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Abstract 

Background  Heat stress in laying hens negatively affects egg production and shell quality by disrupting the homeo‑
stasis of plasma calcium and phosphorus levels. Although the kidney plays an important role in calcium and phos‑
phorus homeostasis, evidence regarding the effect of heat stress on renal injury in laying hens is yet to be elucidated. 
Therefore, the aim of this study was to evaluate the effects of chronic heat stress on renal damage in hens during 
laying periods.

Methods  A total of 16 white-leghorn laying hens (32 weeks old) were randomly assigned to two groups (n = 8). One 
group was exposed to chronic heat stress (33 °C for 4 weeks), whereas the other group was maintained at 24 °C.

Results  Chronic heat exposure significantly increased plasma creatinine and decreased plasma albumin levels 
(P < 0.05). Heat exposure also increased renal fibrosis and the transcription levels of fibrosis-related genes (COLA1A1, 
αSMA, and TGF-β) in the kidney. These results suggest that renal failure and fibrosis were induced by chronic heat 
exposure in laying hens. In addition, chronic heat exposure decreased ATP levels and mitochondrial DNA copy 
number (mtDNA-CN) in renal tissue, suggesting that renal mitochondrial dysfunction occurs under conditions of heat 
stress. Damaged mitochondria leak mtDNAs into the cytosol and mtDNA leakage may activate the cyclic GMP-AMP 
synthase (cGAS) stimulator of interferon genes (STING) signaling pathway. Our results showed that chronic heat 
exposure activated the cGAS-STING pathway as indicated by increased expression of MDA5, STING, IRF7, MAVS, and 
NF-κB levels. Furthermore, the expression of pro-inflammatory cytokines (IL-12) and chemokines (CCL4 and CCL20) was 
upregulated in heat-stressed hens.

Conclusions  These results suggest that chronic heat exposure induces renal fibrosis and mitochondrial damage in 
laying hens. Mitochondrial damage by heat stress may activate the mtDNA-cGAS-STING signaling and cause subse‑
quent inflammation, which contributes to the progression of renal fibrosis and dysfunction.
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Background
Heat stress is one of the most deleterious environmen-
tal stressors affecting the poultry industry worldwide 
[1], because poultry is highly sensitive to heat stress 

and their ability to dissipate body heat is low [2]. Heat 
stress decreases the egg weight and shell quality in lay-
ing hens [3]. Moreover, exposure of laying hens to a 
high temperature causes a decrease in the plasma cal-
cium and phosphorus levels [4], which are important 
minerals for laying hens that affect egg production and 
shell quality [5, 6]. The kidney plays an important role 
in maintaining calcium and phosphorus homeosta-
sis, which is balanced by gastrointestinal absorption 
and renal excretion [7]. Therefore, low plasma calcium 
and phosphorus levels in hens exposed to chronic heat 
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stress may be associated with renal dysfunction. How-
ever, there remains a lack of evidence demonstrating an 
effect of heat stress on renal damage in laying hens.

The kidney requires a large amount of energy 
because of the reabsorption of ultrafiltrate by the glo-
meruli to maintain homeostasis [8]; thus, mitochon-
dria are enriched in renal tubular cells. Mitochondria 
are key organelles involved in various processes related 
to energy production from free radicals and signal 
transduction [9]. Mitochondrial dysfunction causes 
increased oxidative stress, depletion of ATP, and cell 
death [10], which are associated with various health 
issues, such as cancer [11], cardiovascular disease [12], 
Alzheimer’s disease [13], neurodegeneration [14], and 
aging [15]. Recent studies showed a pathogenic role for 
mitochondrial damage in the development and pro-
gression of kidney disease in humans and mice [16], 
indicating that mitochondrial homeostasis and bio-
genesis are essential for maintaining normal kidney 
function.

Mitochondrial DNA (mtDNA) is a non-nuclear 
double-stranded circular DNA without introns [17]. 
The mitochondrial DNA copy number (mtDNA-CN) 
is regarded as a biomarker of mitochondrial function 
[18, 19], and its alteration reflects mitochondrial bio-
genesis and function [20]. Under environmental stress 
conditions (e.g., hypoxia, heat exposure, and cold tem-
perature), reactive oxygen species levels increase in 
the mitochondria, which may result in a significant 
decrease in the mtDNA-CN [21–23]. In fact, under 
long-term heat stress conditions, tissue ATP levels and 
mtDNA-CN were significantly decreased in the liver of 
broilers [24]. Since the kidney is a high-energy organ 
containing a large amount of mitochondria, we hypoth-
esize that heat stress induces severe renal mitochon-
drial damage in hens during the laying period.

In pathological states of acute and chronic kidney 
disease, mtDNA stress may contribute to cyclic guano-
sine monophosphate-adenosine monophosphate syn-
thase (cGAS) stimulator of interferon genes (STING) 
pathway activation and type I IFN responses [25, 26]. 
STING is a key adaptor in the cytosolic DNA-directed 
signaling pathway [27, 28] and its activity is associated 
with several inflammation-related diseases [29–31]. 
The leakage of mtDNA from damaged mitochondria 
into the cytosol is a key trigger for the activation of the 
STING signaling pathway [32]. In laying hens, the role 
of the mtDNA-cGAS-STING pathway in renal inflam-
mation and/or fibrosis has not been clarified yet.

Therefore, the objective of this study was to clarify 
the effect of chronic heat stress on renal damage in lay-
ing hens, with a particular focus on the involvement of 
renal fibrosis and mitochondrial dysfunction.

Material and methods
Ethics statement
All procedures were approved by the Animal Care 
Committee of the Institute of Livestock and Grassland 
Science, National Agriculture and Food Research Organ-
ization (NARO), Japan (Approval number: 21C118ILGS).

Birds
The experiment consisted of a 4-week preliminary breed-
ing period for adaptation and a 4-week experimental 
period. During the preliminary breeding period, the egg 
production status of 96 hens was recorded, and 16 lay-
ing hens (32 weeks old, i.e., the peak time of egg laying) 
with approximately the same body weight (1,580 ± 30 g), 
feed consumption rate, and egg production performance 
(average laying rate: 99.1%) were selected. The laying hens 
were raised individually in wire-floored cages (measur-
ing 33  cm × 45 cm  × 40  cm, width × height × depth) and 
fed with a corn-soybean meal-based diet (containing 
0.3% non-phytate P, 3.3% calcium, 500  IU/kg vitamin 
D, 2.8 Mcal/kg ME, and 15.5% crude protein: Table  1). 
The basal diet was designed to meet or exceed all nutri-
ents requirements recommended by the Japanese feed-
ing standard for poultry [33]. They had free access to 
feed and fresh water. Birds were randomly divided into 

Table 1  Composition of the basal diet

1 Vitamin mixture provided the following (per kilogram of diet): vitamin A 
(from retinyl acetate) 10,000 IU; cholecalciferol, 500 IU; vitamin E (from DL-α-
tocopheryl acetate), 15 IU; vitamin K (menadione sodium bisulfate), 0.8 mg; 
riboflavin, 7 mg; D-calcium pantothenate, 5 mg; nicotinic acid, 25 mg; choline 
chloride, 400 mg; pyridoxine hydrochloride, 3 mg; folic acid, 1.5 mg; thiamine 
mononitrate, 1.5 mg; biotin, 0.2 mg; vitamin B12 (cyanocobalamin), 10 μg
2 Mineral mixture provided the following (per kilogram of diet): iron 
(FeSO4⋅7H2O), 80 mg; manganese (MnCO3⋅nH2O), 60 mg; zinc (ZnO), 40 mg; 
copper (CuSO4⋅5H2O), 8 mg; iodine (calcium iodate), 0.5 mg

Ingredients, %

  Corn 67.23

  Soybean meal 22.97

  Vegetable oil 0.42

  Calcium carbonate 7.86

  Dibasic calcium phosphate hydrate 0.91

  Sodium chloride 0.27

  DL-Methionine 0.09

  Vitamin mixture1 0.10

  Mineral mixture2 0.10

  Selenium 0.05

Calculated value

  Crude protein, % 15.50

  Metabolizable energy, Mcal/kg 2.80

  Non-phytate P, % 0.30

  Calcium, % 3.30

  Vitamin D, IU/kg 500.00
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two group (n = 8). One group was exposed to heat stress 
(33 °C for 4 weeks), whereas the other group was main-
tained at 24 °C. The light regimen was 15 L:9 D and the 
dark period was from 19:00 to 04:00. Egg production and 
egg weight of each laying hen were recorded daily. Lay-
ing rate, average egg weight, and daily egg production 
were calculated. Once a week, the eggs were collected to 
determine the breaking eggshell strength, eggshell thick-
ness, and egg weight using a digital egg tester (Model 
DET6500, NABEL Co., Ltd., Kyoto, Japan). Body weight 
and feed intake were recorded once a week and on the 
final day of the experimental period. Blood collection 
was performed from the brachial vein. The samples were 
stored in microtubes and centrifuged under refrigeration. 
All birds were euthanized, and renal tissue samples were 
removed as quickly as possible.

Plasma analysis
Plasma was separated and stored at −20 °C until assayed. 
The plasma levels of calcium, phosphate, blood urea 
nitrogen (BUN), creatine, and albumin were analyzed 
using the biochemical auto-analyzer, BioMajesty JCA-
BM 8060 (JEOL Ltd., Tokyo, Japan).

Histological analysis and fibrosis area analysis
Renal tissues were fixed in 4% paraformaldehyde, dehy-
drated in 70%, 80%, 90%, 95%, and 100% ethanol, and 
embedded in paraffin. Paraffin-embedded tissues were 
sectioned at 4  μm, rehydrated in a series of xylene and 
ethanol solutions, and then used for Masson Trichrome 
staining, which stains normal tissue regions red, nuclei 
black, and fibrosis regions blue. Observations of histo-
pathological changes in kidney tissues were performed 
by light microscopy (Leica, Nusslock, Germany). Eight 
fields per sample were randomly selected for fibrotic area 
quantification using Image J software, version 6.0 (Media 
Cybernetics, Inc., Rockville, MD, USA). Images were 
acquired under identical conditions at the same magnifi-
cation. The fibrotic area was expressed as the percentage 
of the captured image area.

Total RNA isolation, cDNA synthesis, and real‑time 
polymerase chain reaction (PCR)
Total RNA was extracted from kidney samples using the 
RNeasy Mini Kit (Qiagen, Venlo, Netherlands) following 
the manufacturer’s instructions. Complementary DNA 
(cDNA) was synthesized from 1  μg of total RNA using 
random primers (TOYOBO, Tokyo, Japan) and Rever 
Tra Ace (TOYOBO). Real-time PCR was performed to 
measure mRNA expression levels using a QuantStudio 5 
Real-time PCR system (Applied Biosystems, Foster City, 
CA, USA) and THUNDERBIRD SYBR qPCR Master Mix 
(TOYOBO, Tokyo, Japan). The primer sequences for the 

target and reference genes are shown in Table  2. PCR 
primers for chicken interleukin (IL)-12 were purchased 
from Qiagen.

Determination of mtDNA relative expression and copy 
number
Mitochondrial DNA was extracted from kidney samples 
using the DNeasy blood and tissue kit (Qiagen, Venlo, 
Netherlands) following the manufacturer’s instructions. 
All steps were completed at room temperature and each 
sample was processed at one time. Relative expression 
of mtDNA was measured using a QuantStudio 5 Real-
time PCR system (Applied Biosystems, Foster City, CA, 
USA) using THUNDERBIRD SYBR qPCR Master Mix 
(TOYOBO, Tokyo, Japan). The primer sequences for 
the target and reference genes are shown in Table 3. The 
mtDNA copy number was determined using the equa-
tion copies = 2^(−Ctmt)/(−Ctreference).

Tissue ATP contents
Cellular ATP in kidney tissue was extracted using the 
ATP assay kit (TA100, Toyo B Net, Tokyo, Japan). Briefly, 
small pieces of tissue (about 0.1 g) were washed once with 
PBS, resuspended in ATP extraction reagent, and centri-
fuged at 1,000 × g for 10 min. The supernatant was used 
for the ATP assay. The ATP level was quantitated using 
an ATP assay kit with luciferin and luciferase according 
to the manufacturer’s instructions.

Statistical analysis
All data were analyzed using a Student’s t-test. The indi-
vidual laying hen was the experimental unit. Data are 
shown as the mean ± SE. The results were considered sig-
nificant at P ≤ 0.05 and a trend at 0.05 < P ≤ 0.1.

Results
Effects of chronic heat stress on laying performance 
and eggshell quality
As shown in Table  4, chronic heat exposure resulted in 
a lower laying rate (%), egg weight (g), and daily egg pro-
duction (g/d) during the experimental period (P < 0.05). 
Heat exposure also reduced eggshell strength (kg/cm2), 
thickness (mm), and eggshell weight (g). The results indi-
cate that heat stress was induced in this study. In addi-
tion, plasma calcium and phosphate concentration were 
decreased when the birds were exposed to high tempera-
ture compared with the control group.

Effect of chronic heat stress on renal function 
and histology
While the BUN in plasma was not affected adversely, 
chronic heat exposure significantly increased the level 
of plasma creatinine and decreased the level of plasma 
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albumin, indicating renal dysfunction (Fig.  1a). As 
shown in Fig.  1b, Masson’s trichrome staining revealed 
that the renal fibrosis area was significantly increased in 
the heat-stressed group. Using quantitative PCR analy-
sis, gene expression levels of collagen type I alpha 1 
(COL1A1), α-smooth muscle actin (αSMA), and trans-
forming growth factor-β (TGF-β) were increased in the 
heat-stressed group (Fig.  1c). These data suggest that 
heat exposure induces renal dysfunction and fibrosis in 
laying hens.

Effect of chronic heat stress on mitochondrial function 
in the kidney
As shown in Fig. 2a, chronic heat exposure significantly 
decreased ATP content of the renal tissue. Quantitative 
PCR analysis was used to analyze mitochondrial DNA 
copy number (mtDNA-CN) in the renal tissue of laying 
hens based on the mitochondrial ND4, COX1, ATP6, and 
ND6 genes. The ratio of mt/nuclear DNA was signifi-
cantly decreased for the ND4, ATP6, and ND6 genes in 
heat-stressed birds (Fig. 2b).

Table 2  Sequences of the primers used for quantitative real-time PCR

1 COL1A1 Collagen type I alpha 1, COL1A2 Collagen type I alpha 2, αSMA α-smooth muscle actin, TGF-β Transforming growth factor-β, MDA5 Melanoma differentiation-
associated gene 5, STING Stimulator of interferon genes, IRF7 Type I interferon regulatory factor 7, MAVS Mitochondrial antiviral signaling, IFN- Type I interferon-, IL- 
Interleukin-, CCL C–C motif chemokine ligands, 18S rRNA 18S ribosomal RNA
2 F Forward, R Reverse

Gene1 Primer sequences2 (5’→3’) Accession no Source or reference 
of primer sequences

COL1A1 F: ACC​TCA​GCA​AGA​ACC​CCA​AG XM_025144131.2 [34]

R: CTC​ACC​GCC​GTA​CTC​AAA​CT

COL1A2 F: GCG​GTT​TCT​ACT​GGA​TTG​A NM_001079714.2 [34]

R: AGC​GAG​ACG​GCT​TAT​TTG​

αSMA F: AAG​CAC​CAC​TGA​ATC​CCA​AAG​ NM_001031229.1 [34]

R: CCA​GAG​TCA​AGC​ACA​ATC​CCT​

TGF-β F: GCA​AAC​TGC​GTC​TGA​CCG​ NM_001318456.1 [34]

R: ACG​AAG​AAG​ATG​CTG​TGG​C

MDA5 F: CGA​ATG​AAA​ACC​TGG​GAC​AG AB371640 [35]

R: TGG​TTT​TGC​CAC​TGC​CTG​TA

STING F: CGG​CTG​TGA​CAT​CTG​GGA​T KP893157 [35]

R: CCC​GAG​TCA​GGA​TGG​TCT​C

IRF7 F: ACA​ACG​CCA​GGA​AGG​ATG​TC NM_205372 [35]

R: CCA​GCA​GCA​TGA​ACA​TGT​GA

MAVS F: GAA​CGC​AAA​CCA​CCT​TCA​AC NM_001012893 [35]

R: CCA​GGA​GCA​GCA​CTC​AAA​TC

IFN-β F: TTG​CCC​ACA​ACA​AGA​CGT​GA GU119897/AY974089 [35]

R: GTG​TGC​GGT​CAA​TCC​AGT​GT

IFN-γ F: GTC​AAA​GCC​GCA​CAT​CAA​AC NM_205149.1 [35]

R: GGC​TTT​GCG​CTG​GAT​TCT​C

IL-1β F: GGC​CTG​AGT​CAT​GCA​TCG​TT NM_204524.1 [35]

R: ATA​AAT​ACC​TCC​ACC​CCG​ACAA​

IL-8 F: GGC​TTG​CTA​GGG​GAA​ATG​A AJ009800 [31]

R: AGC​TGA​CTC​TGA​CTA​GGA​AAC​TGT​

CCL2 F: GGC​AGA​CTA​CTA​CGA​GAC​CAA​CAG​ L34553 [31]

R: ACG​GCC​CTT​CCT​GGT​GAT​

CCL4 F: CTT​CAC​CTA​CAT​CTC​CCG​GC NM_001030360 [36]

R: CTG​TAC​CCA​GTC​GTT​CTC​GG

CCL20 F: AGG​CAG​CGA​AGG​AGCAC​ NM_204438 [36]

R: GCA​GAG​AAG​CCA​AAA​TCA​AAC​

18S rRNA F: TCA​GAT​ACC​GTC​GTA​GTT​CC HQ873432.1 [37]

R: TTC​CGT​CAA​TTC​CTT​TAA​GTT​
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Effect of chronic heat stress on the expression 
of cGAS‑STING pathway genes and related factors
As shown in Fig.  3a, the expression of the MDA5, 
STING, IRF7, and MAVS genes associated with the 
cGAS-STING pathway and the corresponding regula-
tory NF-kB gene were significantly increased in the heat-
stressed group compared with that in the control group. 
Furthermore, the expression levels of pro-inflammatory 
cytokines (IL-12) and chemokines (CCL4 and CCL20) 
were significantly upregulated, and the expression of 
IL-8 tended to increase in heat-stressed hens (Fig.  3b). 
In contrast, the expression of other pro-inflammatory 
cytokines and chemokines (IFN-β, IFN, IL-1β and 
CCL2) was not altered by heat exposure (Fig. 3b). These 
results indicate that heat exposure stimulates the cGAS-
STING pathway and subsequent inflammation.

Discussion
Heat exposure is a nonspecific stressor that can affect 
the welfare of livestock and cause death [39]. In the 
present study, we focused on renal damage in hens 
during the laying period. Chronic heat stress in lay-
ing hens increased plasma creatinine and decreased 
albumin levels, indicating that chronic heat exposure 
causes renal failure. Furthermore, heat stress in laying 
hens significantly increased the renal cortical fibrotic 
area and the expression of pro-fibrotic genes. To our 
knowledge, this is the first report demonstrating 
that heat stress induces renal fibrosis in laying hens. 
The results suggest that renal failure and fibrosis are 
responsible, at least in part, for the reduction of laying 
performance and eggshell quality during conditions of 
heat stress.

Table 3  Sequences of the primers used for mtDNA analysis

1 ND4 NADH dehydrogenase subunit 4, COX1 Mitochondrial cytochrome c oxidase1, ATP6 ATP synthase F0 subunit 6, ND6 NADH dehydrogenase subunit 6
2 F Forward, R Reverse
3 Genes were used to amplify fragment of mitochondrial DNA
4 Genes were used to amplify fragment of cDNA

Gene1 Primer sequences2 (5’→3’) Accession no Source or reference 
of primer sequences

ND43 F: CGC​AGG​CTC​CAT​ACT​ACT​CG NC_040970.1 [38]

R: TTA​GGG​CAC​CTC​ATA​GGG​CT

COX13 F: CCA​TAC​TAC​TTA​CCG​ACC​GCA​ACC​ NC_040970.1 [24]

R: GTG​TCT​ACG​TCC​ATT​CCG​ACT​GTG​

ATP63 F: ATT​CTC​AAG​CCC​CTG​CCT​AC NC_053523.1 [24]

R: TCA​GAG​TTG​GAT​GGT​GGA​GAGG​

ND63 F: TAA​CAA​CAA​ACC​TCA​CCC​AGCC​ NC_053523.1 [24]

R: GTG​TGT​CTT​TTG​CTC​GGT​TGGA​

β-actin4 F: ATC​CGG​ACC​CTC​CAT​TGT​C NM_205518.1 [24]

R: AGC​CAT​GCC​AAT​CTC​GTC​TT

Table 4  Laying performance and eggshell quality

Data are presented as mean ± SEM; P < 0.05 was considered statistically significant
a Laying performance and plasma contents refers to the average data of each group of hens (n = 8)
b Eggshell quality refers to the average data of each group of eggs (n = 8 for each week)

 Item Control Heat stress  P-value

Laying ratea, % 99.6 ± 0.4 85.3 ± 2.5 < 0.05

Average egg weighta, g 58.2 ± 1.0 54.4 ± 1.0 < 0.05

Daily egg productiona, g/d 57.9 ± 1.1 46.5 ± 2.1 < 0.05

Eggshell strengthb, kg/cm2 4.9 ± 0.1 4.2 ± 0.1 < 0.05

Eggshell thicknessb, mm 0.43 ± 0.00 0.38 ± 0.01 < 0.05

Eggshell weightb, g 6.7 ± 0.1 5.7 ± 0.2 < 0.05

Plasma calciuma, mg/dL 2.8 ± 0.2 2.1 ± 0.2 < 0.05

Plasma phosphatea, mg/dL 2.3 ± 0.4 1.2 ± 0.2 < 0.05
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Renal fibrosis is a common pathological feature of 
chronic renal injury [40, 41]. A recent study indicated 
that mitochondrial dysfunction is a major problem in the 
development and progression of renal fibrosis [42]. In 
addition, studies have provided evidence of a relationship 
between mitochondrial damage and dysregulated qual-
ity of mtDNA [43, 44]. mtDNA-CN refers to the abun-
dance of mitochondria in a cell which depends on energy 
requirements and can be measured by mtDNA copy 
number and quality of mtDNA fragments [45]. Low tissue 
mtDNA-CN is associated with higher levels of oxidative 
stress and is a causative factor for oxidative stress-related 
damage [46]. Heat stress affects mitochondrial func-
tion and is characterized by increased levels of reactive 

oxygen species and an imbalance in the mitochondrial 
redox state [47]. Zhang et al. [48] showed that mtDNA-
CN and ATP were decreased in the liver of broiler chick-
ens subjected to chronic heat exposure. Similarly, our 
results demonstrate that mtDNA-CN in chronic heat-
stressed hen kidneys was significantly reduced compared 
with that of the control group. Moreover, ATP content 
was also significantly lower in heat-stressed hen kidneys 
compared with that in the unexposed hens. Thus, chronic 
heat stress leads to severe mitochondrial damage in the 
kidneys of laying hens, which may contribute to the pro-
gression of renal fibrosis and dysfunction.

Recently, Maekawa et al. [26] concluded that mitochondrial 
dysfunction and activation of the mtDNA-cGAS-STING 

Fig. 1  Effect of chronic heat stress on renal function and histology in laying hens. a Plasma levels of blood urea nitrogen (BUN), creatine, and 
albumin in the control (n = 8) or heat stress for 4 weeks (n = 8) hen groups. Data are presented as the mean ± SEM. Statistical analysis was performed 
by a Student’s t-test. *P < 0.05 was considered statistically significant. b Representative histological images of Masson’s trichrome stained sections 
of the control and heat-stressed hen kidneys (upper). Morphometric analysis of the fractional cortical tubular area of Masson’s trichrome stained 
kidney images (lower). n = 8 for each group. Data are presented as the percentage of the total cortex and mean ± SEM. Statistical analysis was 
performed using a Student’s t-test. Bars = 100 µm. c The mRNA expression levels of COL1A1, COL1A2, αSMA, and TGFβ were measured by performing 
real-time PCR and normalized to 18S rRNA. n = 8 in each group. Statistical analysis was performed by a Student’s t-test
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Fig. 2  Effect of chronic heat stress on the functionality of mitochondria in the kidney. a ATP levels in renal tissue. n = 8 in each group. Data are 
presented as the percentage of the total cortex and as the mean ± SEM. Statistical analysis was performed using a Student’s t-test. b mtDNA copy 
number of renal tissues in laying hens. mt/nucDNA = mtDNA relative to nuclear DNA (β-actin) copy number. *P < 0.05

Fig. 3  Effects of chronic heat stress on the expression of STING, NF-kB pathway, and related genes. a mRNA levels of MDA5, STING, IRF7, MAVS, 
and NF-kB, b mRNA levels of pro-inflammatory cytokines (IFN-β, IFN-γ, IL-1β, and IL-12) and chemokines (IL-8, CCL2, CCL4 and CCL20). The mRNA 
expression levels were quantified by real-time quantitative PCR and normalized to 18S rRNA. n = 8 in each group. Statistical analysis was performed 
using a Student’s t-test. *P < 0.05
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pathway are critical regulators of mammalian kidney injury. 
Cyclic guanosine monophosphate-adenosine monophos-
phate synthase (cGAS) has recently been identified as key 
cytosolic DNA signal that mediates type I IFN signaling in 
autoimmune diseases [49]. The leakage of DNA itself from 
the nucleus or mitochondria into the cytosol under condi-
tions of stress or cellular injury can cleave cGAS which con-
verts ATP and GTP to the second messenger cyclic GAMP 
which mediates the activation of STING [50]. To identify 
the underlying mechanisms of renal fibrosis in heat-stressed 
hens, we measured the expression of cGAS-STING path-
way-related genes by qRT-PCR. We found that the expres-
sion of the MDA5, STING, IRF7, MAVS and NF-κB genes 
was increased in the heat-stressed group. Furthermore, 
the expression of pro-inflammatory cytokine (IL-12) and 
chemokine (IL-8, CCL4, and CCL20) genes was upregulated 
in heat-stressed hens. These results indicate that the activa-
tion of the mtDNA-cGAS-STING pathway and subsequent 
inflammation was induced in the kidneys of heat-stressed 
laying hens. This suggests that in the laying hens, similar to 
mammals, mtDNA is a key driver of inflammation and a 
cellular mechanism involved in the development of inflam-
mation and renal dysfunction. In the present study, mRNA 
levels of pro-inflammatory cytokine and chemokines were 
upregulated by chronic heat stress in the kidneys of laying 
hens. Both pro-inflammatory cytokines and chemokines 
affect the onset and progression of renal disease [51]. IL-12 
promotes renal injury through IFN-γ secretion and cres-
cent formation in a mouse model of lymphocyte accu-
mulation [52–54]. In addition, serum and renal IL-12 
levels are increased in patients with kidney disease [55, 56]. 
Chemokines stimulate the migration of immune cells and 
increase the production and activity of adhesion molecules 
that contribute to fibrosis and kidney damage [36, 57]. In 
humans, increased expression of the IL-8, CCL4, and CCL20 
genes are involved in the pathogenesis of renal diseases 
[58–60]. Our data showing high levels of pro-inflammatory 
cytokine and chemokine gene expression in heat-stressed 
hens indicates that the release of these cytokines contributes 
to the progression of renal fibrosis and failure.

Conclusions
Our results indicate that chronic heat exposure induces renal 
fibrosis and mitochondrial damage in laying hens. Mito-
chondrial damage by heat stress activates mtDNA-cGAS-
STING signaling and subsequent inflammation, which 
contributes to the progression of renal fibrosis and dysfunc-
tion. Because renal mitochondrial damage induces renal 
fibrosis through activation of mtDNA-cGAS-STING path-
way, mitochondria-targeting compounds or STING pathway 
inhibitors may represent a strategy to treat renal fibrosis and 
dysfunction after exposure to heat stress in laying hens.
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