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Abstract 

Background A detailed understanding of genetic variants that affect beef merit helps maximize the efficiency of 
breeding for improved production merit in beef cattle. To prioritize the putative variants and genes, we ran a com-
prehensive genome-wide association studies (GWAS) analysis for 21 agronomic traits using imputed whole-genome 
variants in Simmental beef cattle. Then, we applied expression quantitative trait loci (eQTL) mapping between the 
genotype variants and transcriptome of three tissues (longissimus dorsi muscle, backfat, and liver) in 120 cattle.

Results We identified 1,580 association signals for 21 beef agronomic traits using GWAS. We then illuminated 854,498 
cis-eQTLs for 6,017 genes and 46,970 trans-eQTLs for 1,903 genes in three tissues and built a synergistic network 
by integrating transcriptomics with agronomic traits. These cis-eQTLs were preferentially close to the transcription 
start site and enriched in functional regulatory regions. We observed an average of 43.5% improvement in cis-eQTL 
discovery using multi-tissue eQTL mapping. Fine-mapping analysis revealed that 111, 192, and 194 variants were most 
likely to be causative to regulate gene expression in backfat, liver, and muscle, respectively. The transcriptome-wide 
association studies identified 722 genes significantly associated with 11 agronomic traits. Via the colocalization and 
Mendelian randomization analyses, we found that eQTLs of several genes were associated with the GWAS signals of 
agronomic traits in three tissues, which included genes, such as NADSYN1, NDUFS3, LTF and KIFC2 in liver, GRAMD1C, 
TMTC2 and ZNF613 in backfat, as well as TIGAR, NDUFS3 and L3HYPDH in muscle that could serve as the candidate 
genes for economic traits.

Conclusions The extensive atlas of GWAS, eQTL, fine-mapping, and transcriptome-wide association studies aid in the 
suggestion of potentially functional variants and genes in cattle agronomic traits and will be an invaluable source for 
genomics and breeding in beef cattle.
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Introduction
Cattle are commonly raised as livestock animals for 
meat and milk. In the recent decade, thousands of can-
didate variants and genes for agronomic traits have been 
detected by genome-wide associated studies (GWAS) in 
cattle [1]. For example, the variants on DGAT1 deter-
mined the variation of milk production traits [2]. How-
ever, the causative variants are still difficult to find due to 
their tiny effects and many variants in long-range linkage 
disequilibrium (LD) [3], and how the causative variants 
contribute to traits and their molecular basis remains 
largely unknown. Single nucleotide polymorphisms 
(SNPs) associated with the gene expression are expres-
sion quantitative trait loci (eQTLs). The eQTL mapping 
is more powerful than GWAS in detecting statistically 
significant genetic effects and revealing inherent biologi-
cal meaning in the associations between a regulatory var-
iant and its related genes [4–6]. So far, only a few eQTL 
studies have been conducted in cattle, including milk 
cells and mammary glands of Holstein cattle [7–9], mus-
cle of Angus-Brahman crossbreed cattle [10], and Nelore 
cattle [11], and liver and muscle of Irish beef cattle [12]. 
However, most of these studies only reported the iden-
tification and basic characteristics of eQTLs. The com-
prehensive interpretation of genetic mechanisms of cattle 
complex traits using efficient multi-omics data strategies, 
such as transcriptome-wide association studies (TWAS), 
colocalization between GWAS and eQTLs, and Mende-
lian randomization (MR), remains rare. Significantly, the 
eQTLs’ roles in the mechanisms underpinning GWAS 
linked to agronomic traits in beef cattle remains unclear. 
Fortunately, as a complement to conventional GWAS, 
TWAS integrates GWAS and gene expression datasets to 
identify gene–trait associations [13]. Using sophisticated 
imputation methodologies [14–16], TWAS has been suc-
cessful in identifying gene-trait associations and gaining 
a deeper understanding of the biological mechanisms 
underlying many complex traits in humans by reduc-
ing the burden of multiple testing [17]. MR is a research 
method that provides evidence for putative causal rela-
tions between modifiable risk factors (gene expres-
sion) and disease (complex traits) using genetic variants 
as instrumental variables [18], which has been widely 
applied to study the relationships among molecular phe-
notype and complex traits or diseases [19, 20].

Although the cattle Genotype-Tissue Expression 
(cGTEx) project  released highly valuable multi-tissue 
eQTLs by analyzing publically available RNA-sequenc-
ing data [21], the bias of variants detection, population 
stratification caused by multi-breeds data, and con-
founding factor from multiple experiment designs need 
to be addressed. For example, both muscle and adipose 

are widely distributed tissues in the body of cattle, 
which could be classified into different types with their 
distinct characteristics in long-term selection. The 
muscle fiber types and distributions [22], intramuscu-
lar fat contents [23], as well as chemical and fatty acid 
profiles [24] were various in different muscles. The 
difference in gene expression patterns between differ-
ent muscles was considerable [25]. Since the muscle of 
cGTEx used the blended resources, containing a variety 
of muscle types from both dairy and beef cattle, which 
produced the general results. Moreover, the muscle 
transcriptome shows a noticeable difference between 
beef and dairy cattle [26], the combined use of dairy 
and beef data may result in a bias. These eQTLs, spe-
cific to a certain muscle type or breed, would be lost. 
A similar problem can be seen in adipose tissue. There-
fore, further research is required to improve the qual-
ity of eQTL identification, especially in these primary 
tissues such as muscle and adipose. Compared to other 
muscle types, the longissimus dorsi muscle is more ten-
der, contains more intramuscular fat, and has better 
flavor, which is the most valuable part of beef. Backfat 
thickness is an important economic trait in beef cattle. 
Backfat thickness can affect both yield [10] and flavor 
and juiciness of beef [4]. The liver plays a key role in 
weight gain since it is metabolically active and accounts 
for approximately 24% of basal energy expenditure [27]. 
However, the eQTL studies for the importantly specific 
longissimus dorsi muscle, backfat and liver, and their 
roles in the mechanisms underlying GWAS of agro-
nomic traits in beef cattle, remain unknown.

Simmental cattle is a well-known breed sharing a 
good reputation in both beef and milk production. 
Moreover, Simmental cattle is a primary beef breed 
in China. Therefore, we hypothesized that the GWAS 
strategy aligning with the aid of the transcriptomic 
analyses could help decipher candidate genes and caus-
ative variants vital to agronomic traits. In this study, we 
first ran a comprehensive GWAS analysis for 21 agro-
nomic traits using imputed whole-genome variants in 
Simmental beef cattle. We then applied eQTL mapping 
in three tissues (longissimus dorsi muscle, backfat, and 
liver) using 356 samples from 120 cattle (Fig.  1a and 
Fig. S1), followed by a meta-analysis across three tis-
sues to increase our discovery power. We integrated 
GWAS results with the eQTL of three tissues to prior-
itize genes and variants affecting agronomic traits via 
transcriptome. The results from the study present valu-
able resources on the impact of genetics and propose 
the underlying genetic architecture of potentially caus-
ative variants and candidate genes in cattle agronomic 
traits.



Page 3 of 17Cai et al. Journal of Animal Science and Biotechnology           (2023) 14:78  

Methods
Animals and experimental design
One Hundred and Twenty healthy Simmental beef 
cattle born between 2017 and 2018 in Wulagai (Inner 
Mongolia Autonomous Region in China) were selected 
for sampling. The yearling steers were delivered to a 
contract feeder where they were fed a typical feedlot 
diet consisting of corn, protein, vitamins, and minerals 
until they reached an average age of 24 months. The 120 
blood samples were collected before they were taken to 
the slaughter room. To ensure consistency of sampling 
location for each tissue, we collected backfat (subcuta-
neous adipose) and longissimus dorsi muscle between 
the  12th and  13th rib after slaughtering. Liver tissue was 
harvested from the edge of the left lobe of the liver. All 
samples were instantly frozen in liquid nitrogen for 
total RNA extraction. DNA samples extracted from 
blood were genotyped using the Illumina BovineHD 
770K Beadchip (Illumina Inc., San Diego, CA, USA).

RNA sequencing and expression profiling
Total RNA was extracted from muscle, liver, and adi-
pose tissue using the Trizol method according to the 
manufacturer’s instructions. We successfully gener-
ated 356 transcriptome libraries from 120 longissimus 
dorsi, 120 liver, and 116 backfat (4 failures). The tran-
scriptome libraries were sequenced using Illumina 
150 bp paired-end strategy libraries. Quality trimming 
and adaptor removal of the Illumina reads were car-
ried out using Cutadapt v2.8 [28] and Trimmomatic 
v0.39 [29]. After quality control, the clean reads were 
mapped to the reference genome (ARS-UCD 1.2) 
using HISAT2 [30]. We used the mapped reads to 
quantify gene expression using Ensembl 103 annota-
tions. StringTie was used to calculate the per kilobase 
per million mapped reads (TPM) for each gene among 
samples [31]. The gene with a threshold of TPM ≥ 0.1 
in ≥ 20% of samples was defined as the expressed gene. 
The gene modules with distinct expression patterns 
were calculated by weighted correlation network analy-
sis (WGCNA) [32]. All expressed genes were used for 
module constructions.

Imputation and GWAS
The phenotype and genotype data of 21 traits were col-
lected from 2,622 individuals over the past decade, 
including our newly collected data from the above 120 
cattle. The summary of phenotype records is shown in 
Table S1. All 2,622 individuals were genotyped using the 
Illumina Bovine 770K Bead chip. The SNPs with minor 
allele frequencies < 0.05, genotype call rates < 90%, located 
in non-autosome and significant Hardy–Weinberg dis-
equilibrium at 1 × 10−6 , as well as samples with call 
rates < 90% were removed from the downstream analysis 
using PLINK 1.90 [33]. After quality control, a total of 
590,065 variants remained. We then imputed the SNPs 
to sequence variants level based on a multiple breeds 
reference panel by Beagle 5.4 [34]. The reference panel 
consists 1,847 individuals (including 113 Simmental cat-
tle) and was downloaded from https:// www. ebi. ac. uk/ 
ena/ brows er/ view/ ERZ17 38264 [35]. We removed vari-
ants with MAF < 0.05 or dosage R-squared  (DR2) < 0.8. 
After quality control (same as above), 8,221,244 autoso-
mal variants were obtained for GWAS and eQTL map-
ping. The average  DR2 of the imputed variants was 0.92. 
Before performing GWAS, the phenotype was adjusted 
by year, sex, age, and the first two principal components 
(PCs) of the genotype generated by PLINK and normal-
ized by rank-transformation using the transform func-
tion in GenABEL [36]. We performed an association test 
for each SNP based on a linear mixed model:

where y is adjusted phenotype; X is a vector of genotypes 
of a variant at the locus tested; β is the effect size of the 
variant; u is a vector of random polygenic effects ~ N 
(0, Gσ 2

g ), where G is genomic relationship matrix con-
structed from all variants; ε is a vector of residual errors. 
Variance component estimation via restricted maximum 
likelihood (REML) analysis was implemented in GCTA 
software [37]. We used P-value < 5 ×  10−8 as significance 
thresholds of GWAS for all traits. We compared GWAS 
results with Cattle QTLdb (release 47, Apr 25, 2022) [1]. 
The QTLs that were within ± 100 kb of a QTL/association 
for the same trait(s) of the Cattle QTLdb were treated as 
the newly detected QTLs.

y = Xβ + u+ ε,

Fig. 1 Study design and transcriptome associated with traits. a We investigated the molecular characteristics by profiling genotype, and mRNA 
from liver, muscle and adipose tissue of 120 Simmental cattle with important agronomic traits. We identified the promising candidate genes and 
causal variants using a multi-omics association strategy. b The Manhattan plot of 21 agronomic traits. Only significant variants and their nearby SNPs 
within up/downstream 100 kb are shown in the plot. The closest gene and associated traits of each sentinel SNP were labeled on the top. c Sample 
clustering using t-SNE based on gene expression levels. d Pearson correlation (heatmap) and hierarchical clustering (tree) of transcriptome profiles 
across 356 samples (rows/columns) show tissue-specific clustering (colors). e Correlation of gene co-expression modules with agronomic traits in 
muscle. Modules were denoted by different colors. Correlation of module eigengene with each agronomic trait displayed in the corresponding box 
(top: coefficient, bottom: P-value). The color of each box represents a positive correlation (red) or a negative correlation (blue)

(See figure on next page.)

https://www.ebi.ac.uk/ena/browser/view/ERZ1738264
https://www.ebi.ac.uk/ena/browser/view/ERZ1738264
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Page 5 of 17Cai et al. Journal of Animal Science and Biotechnology           (2023) 14:78  

The eQTL mapping
The genes with expression ≥ 0.1 TPM in ≥ 20% of samples 
were obtained and their values were normalized across 
samples by the inverse normal transformation. To control 
for population effects, the first two PCs of genotype were 
included in eQTL analyses. We estimated latent covari-
ates for gene expression levels for each tissue using the 
probabilistic estimation of expression residuals (PEER) 
[38]. We used 5 PEER covariates as confounding vari-
ables for gene expression because the posterior variances 
of factor weights nearly reached plains (Fig. S5). We con-
ducted cis-eQTLs mapping using fastQTL [39]. The SNPs 
located within 1 Mb up/downstream of the transcription 
start sites (TSSs) were defined as potential cis-eQTLs. 
We applied the nominal P-value threshold that corre-
sponds to false discovery rate (FDR) ≤ 0.05 for each gene. 
To identify independent secondary signals, we treated 
the most significant corresponding eVariant as a covari-
ate. We repeated cis-eQTL mapping until no additional 
independent signals were detected. The genotype, expres-
sion and covariates were used to map trans-eQTLs using 
the MatrixQTL’s linear model [40]. The P-values were 
adjusted by multiple testing using Benjamini–Hochberg 
(BH) method to obtain FDR. The eQTLs were annotated 
in genomic regions using the Variant Effect Predictor 
[41]. Chromatin region data were from a previous study 
[42]. Enrichment of eQTLs in specific genomic regions 
was estimated using GAT1.0 with 10,000 permutations 
[43]. KEGG analysis of gene lists was computed using the 
GOstat R package with FDR ≤ 0.05 [44]. To evaluate the 
replication of cis-eQTLs in external data sets, we com-
pared the eQTL results with the cattle GTEx project’s 
eQTL summary data, which included 27 tissues and cell 
types [10]. The replication rate of eQTL across tissues 
was estimated as the π1 statistic using the qvalue R pack-
age [45]. The genomic region containing multiple genes 
regulated by the same eQTL signal was defined as an 
eQTL cluster. We obtained all significant eVariants regu-
lating at least three genes and merged them into poten-
tial eQTL clusters by combining variants located within a 
distance of < 1 Mb. The cluster containing all eGenes was 
examined for colocalization of their associated variants 
using the Coloc package in R [46]. The eGenes-associated 
variants had the same underlying eQTL signal using a 
posterior probability (H4) > 0.8 as a cutoff.

Fine‑mapping and multi‑tissue eQTL mapping
We conducted fine-mapping of eQTLs for each gene 
using priors by deterministic approximation of posteriors 
(DAP) [47], which considers the distance from TSS and 
LD information (r2 > 0.25) among SNPs. The priors were 
estimated by TORUS based on the distances of variants 

to the TSS of target genes [48]. Any variant with poste-
rior inclusion probabilities (PIP) > 0.8 was considered as 
fine-mapped result. The meta-analysis was performed in 
all three tissues for all variant-gene pairs that were sig-
nificant in at least one of the three tissues based on the 
eQTL results of single-tissue. We used METASOFT to 
calculate a posterior probability for each variant-gene 
pair and tissue tested [49], which is the probability that 
an eQTL effect exists in a given tissue (called m-value), 
given the profile of eQTL effect sizes and standard errors 
across all three tissues. We used an m-value ≥ 0.9 as a 
threshold to select high-confidence eQTLs.

TWAS analysis
The genomic relationship matrix was constructed using 
SNPs within 1  Mb upstream and downstream of each 
gene’s TSS. We estimated the cis-SNP heritability (cis-h2 ) 
for each gene using the REML algorithm in GCTA [37]. 
The covariates were the same as in the eQTL mapping 
analysis. The estimation of cis-h2 of genes significantly 
different from zero (by likelihood ratio test) after BH 
correction with FDR < 0.1 were defined as cis-heritable 
genes. TWAS analysis was limited to these cis-herita-
ble genes. The estimation of cis-variant effects on gene 
expression was based on the expression values of three 
tissues and the corresponding imputed genotypes in 120 
individuals using GCTA [37]. We then predicted the gene 
expression values for our existing GWAS population of 
2,622 cattle using PLINK [33]. The associations between 
the predicted expression values and the carcass traits 
were calculated using linear models. The significant asso-
ciations with defined using FDR ≤ 0.05 as a cutoff.

Colocalization of eQTL and GWAS
Colocalization between GWAS signals and eQTLs was 
performed using the Coloc R package [46]. All variants 
within the 100  kb flanking regions around the index 
variants were tested for colocalization. GWAS summary 
statistics were from 21 growth, carcass and beef quality 
traits in this study, and 36 milk production, reproduction, 
and body conformation traits published in a previous 
study [50]. We considered GWAS variant and eVariant 
pairs as colocalized using the threshold of H4 > 0.8. We 
performed a Mendelian randomization-equivalent analy-
sis based on the summary statistics of GWAS and eQTL 
studies using summary data-based Mendelian randomi-
zation (SMR) software [51]. We investigated the associa-
tions between gene expression (exposure) and a target 
phenotype (outcome), using the top-associated eQTL in 
the cis region as an instrumental variable. We obtained 
significant results using a BH-corrected P-value thresh-
old (FDR ≤ 0.05). Circos software was used to plot the 
multi-omics results [52].
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Results
GWAS for 21 agronomic traits
We analyzed the GWAS between imputed whole-genome 
variants and 21 agronomic traits using a mixed model 
approach (Table S1). Using a cutoff of P < 5 ×10−8 , we 
found that 1,580 unique variants were associated with the 
21 agronomic traits (Fig. 1b). The number of significant 
variants for each trait ranged from three for the back-
fat depth trait to 647 for the meat pH trait (Table S1). 
These significant signals could be clumped into 265 QTL 
regions, of which 53 QTL regions were associated with 
at least two traits with the same sentinel SNPs, showing 
clear genetic pleiotropy effects (Table S1). For example, 
the sentinel SNP 25:40,477,045 nearby CARD11 (cas-
pase recruitment domain family member 11) was asso-
ciated with six carcass traits. We observed that 1,372 
associations were newly identified in our analysis, while 
208 associations were previously reported in the cattle 
QTLdb [1].

Transcriptome profile of three primary tissues
We acquired 16.22 billion clean reads from 356 RNA-seq 
samples containing 120 longissimus dorsi, 120 liver, and 
116 adipose tissue. Approximately 96.96% of the total 
reads were mapped to the reference genome (Table S2 
and Fig. S2). Under the expression threshold of TPM ≥ 0.1 
in ≥ 20% of samples, 18,789 (68.1%), 17,775 (64.4%), and 
16,869 (61.1%) genes were expressed in muscle, liver, and 
adipose tissues, respectively. Using the t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) algorithm, we sepa-
rated samples from different tissues and recapitulated the 
relationships between tissues based on expression levels 
(Fig. 1c). Hierarchical clustering showed that the expres-
sion profiles accurately reflected the tissue type (Fig. 1d 
and Fig. S3). When we estimated the variance explained 
by the two PCs of genotype and five confounding factors 
per gene (Methods, Fig. S4), we discovered that residu-
als explained most of the variance per gene (mean = 50%, 
Fig. S5). We detected that 18 traits were correlated with 
gene modules using WGCNA. We found 75, 99, and 72 
significant module-trait pairs for adipose, liver, and mus-
cle, respectively (FDR < 0.05; Fig.  1e, Fig. S6 and Table 
S3). Functional enrichment analysis revealed that various 

metabolic pathways coexisted within trait-related mod-
ules (Table S3). For example, glutathione metabolism, 
PPAR signaling pathway, and fatty acid degradation were 
enriched in the blue module of muscle, which was signifi-
cantly correlated with several beef production and qual-
ity traits, such as dressing rate, lean meat rate, pH, and 
water-hold capability.

Genetic regulatory effects on gene expression in three 
tissues
Considering all three tissues, we identified 854,498 cis-
eQTLs for 6,017 genes, accounting for 29.1% of all auto-
somally expressed genes (Fig. S7). The number of eGene 
(gene with significant cis-eQTLs) was 1,952, 3,091, and 
2,950 for adipose, liver, and muscle, respectively (Fig. 2a 
and Fig. S8). A total of 517,478 genetic variants regu-
lated genes in at least one tissue (eVariants, Fig. S7). 
These eQTLs exhibited significant genotype-driven dif-
ferences in gene expression among individuals and fre-
quently affected biologically necessary gene expression 
levels in the respective tissues, such as the body weight 
and growth function genes LEAP2 (liver enriched anti-
microbial peptide 2), CPLTM1L (CLPTM1 Like) and 
COQ4 (coenzyme Q4) in muscle (Fig.  2b). A total of 
46,970 trans-eQTLs for 1,903 genes were detected in 
the three tissues, including 627, 659 and 789 eGenes 
in adipose, liver, and muscle, respectively (Fig.  2c and 
Fig. S7 and S9). The majority of cis-eQTLs were cen-
tered on TSSs of the target genes (Fig.  2d). Closer to 
TSSs, we discovered an enrichment of low P-values 
(Fig. S10). We found that 368, 402, and 139 eGenes 
have at least two independent cis-eQTLs in liver, mus-
cle, and adipose, respectively (Fig. S11a). Notably, the 
most significant eVariants of the primary analysis were 
significantly located closer to the TSSs when compared 
with eVariants identified by the conditional analysis 
(Wilcoxon test, P-value < 5.9e−14, Fig. 2e and Fig. S11b, 
c). Using allelic fold change (aFC), an average of 36% of 
cis-eQTLs had a greater than twofold impact on gene 
expression across tissues (Fig.  2f ). Estimates of herit-
ability revealed that the eGene had higher heritability 
than non-eGene (Wilcoxon test, P-value < 2.2e−16, Fig. 
S12a). The gene with high heritability also had a more 

(See figure on next page.)
Fig. 2 eQTLs in three tissues. a Manhattan plot showing the nominal P-value (y-axis) for all cis-eQTLs in muscle. b The TPM normalized expression 
of LEAP2 with three genotypes. c Dot plot showing the locations, P-value, and effect sizes for all significant trans-eQTL in muscle. Variants and 
gene positions are shown on the x-axis and y-axis, respectively. Each dot was a significant trans-eQTLs (FDR < 0.05). The size of each dot represents 
the −log10 scaled P-values. The color of each dot represents the direction of the slope effect. d Distribution of cis-eQTLs around TSS. All SNP-gene 
pairs indicate all tested SNP-gene pairs. Non-eQTL indicates the top associated SNP for non-eGenes. e The distance of the most significant eVariant 
to the TSS of eGene in muscle. The primary signals (golden) and the secondary signals (blue) relative to TSS are shown using a point plot (left) and 
their absolute distances compare shown in the box plot (right). The Wilcoxon test is used to compute significance. f The absolute allelic fold change 
distribution for cis-eQTLs in three tissues. g The proportion and enrichment of cis-eQTLs in genome location. The enrichment factors are based on 
the number of cis-eQTLs in each region category divided by the expected number. h Enrichment of eQTLs in five chromatin states predicted from a 
tissue-matched cattle dataset. The x-axis represents the enriched fold
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Fig. 2 (See legend on previous page.)
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significant P-value for cis-eQTL mapping (the average 
Pearson correlation was 0.78, Fig. S12b–d). Although 
49.3% eVariants were found in intronic regions, we 
detected a strong enrichment for 5’UTR and 3’UTR, 
while intergenic regions were underrepresented when 
compared to all SNPs evaluated in the dataset (Fig. 2g). 
The eQTLs were enriched in functional elements of 
the genome (Fig. 2h), especially for the top eVariant of 
eGene (Fig. S12e). These cis-eGenes were more likely 
to be expressed at high levels (Fig. S12f ). We observed 
that 29.3%, 59.8%, and 62.9% eGenes of backfat, long-
issimus dorsi muscle, and liver were replicated in adi-
pose, muscle, and liver of cGTEx, respectively (Fig. 3a). 
An average of 94.3% concordance in allelic directions 
among the cis-eQTLs effect replicated in the matched 

three tissues of cGTEx data (Fig. 3b-d). The replication 
was quantified using the π1 statistic, with relatively high 
replication rates for all three tissues compared with 
other tissues (Fig. 3e).

Tissue pattern and pleiotropic of eQTLs, and multi‑tissue 
eQTL Mapping
We discovered that any two tissues shared 14.9% of cis-
eQTLs, 25.6% of eGenes, and 25.7% of eVariants (Fig. 4a 
and Fig. S13a  and b), with strong correlations between 
effects in all tissues examined (Fig. S14). The effects with 
aFC values of tissue-shared eQTLs were larger than those 
of tissue-specific eQTLs (Fig. S13c). To evaluate the cis-
eQTL sharing patterns between tissues, we calculated π1 
statistics for each tissue pair. The average π1 value was 0.7 

Fig. 3 Cis-eQTL replication in cGTEx. a The overlapped eGene between this study and cGETx for adipose, liver and muscle tissue. b–d The allelic 
directions in adipose, liver, and muscle were highly consistent with the matched tissue of cGTEx. e Pairwise sharing patterns (π1 value) of cis-eQTL 
between three tissues of this study and 27 tissues/cell types of cGTEx
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(range of 0.54–0.8, Fig. 4b and Fig. S13e). The 433 eGenes 
shared by all three tissues were involved in immune 
responses and metabolic pathways (Fig. S13d). The 
618,049 tissue-specific cis-eQTLs (85% of all cis-eQTLs) 
were examined to determine whether they exhibited con-
sistent directionality in tissues in which they had not yet 
been identified as eQTLs. With decreasing P-value crite-
ria, we observed a progressive decrease in consistency for 
the second tissue from 100% to near 50% (Fig. S13f and 
g). A further 108,308 cis-eQTLs (15%) that had near-
threshold P-values in one tissue (P < 0.001) and were sig-
nificant in another tissue demonstrated 95% consistency, 

suggesting that even looser cis-eQTL discovery thresh-
olds would still yield additional significant eQTLs. We 
observed an improvement in cis-eQTL discovery using 
multi-tissue eQTL mapping. The increase rates of eGene 
discovery were 61.5%, 28.6%, and 36.9% for adipose, liver, 
and muscle, respectively (Fig. 4c).

On average, 13.9% of cis-eQTLs and 9.7% of trans-
eQTLs were associated with at least two eGenes 
(Fig. S15b  and c). The most prominent trans-eQTL 
with pleiotropy was the T > A substitution at position 
chr6:95,483,706, which was associated with eight genes 
in muscle (Fig. S15a). We detected an average of 33.3% 

Fig. 4 Tissue pattern and pleiotropic of eQTLs, and TWAS. a The number of eGenes overlap between tissues. b Pairwise sharing patterns of cis-eQTL 
(π1 value) across tissues. c The increased number of eGenes discovered by multi-tissue cis-eQTL analyses. d Locuszoom plots of the genetic signals 
regulating genes at cluster 10:64,961,096–65,908,904. The nominal P-values of all local variant-gene associations regarding C10H15orf48, bta-mir-147, 
and FERMT2 were shown. The colors of variants are based on their LD with the most significant eVariant. e The proportion of eQTLs (y-axis) with 
chromatin states using fine mapping eVariants, top significant eVariants and total eVariants. f Distribution of cis-H2. The solid line corresponds to all 
tested genes, while the dashed lines are cis-heritable genes. g Manhattan plot of TWAS between muscle gene expression and daily gain weight
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trans-eQTLs that overlapped with cis-eQTLs. We iden-
tified 15, 54 and 43 cis-eQTL clusters in adipose, liver 
and muscle, respectively (Fig. S15d). Cluster size varied 
widely from 47  bp to 3,860,164  bp (Table S4). Interest-
ingly, we found 7 cis-eQTL clusters that were shared in 
all three tissues. We analyzed the colocalization of eQTL 
signals for each gene pair within a regulatory cluster 
using Coloc [46]. A posterior probability > 0.8 was applied 
to identify eGenes regulated by the same genetic signal. 
We detected 65 adipose gene pairs in 8 clusters, 137 liver 
gene pairs in 29 clusters and 151 muscle gene pairs in 18 
clusters that had colocalized eQTL signals (Table S4). For 
example, the regulatory cluster 10:64,961,096–65,908,904 
in muscle included four eGenes but had multiple genetic 
signals (Table S4). One of them affects C10H15orf48 
(chromosome 15 open reading frame 48) and bta-
mir-147, as evidenced by the colocalization probabil-
ity > 0.95. FERMT2 (FERM domain containing kindlin 2) 
had colocalization probabilities < 0.12 with C10H15orf48 
and bta-mir-147, leading us to believe that they were reg-
ulated by their distinct genetic signals (Fig. 4d). The larg-
est cluster was detected in adipose, which contained 47 
genes of major histocompatibility complex (MHC) family 
with a complex posterior probability (Fig. S15e).

Fine mapping and TWAS
Fine mapping analysis revealed 111 eQTLs in adipose, 
192 eQTLs in liver, and 194 eQTLs in muscle with a pos-
terior probability > 0.8 (Fig. S16a–c and Table S5). The 
fine-mapped eVariants were more enriched in the his-
tone modification region than the most significant eVari-
ant across all eGenes (Fig. 4e). Gene enrichment analysis 
showed that these fine-mapped eGenes in liver and adi-
pose were involved in metabolic pathways, whereas the 
fine-mapped muscle eGenes were enriched in oxi-
doreductase activity (Fig. S16d–f). The MHC-involved 
immune pathways were detected in all three tissues. We 
obtained 2,057, 1,945, and 1,197 cis-heritable genes for 
liver, muscle, and adipose, respectively (Fig.  4f ). Using 
a reference panel of genotype-transcriptome generated 
from 120 cattle, we predicted the expression of cis-herit-
able genes for the GWAS population and associated gene 
expression with the 21 traits. We found 805 significant 
gene-trait pairs for 11 traits in cattle, representing 722 
unique genes (Table S6). Among them, the expression of 
IGFBP5 (insulin-like growth factor binding protein 5) in 
muscle was associated with daily weight gain (Fig.  4g). 
The expression of LPIN2 (lipin 2) in liver was associated 
with backfat thickness (Fig. S17).

The eQTLs help interpret GWAS loci
We used the GWAS summary statistics for our 21 traits 
and 37 publicly available traits [50]. Coloc revealed that 

eQTLs for 176 eGenes were colocalized with 47 traits 
(Fig.  5a; Table S7; Fig. S18 and S19), corresponding to 
354 gene-trait pairs. The SMR suggested that the abun-
dance of 17 cis-regulated genes mediated the associa-
tion between genetic variants and 15 agronomic traits, 
resulting in 44 tissue-gene-trait pairs (Fig.  5b). We dis-
covered 29 tissue-gene-trait pairs that were shared by 
both Coloc and SMR results. In liver tissue, we found 
that eQTLs of NADSYN1 (NAD synthetase 1) were 
colocalized with GWAS signals of stature. The eQTLs 
of NDUFS3 (NADH: ubiquinone oxidoreductase core 
subunit S3) were associated with PH and rib eye area. 
The eQTLs of LTF (lactoferrin) were associated with 
somatic cell score. The eQTLs of KIFC2 (kinesin fam-
ily member C2) were detected colocalized with milk fat 
(Fig. S20). In adipose tissue, GRAMD1C (GRAM domain 
containing 1C) is a cholesterol transfer gene. We found 
the eQTLs of GRAMD1C were colocalized with the sig-
nals of rear thigh circumference (Fig. 5c). The eQTLs of 
TMTC2 (transmembrane O-mannosyltransferase target-
ing cadherins 2) and ZNF613 (zinc finger protein 613) 
were associated with body conformation traits. In mus-
cle tissue, the eQTLs of TIGAR  (TP53-induced glycoly-
sis and apoptosis regulator) were colocalized with rump 
width, stature, strength, body depth, sire calving ease, 
and productive life (Fig.  5d). The eQTLs of NDUFS3 
and L3HYPDH (trans-L-3-hydroxyproline dehydratase) 
were associated with daily weight gain and rib eye area, 
respectively. In general, the use of GWAS, eQTL map-
ping, TWAS, colocalization, and SMR analysis improved 
our ability to identify potentially causal genes and com-
prehend the genetic basis of complex traits in cattle 
(Fig. 6).

Discussion
This study provides a comprehensive genetic, transcrip-
tome resource for three primary cattle tissues. We show 
that transcriptional heterogeneity varies across tissues. 
We create an eQTL catalog for longissimus dorsi mus-
cle, backfat and liver, and validate and extend the list of 
candidate genes and causal variants contributing to cattle 
agronomic traits.

Recently, some reports have revealed the loci associ-
ated with beef production and quality based on GWAS 
[53–55], and these studies focused on only a few traits. 
The summary statistics for beef production and quality 
are still not available, which prevents a more thorough 
investigation of colocalized signals and an assessment of 
potential pleiotropic effects. Our study provided a com-
prehensive GWAS analysis for 21 economic beef traits. 
We observed that 1,372 associations were novel in our 
analysis, while 208 associations were previously reported 
in the cattle QTLdb [1]. Some traits (e.g., striploin, chunk 
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Fig. 5 The colocalization of eQTLs and GWAS loci. a Manhattan plot showing the colocalization results (H4 > 0.8) between eQTL and GWAS signals. 
The x-axis is the P-value of lead eQTLs (points) across traits (colors) in muscle. b Manhattan plot showing SMR P-value between GWAS signals 
and eQTLs in different traits (colors) and tissues (point shape). c An example of GWAS–eQTL colocalization for GARMD1C in adipose. The colors of 
variants are based on their LD with the most significant variant. d An example of GWAS–eQTL colocalization for TIGAR  in muscle
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roll, and tenderloin weight) have never been studied 
before. One fifth of the QTL regions showed genetic 
pleiotropy effects. Sentinel SNP chr25:40,477,045 near 
CARD11, which is associated with six carcass traits, has 
been reported to affect residual feed intake [56].

We observed a high density of signals near the 
respective gene’s TSS, which is confirmed by another 

study [57]. Consistent with other studies, tissue-shared 
cis-eQTLs exhibit high directional consistency between 
tissues [58]. Even near threshold (P < 0.001), eQTLs 
showed > 95% consistency, suggesting that even looser 
thresholds can identify additional significant eQTLs. 
Most eQTLs are tissue-specific, implying that the 
genetic mechanisms of gene expression are different 

Fig. 6 The circos plot of multi-omics significant signatures. The four Manhattan plots with grey backgrounds from outside to inside indicate the 
significant signatures identified by GWAS, cis-eQTL Mapping, and TWAS. The results of GWAS-eQTL colocalization by coloc or SMR are shown 
between GWAS and eQTL Manhattan plot, which were labeled with gene name and tissue abbreviation after a colon (A: adipose, L: liver, M: muscle). 
The gene label colors and the dot colors of the eQTL Manhattan plot with green, hot pink, and purple represents adipose, liver, and muscle, 
respectively
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and complex in different tissues. The cis-eQTLs are 
enriched for regulatory elements of promoter and 
enhancer, probably reflecting that only a tiny percent-
age of variants in these extended regions have true 
regulatory effects [59]. In contrast, the enrichment of 
trans-eQTL in functional domains is limited, reflect-
ing the low power of trans-eQTL discovery due to the 
small sample size. Similar to human GTEx V8, the cis-
eQTLs mediate about one-third of trans-eQTLs [59]. 
The eQTL mapping using multiple tissues has increased 
power by explicitly modeling tissue-to-tissue sharing 
patterns [60, 61]. We combined the three tissues in a 
meta-analysis to improve the power of eQTL mapping, 
which increased eGene discovery by 43.5% on average.

Compared with the cGTEx results, we detected more 
than one-third of the eGenes were newly identified, espe-
cially for muscle and adipose. One reason for this is the 
tissue difference: the cGTEx used a variety of muscle and 
adipose types and the results were not specific for the 
longissimus dorsi muscle and backfat. The second reason 
is the breed difference: cGTEx used multiple breeds to 
perform the eQTL mapping, and most cattle were Hol-
steins (44.5%), while Simmental represented only 1% [21]. 
The third reason is the SNP data difference. Although 
cGTEx had efficient performance in detecting eQTLs by 
RNA-seq alone, some SNPs located in non-transcripted 
regions would not be detected, which might affect the 
final detection of eQTLs. Therefore, eQTL mapping 
needs to be performed in a more refined tissue and a spe-
cific breed in the future.

Our results provide important insights into the pleiot-
ropy of variants. The eVariants regulate multiple genes, 
and this phenomenon occurs clustered in distinct regions 
of the cattle genome. The largest of these clusters con-
tains at least 47 eGenes of the MHC region, which is 
essential for immunological response [62]. This cluster 
was also detected in liver and muscle tissues, even in 
human retinal tissue [63], implying that eQTLs are widely 
distributed in MHC regions. The fine-mapping results 
of cis-eQTL offer a collection of hundreds of functional 
variants that are most likely causative for eGenes. This 
TWAS strategy reveals hundreds of genes for which 
changes in genetically predicted expression are associ-
ated with 11 agronomic traits. IGFBP5 is a crucial focal 
regulator of the local action of IGF-I [64] by sequestering 
the growth factor and influencing protein accretion and 
myoblasts development [65, 66]. IGFBP5 was detected 
to be related to daily weight gain. LPIN2 played a sig-
nificant part in regulating fatty acid metabolism at vari-
ous levels that were associated with type 2 diabetes and 
fat distribution [67, 68]. We found LPIN2 was related to 
backfat thickness. The tubulin alpha-1D chain (TUBA1D) 
is involved in cytoskeletal organization and cell motility 

[69]. Unc-45 myosin chaperone B (UNC45B) is involved 
in myocyte maturation and striation formation [70]. 
The expression of TUBA1D and UNC45B in muscle was 
related to rib-eye weight.

Colocalization of GWAS signals and cis-eQTLs in 
three tissues helps identify causal genes for hitherto 
unsolved association signals. Multiple GWAS signals 
were detected to colocalize with cis-eQTLs in three tis-
sues. The eQTLs of NADSYN1, NDUFS3, LTF and KIFC2 
in liver were related to height, PH and Rib eye area, 
somatic cell score and milk fat, respectively. NADSYN1 
is related to calcium metabolism [71, 72]. NDUFS3 was 
correlated with the juiciness and flavor of beef in a previ-
ous study [73]. LTF is a milk glycoprotein favorably asso-
ciated with the immune system of cows [74]. KIFC2 is 
involved in vesicle-mediated transport [75]. The eQTLs 
of GRAMD1C in adipose were related to rear thigh cir-
cumference. GRAMD1C is a cholesterol transfer gene 
that contributes to cholesterol transfer activity [76]. Both 
TMTC2 and ZNF613 were GWAS fine-mapped can-
didate genes for body conformation traits in a previous 
study [50]. In this study, it was confirmed that the vari-
ants can alter the expression of TMTC2 and ZNF613, 
which affects body conformation traits.

TIGAR  can improve mitochondrial functions and 
reduce muscle cell autophagy [77, 78], which was associ-
ated with body weight and stature in cattle [79, 80]. We 
detected the eQTLs of TIGAR  were related to stature, 
strength, and reproductive traits. NDUFS3 contributes 
to energy metabolism of transformed cells [81]. Dele-
tion of NDUFS3 gene in muscle would induce myopa-
thy phenotype in mice [82]. L3HYPDH was a candidate 
gene associated with the rib eye area [83], which was 
confirmed by our eQTLs results. These results prove 
essential for acquiring a greater understanding of the 
molecular mechanisms of a specific trait by considering 
gene expression, which includes the functional character-
istics of genes related to various traits. The GWAS signals 
associated with eQTL serve as a starting point for fur-
ther research in beef cattle. In addition, this availability 
of eQTL data from longissimus dorsi muscle, backfat and 
liver, provides a resource for resolving additional genetic 
association signals emerging from ongoing extensive 
efforts to improve production and quality traits of cattle, 
for which these three tissue types are significant.

Conclusions
Interpretation of the genetic mechanism of complex 
traits based on molecular phenotype of primary tis-
sues is relatively late in beef cattle. We demonstrate 
an efficient multi-omics data strategy for agronomic 
traits using three primary tissues of beef cattle, which 
can serve as a valuable approach that moves from 
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fundamental discovery to decipher genetic mechanisms 
of complex traits of cattle. By integrating eQTL and 
GWAS data, we constructed a molecular QTL map in 
cattle that helps to resolve genetic association signals by 
detecting candidate genes such as KIFC2, TIGAR  and 
GRAMD1C. Moreover, these new candidate genes or 
causal DNA variants will help improve genomic predic-
tion accuracy and the benefit of genetic improvement 
programs in beef cattle [84, 85].
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