that project the 
data into a higher dimensional space to find a separat-
ing decision surface, which is a boundary that maximally 
separates classes [36]. The svm function of R package 
e1071 (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​e1071/) 
was used to perform SVM classification.

KNN conducts classification tasks by first calculat-
ing the distance between the test sample and all train-
ing samples to obtain its nearest neighbors and then 
assigning the test samples with labels by the majority 
rule on the labels of selected nearest neighbors [37]. 
The knn function of R package class (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​class/) was used to perform 
KNN classification.

RF makes use of decision trees and builds a forest of 
decision trees, each tree is based on a different subset 
of features and observations of the data [38]. The ran-
domForest function of R package randomForest (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​rando​mFore​st/) was 
used to perform RF classification.

ANN is inspired by the structure and behavior of bio-
logical neural networks and consists of a set of source 
nodes that constitute the input layer, one or more hid-
den layers of computation nodes and an output layer [39]. 
The nnet function of R package nnet (https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​nnet/) was used to perform ANN 
classification.

The detailed parameters setting for these machine 
learning classification methods were shown in Additional 
file 1: Table S1.

Breed identification with different types of SNP data
Three types of SNP data were considered for breed iden-
tification of the test individuals, i.e., (1) both reference 
and test populations were genotyped by sequencing, (2) 
both reference and test populations were genotyped by 
generated SNP chip (50K, 80K, 100K, 150K, and 777K), 
and (3) the reference population was genotyped by 
sequencing, while the test population was genotyped by 
generated SNP chip. In this case, the chip genotype data 
of the test individuals were imputed to sequence data 
using Beagle v5.1 [40]. The sequence data of 2078 bulls of 
the above 13 breeds obtained from Run 8 of the 1000 Bull 
Genomes Project [32] was used as a reference panel. The 
imputation accuracy was measured with Pearson corre-
lation coefficient between imputed genotypes and typed 
genotypes [41].

Evaluation of different breed identification pipelines
The test population with 705 individuals was used to 
evaluate the performance of different identification pipe-
lines (i.e., combinations of different breed-informative 
detection methods and different machine-learning clas-
sification methods). Each machine-learning classification 
was repeated 50 times. The performance of breed identi-
fication was evaluated by accuracy defined as follows:

where NT is number of individuals which were correctly 
assigned to their breeds of origin and NF is the number of 
individuals which were wrongly assigned.

To test the effect of reference population size on the 
accuracy of breed identification, in addition to the size 
with 30 individuals per breed, we also considered sizes 
with 10 and 20 individuals per breed. These individu-
als were randomly sampled from the 30 individuals and 
three repeated sampling were performed.

Estimation of genomic breed composition
The GBC of the animals in the test population were esti-
mated using all of the 789,141 SNPs based on the follow-
ing linear regression model:

where y is the vector of genotypes for a given test animal 
for all SNPs, 1 is an unit vector, μ is the overall mean, X 
is a matrix containing the allele frequencies of each SNP 
in each of the 13 breeds in the reference population, b is 
a vector of regression coefficients for the 13 breeds, and 
e is a vector of random residuals with distribution of 
N (0, Iσ 2

e ) with σ 2
e  being the residual variance and I being 

an identity matrix. The GBC of a given animal for a breed 
is defined as the ratio of the corresponding regression 
coefficient to the sum of regression coefficients for all of 
the 13 breeds.

Results
Both reference and test populations genotyped 
by sequencing
Detection of breed‑informative SNPs
The three breed-informative SNPs detecting methods 
(Delta, FST and In) were compared using the reference 
population with 30 bulls per breed. Figure 1 shows that 
the MBI SNPs detected by the three methods were not 
consistent. For the given numbers of MBI SNPs, 500, 
1,000, 1,500, and 2,000, the percentages of common SNPs 
among the MBI SNPs revealed by the three methods were 
58.80%, 53.50%, 52.00% and 50.60%, respectively. The FST 

Accuracy =
1

50

50
∑

i=1

NT

NT + NF

y = 1µ+ Xb + e

https://cran.r-project.org/web/packages/e1071/
https://cran.r-project.org/web/packages/e1071/
https://cran.r-project.org/web/packages/e1071/
https://cran.r-project.org/web/packages/class/
https://cran.r-project.org/web/packages/class/
https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/nnet/
https://cran.r-project.org/web/packages/nnet/


Page 5 of 13Zhao et al. Journal of Animal Science and Biotechnology           (2023) 14:85 	

method was most consistent with the other two meth-
ods with over 90% SNPs overlapping with that detected 
by Delta or In, while the In method was most inconsistent 
with less than 70% SNPs overlapping with that detected 
by FST or Delta. The common SNPs between In and Delta 
were the same as those among the three methods.

Accuracies of breed identification
We first compared the accuracies of breed identification 
of different pipelines when the reference population 
size was 30 bulls per breed (Fig. 2 and Additional file 1: 
Table S2). The results showed that when the number of 
MBI SNPs was 1,000, 1,500, and 2,000, the KNN-based 
pipelines performed better than all other pipelines 
(accuracies reached over 99%), followed by the RF-based 
pipelines (accuracies reached over 98%), while when the 
number of MBI SNPs was 500, the SVM-based pipelines 
performed the best (accuracies also reached 99%), fol-
lowed by the KNN-based pipelines. The NB-based and 
the ANN-based pipelines performed the worst in gen-
eral. When comparing the different breed-informative 
SNP detection methods within a machine-learning 
method, in general, the DFI method performed better 

than or equally well as the other methods, although the 
differences were small, except for the ANN-based pipe-
line, where the In method performed the best. It should 
be noted that for the DFI method, the number of MBI 
SNPs referred to the number of common MBI SNPs 
revealed by the Delta, FST, and In methods. For exam-
ple, the 1,000 MBI SNPs for DFI came from three sets of 
around 2,000 MBI SNPs revealed by Delta, FST, and In. 
Generally, the accuracies increased with the increase of 
number of MBI SNPs, except for the SVM-based pipe-
lines which performed the best when the number of 
MBI SNPs was 500.

Table 2 shows the detailed incorrectness for each breed 
based on 2,000 MBI SNPs of DFI. It can be seen that for 
ANN incorrect assignment occurred almost in all breeds 
with an overall error rate of 2.61%, while for KNN only 
one out of 705 individuals was incorrectly assigned. It 
should be noted that the majority of the incorrect assign-
ments happened in Brown Swiss.

Since the ANN and NB based pipelines performed 
worse than the other pipelines, we discarded these pipe-
lines in the subsequent analysis.

Fig. 1  Overlaps of the most breed-informative SNPs revealed by Delta, FST, and In with the reference population size of 30 individuals per breed. a, b, 
c and d refer to the most breed-informative SNPs were 500, 1,000, 1,500, and 2,000, respectively
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Effect of reference population size
The accuracies of KNN, RF, and SVM for different of ref-
erence population sizes (30, 20 and 10 bulls per breed) 
were shown in Fig.  3 and Additional file  1: Table  S3. 
Here, only the MBI SNPs from the DFI method was 
used. In general, the accuracies increased when the ref-
erence population getting larger. However, the differ-
ences were generally small. Even for size of 10 bulls per 
breed, the accuracies could reach over 95% to over 99%. 
Since there was no method which performed the best 
or the worst in all situations, we tried to integrate the 
three method by taking the intersection of their results, 
i.e., intersection of all of the three methods or intersec-
tion of any two of them. If there was no intersection 
at all, we took the result of KNN because it performed 
the best in most cases. We named this method KSR. 

It can be seen that this method slightly increased the 
accuracy in almost all cases, especially in cases of refer-
ence population size of 10 bulls per breed. With KSR, 
the accuracies reached over 99% in all situations except 
the number of MBI SNPs being less than 500. Therefore, 
KSR was more robust than any single method.

Impact of number of breeds on breed identification
To explore whether the number of breeds involved 
in the breed identification has an impact on the accu-
racy of breed identification, we compared the accura-
cies of breed identification when the number of breeds 
were 3, 5, 10 and 13. The results are given in Additional 
file  1: Table  S4. In general, the identification accuracy 
decreased as the number of breeds increased. The more 
breeds involved, the more MBI SNPs are needed to 

Fig. 2  Identification accuracies of different combinations of breed-informative SNPs detection methods (Delta, FST, In, and DFI) and machine 
learning classification methods (ANN, KNN, NB, RF and SVM) with the reference population size of 30 individuals per breed. a, b, c and d refer to the 
most breed-informative SNPs were 500, 1,000, 1,500, and 2,000, respectively. ANN Artificial Neural Network, KNN K-Nearest Neighbor, NB Naive Bayes, 
RF Random Forest, SVM Support Vector Machine
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obtain high accuracy. However, it should be noted that 
the accuracy also depends on the breed purity of the 
animals in the reference and validation population.

Both reference and test populations genotyped by SNP 
chips
The breed identification accuracies were assessed when 
both reference and test populations were genotyped 
with five different SNP chips (50K, 80K, 100K, 150K, and 
770K). Figure  4 (and Additional file  1: Table  S5) shows 
the results of the four machine learning methods (KNN, 
RF, SVM, and KSR) with the reference population of 30 
bulls per breed and the MBI SNPs from the DFI method. 
As a comparison, the accuracies from the sequence data 
were also included. Several interesting observations can 
be drawn from the results. First, there was no clear rela-
tion between the accuracy and chip density, the accura-
cies using chip data were sometimes even better than that 
using sequence data. For KNN, the 50K and 80K chips 
resulted in the highest accuracies in most cases; for RF, 
the 777K chip performed the best in most cases; and for 
SVM and the integrated method KSR, the sequence data 
outperformed all chip data (except in case of number of 
MBI SNPs equal to 200). However, it should be noted 
that the highest accuracy among all cases was achieved 
by using sequence data and 2,000 MBI SNPs.

Reference population genotyped by sequencing and test 
population by SNP chips
Here, the sequence data in the reference population 
was used to detect the MBI SNPs. For individuals in 

test population with chip data, we first imputed their 
chip genotypes to sequence level to recover their geno-
types of the MBI SNPs. Machine learning classification 
was carried out using these imputed genotypes. Table 3 
shows the identification accuracies of four machine 
leaning methods (KNN, RF, SVM and KSR) using 2,000 
MBI SNPs from DFI. There were very small proportions 
(1%–13%) of the 2,000 MBI SNPs contained in the chip 
SNPs. The imputation accuracies for the missing MBI 
SNPs were 83%–94% for the five types of chip (increased 
with the chip densities). Although the imputation accu-
racies were not very high (especially for the 50K chip), 
the breed identification accuracies based on the imputed 
SNPs were comparable with that of the sequence data.

GBC estimation of the test animals
The average GBC of the test animals for the 13 breeds 
are given in Table  4. It can be seen that, except for the 
animals labelled as GEL, the average GBC of all animals 
were over 85% for their labelled breeds, indicating that 
their breed purities were high on average, especially the 
one animal labelled as YKT, which had almost 100% 
GBC for YKT. The three animals labelled as GEL had 
only 46.94% GBC for GEL, while they had 28.21%, 7.57% 
and 6.25% GBC for SIM, ANG and HF, respectively, 
indicating these animals were very likely crossbred ani-
mals, although they were classified as GEL. On the other 
hand, although the other animals had high average GBC 
for their corresponding labelled breeds, some of them 
could be also crossbred animals. As mention above, the 
majority of identification errors happened in BS, and 

Table 2  Numbers of incorrect assignment (Mean (SE) over 50 replications) in different breeds by different machine learning methods 
with reference population size of 30 individuals per breed and 2,000 most breed-informative SNPs revealed by DFI

ANN Artificial Neural Network, KNN K-Nearest Neighbor, NB Naive Bayes, RF Random Forest, SVM Support Vector Machine

Breed No anim Machine learning

ANN KNN NB RF SVM

NMD 1 0.10 (0.10) 0.00 0.00 0.00 0.00

YKT 1 0.00 0.00 0.00 0.00 0.00

GEL 3 0.20 (0.05) 0.00 0.00 0.00 0.00

LIM 9 0.30 (0.07) 0.00 0.00 0.00 0.00

MBL 25 0.30 (0.13) 0.00 0.00 0.00 0.00

HF 37 0.40 (0.17) 0.00 0.00 0.00 0.00

NWR 48 1.40 (0.16) 0.00 0.00 0.00 0.00

CHA 42 1.80 (0.23) 0.00 0.00 0.04 (0.03) 0.00

SIM 53 3.60 (0.44) 1.00 (0.00) 1.00 (0.00) 0.06 (0.03) 0.00

BS 90 6.20 (0.30) 0.00 13.00 (0.00) 4.00 (0.17) 12.00 (0.00)

JER 97 0.20 (0.06) 0.00 0.00 0.00 0.00

ANG 129 0.80 (0.17) 0.00 2.00 (0.00) 1.02 (0.02) 1.00 (0.00)

HOL 170 3.10 (0.32) 0.00 1.00 (0.00) 0.24 (0.06) 0.00

Total 705 18.40 (0.49) 1.00 (0.00) 17.00 (0.00) 5.36 (0.18) 13.00 (0.00)
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the misclassified animals were all assigned to GEL. We 
checked the GBC of these misclassified animals. It turned 
out that they had low GBC for BS (20%–30%, Additional 
file  1: Table  S6), which were very close to (some even 
lower than) their GBC for GEL.

Discussion
In recent years, many studies have been devoted to 
identification of animal breeds based on SNPs. How-
ever, they focused on comparison of either differ-
ent breed-informative detection methods or different 
machine learning classification methods [28, 42, 43]. 
It is valuable to explore the optimal combination 
of breed-informative SNPs detection strategies and 

machine leaning methods for breed identification. In 
this study, we compared three different breed-informa-
tive detection methods (Delta, Wright’s FST and In) and 
five machine learning classification methods (KNN, 
SVM, RF, NB and ANN) and their combinations (pipe-
lines). We evaluated their performance with vary-
ing reference population size and varying number of 
MBI SNPs. In addition, we proposed to integrate the 
three informative SNP detection methods by using 
MBI SNPs which were the common SNPs among the 
MBI SNPs revealed by the three methods. We found 
the integrated method, called DFI, performed better 
than or equally well as the three methods in all com-
binations with the machine learning methods. We 

Fig. 3  Identification accuracies with different reference population size (30, 20 and 10 individuals per breed) using the most breed-informative 
(MBI) SNPs revealed by DFI. a, b, c and d refer to machine learning methods KNN, RF, SVM and KSR, respectively. KNN K-Nearest Neighbor, RF 
Random Forest, SVM Support Vector Machine, KSR An integration of KNN, SVM and RF
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Fig. 4  Identification accuracies with different SNP chips and sequencing data using the most breed-informative (MBI) SNPs revealed by DFI. The 
reference population size was 30 individuals per breed. a, b, c and d refer to machine learning methods KNN, RF, SVM and KSR, respectively. KNN 
K-Nearest Neighbor, RF Random Forest, SVM Support Vector Machine, KSR An integration of KNN, SVM and RF, SEQ Sequence data

Table 3  Identification accuracies (Mean (SE) over 50 replications) when the reference population was genotyped with sequencing 
and the test population was genotyped with different SNP chips or with sequencinga

a The chip genotypes were imputed to sequence level. The reference population size was 30 individuals per breed and 2,000 most breed-informative SNPs derived by 
DFI were used
b Number of SNPs among the 2,000 most breed-informative (MBI) SNPs derived from the reference population which were contained in the chips

KNN K-Nearest Neighbor, RF Random Forest, SVM Support Vector Machine, KSR, an integration of KNN, SVM and RF

Chip/SEQ No. MBI SNPs 
containedb

Imputation 
accuracy

Identification accuracy, %

KNN RF SVM KSR

50K 20 83.58% 99.69 (0.01) 97.87 (0.03) 98.01 (0.00) 99.16 (0.02)

80K 52 88.52% 99.86 (0.00) 99.19 (0.04) 98.16 (0.00) 99.51 (0.03)

100K 65 89.41% 99.33 (0.01) 98.75 (0.03) 98.01 (0.00) 98.84 (0.02)

150K 91 91.16% 99.65 (0.01) 99.04 (0.03) 98.01 (0.00) 99.19 (0.03)

777K 261 94.36% 99.72 (0.00) 99.15 (0.03) 98.01 (0.00) 99.30 (0.03)

SEQ 2,000 – 99.86 (0.00) 99.24 (0.03) 98.16 (0.00) 99.65 (0.03)
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also proposed to integrate the three machine learn-
ing methods, KNN, SVM, and RF, which were obvi-
ously better than the other two methods, by taking the 
intersection of the identification results of the three 
methods. This integrated method, called KSR, outper-
formed any of the single method in most cases and, 
more importantly, it was very robust with identifica-
tion accuracies over 99% in all scenarios except when 
the number of MBI SNPs was less than 500.

In general, the identification accuracy increased with 
the increases of the reference population size and the 
number of MBI SNPs. However, for the SVM based pipe-
lines, the highest accuracy was achieved when the num-
ber of MBI SNPs was 500 and was getting down when 
the number of MBI SNPs increased (Figs. 2, 3 and 4). We 
looked at the detailed identification errors in individual 
breeds and found that majority of the errors occurred in 
Brown Swiss (Table 2). This occurred not only for SVM, 
but also for all other methods except for KNN which did 
not make any error. The average error rate for Brown 
Swiss across all methods was 7.82%, while the overall 
average error rate across all breeds was 1.55%. Further, 
the misclassified Brown Swiss animals were all assigned 
to Gelbvieh. We computed the genetic distances among 
the 13 breeds using the FST statistic (See Additional file 1: 
Table S7). Brown Swiss had the closest distance with Gel-
bvieh and Simmental (FST = 0.13). The GBC analysis for 
the misclassified BS animals showed that they had low 
GBC (20%–30%) for Brown Swiss, which were close to 
(some even lower than) their GBC for Gelbvieh. This led 
to the miss classification of these animals to Gelbvieh.

In farm animal society, different types of SNP chips 
have been widely used for genome genetic analysis, 
which produced abundant genome data available. These 
data were also used for breed identification [16, 44–46]. 
To compare the accuracies using sequence data and 
chip data in breed identification, we generated cattle 
chip data of five different densities (from 50 to 777K). It 
turned out that for the KNN method, it was the 50K chip 
which produced the highest accuracies in most cases, 
while for the RF and SVM methods, it was the sequence 
data which produced the highest accuracies in most 
cases. There was no clear relation between chip densi-
ties and accuracies. However, for all methods and SNP 
chip types, the accuracies could reach over 97% except 
for the RF method and the number of MBI SNPs was less 
than 500. Therefore, SNP chips are also good options for 
breed identification. This is consistent with the conclu-
sions of previous studies [12, 28, 45], in which high accu-
racies (generally over 95%) of breed identification were 
obtained by using SNP chip data. In addition, we also 
evaluated the situation where the reference population 
was genotyped with sequencing and the test population 
was genotyped with SNP chips, the results showed that, 
by imputation of the chip data to sequence data, almost 
the same accuracies could be obtained as the situation 
where both reference and test population were geno-
typed with sequencing.

It would be interesting to know whether there are 
some pathways involved in the breed diversification. We 
performed Kyoto Encyclopedia of Gene and Genome 
(KEGG) pathway analysis for genes in the vicinity of 
the 1,000 MBI SNPs using Database for Annotation, 

Table 4  The average GBC (%) of the test animals (in rows) across the 13 breeds (in columns) estimated using 789K SNPs

See Table 1 for breed codes and Table 2 for number of test animals in each breed

Breed NMD YKT GEL LIM MBL HF NWR CHA SIM BS JER ANG HOL

NMD 92.40 0.00 0.00 2.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.71

YKT 0.00 99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GEL 0.64 1.46 46.94 0.31 1.15 6.25 3.06 1.11 28.21 3.13 0.05 7.57 0.12

LIM 0.19 0.56 0.06 88.57 0.40 1.06 0.27 5.35 2.39 0.21 0.50 0.45 0.00

MBL 0.38 0.10 0.32 1.80 92.08 0.15 0.07 0.09 4.61 0.13 0.00 0.00 0.27

HF 0.71 0.06 0.14 0.63 0.06 95.47 0.53 1.09 0.41 0.00 0.06 0.76 0.07

NWR 0.86 0.18 0.49 0.27 0.04 0.46 93.79 0.94 0.04 0.91 0.02 0.56 1.44

CHA 0.83 0.92 0.01 2.83 0.19 3.19 0.85 88.38 1.09 0.47 0.42 0.78 0.05

SIM 0.39 0.33 0.50 3.81 2.89 0.58 0.47 1.40 87.68 0.69 0.05 0.61 0.60

BS 0.98 0.95 4.97 0.10 1.10 0.39 0.83 1.51 3.76 84.50 0.50 0.14 0.27

JER 0.78 0.21 0.25 1.96 0.06 0.28 0.55 0.09 0.04 0.04 94.89 0.07 0.78

ANG 0.45 0.10 0.17 0.21 0.02 0.87 0.88 1.04 0.02 0.01 0.04 95.75 0.43

HOL 1.50 0.24 2.49 0.87 0.18 0.7 2.04 0.85 0.48 0.03 0.15 0.47 89.99
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Visualization and Integrated Discovery (DAVID) [47]. 
Five hundred and eighty-one genes were involved in this 
analysis, and 9 significant pathways (P < 0.05) were identi-
fied (Additional file 1: Table S8). Some pathways could be 
involved in breed diversification. For example, the Mel-
anogenesis pathway and the NF-kappa B signaling path-
way could be related to hair color and stress resistance, 
respectively, which are regarded as important character-
istics of a breed. However, it is hard to find general clear 
relationship between these pathways and breed charac-
teristics, although there are some SNPs showing strongly 
associated with some breed characteristics. For example, 
the SNP in the KIT gene in the Melanogenesis pathway, 
which has been proved as a functional gene for hair color, 
had high frequency (0.7–1.0) for allele C in breeds with 
white pieces, like HOL, NMD, MBL, and HF, while it 
had frequency of zero (or nearly zero) in breeds without 
white pieces, like ANG, LIM, GEL, and BS.

Conclusions
We compared different combinations of breed-inform-
ative SNPs detection methods (Delta, FST, and In) and 
machine leaning classification methods (KNN, RF, 
SVM, NB, and ANN) for breed identification using 
sequence and SNP chip data with respect to different 
reference population sizes and number of most breed-
informative SNPs. We found that, although in all sce-
narios the identification accuracies could reach over 
95%, the combination of DFI (an integration of Delta, 
FST, and In) and KSR (an integration of KNN, SVM, and 
RF) was the optimal strategy, which produced the high-
est accuracies in most cases (over 99%) and was very 
robust across all scenarios. Generally, the accuracies 
increased along with the increase of the reference pop-
ulation size and the number of most breed-informative 
SNPs. Using sequence data resulted in higher accura-
cies than using chip data in most cases. However, the 
differences were generally small. In view of the cost of 
genotyping, using chip data is also a good option for 
breed identification.
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