
Zhuang et al. 
Journal of Animal Science and Biotechnology           (2023) 14:67  
https://doi.org/10.1186/s40104-023-00863-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Animal Science and
Biotechnology

Improving the accuracy of genomic 
prediction for meat quality traits using whole 
genome sequence data in pigs
Zhanwei Zhuang1,2, Jie Wu1,2, Yibin Qiu1,2, Donglin Ruan1,2, Rongrong Ding1,2, Cineng Xu1,2, Shenping Zhou1,2, 
Yuling Zhang1,2, Yiyi Liu1,2, Fucai Ma1,2, Jifei Yang1,2, Ying Sun1,2, Enqin Zheng1,2, Ming Yang3, Gengyuan Cai1,2, 
Jie Yang1,2*   and Zhenfang Wu1,2,4* 

Abstract 

Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-
able in modern pork production. However, genetic improvement has been slow due to high phenotyping costs. In 
this study, whole genome sequence (WGS) data was used to evaluate the prediction accuracy of genomic best linear 
unbiased prediction (GBLUP) for meat quality in large-scale crossbred commercial pigs.

Results We produced WGS data (18,695,907 SNPs and 2,106,902 INDELs exceed quality control) from 1,469 
sequenced Duroc × (Landrace × Yorkshire) pigs and developed a reference panel for meat quality including meat 
color score, marbling score, L* (lightness), a* (redness), and b* (yellowness) of genomic prediction. The prediction 
accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated 
breeding values in the validation population. Using different marker density panels derived from WGS data, accuracy 
differed substantially among meat quality traits, varied from 0.08 to 0.47. Results showed that MultiBLUP outperform 
GBLUP and yielded accuracy increases ranging from 17.39% to 75%. We optimized the marker density and found 
medium- and high-density marker panels are beneficial for the estimation of heritability for meat quality. Moreover, 
we conducted genotype imputation from 50K chip to WGS level in the same population and found average concord-
ance rate to exceed 95% and r2 = 0.81.

Conclusions Overall, estimation of heritability for meat quality traits can benefit from the use of WGS data. This study 
showed the superiority of using WGS data to genetically improve pork quality in genomic prediction.
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Background
Duroc × (Landrace × Yorkshire) (DLY) commercial 
pigs contribute to humans with a substantial fraction of 
meat supply to meet the consumer’s growing demands 
for animal protein. Pork meat quality can directly affect 
customer purchase tendency and consequently attract 
more attention in the pork production [1]. It is expected 
that pork quality can be substantially improved with the 
utilization of genetic approaches [2–4]. Recently, with 
the development of high-density single nucleotide poly-
morphisms (SNP) chips for pig genotyping, researchers 
employed genome-wide association study (GWAS) to 
detect the quantitative trait loci (QTLs) and genes affect-
ing meat quality in pigs. These findings provide impor-
tant insights into understanding the underlying genetic 
basis of meat quality in pigs and had laid the groundwork 
for facilitating their genetic improvement when using 
genomic prediction (GP). Genomic prediction is a use-
ful methods that relies on linkage disequilibrium (LD) 
between SNPs and causative mutations to predict breed-
ing values using markers across the whole genome in 
animal and plant breeding [5]. It had been implemented 
to improve meat quality in pigs [6] and Nelore cattle [7]. 
However, genetic improvement for pork quality has been 
slow since the phenotyping is cost-expensive, especially in 
purebred pigs, because purebred nucleus lines are mainly 
used to produce commercial pigs. Therefore, establishing 
a large-scale reference population for meat quality traits 
in crossbred DLY pigs are economically viable and feasible 
[6]. Thus, it is required to achieve high prediction accu-
racies of genomic estimated breeding values (GEBV) in 
GP, which can facilitate the genetic improvement of pork 
meat quality.

Prediction accuracy of GP in animals has subject to 
many factors including but not limited to heritability of 
the analyzed traits, reference sample sizes, and marker 
density [8, 9]. In pigs, a number of studies of GP used 
SNP panels (such as 60K, 80K, and imputed 650K SNP 
array) to estimated GEBVs of complex traits and the 
prediction accuracies varied among traits [10, 11]. With 
the development of high throughout DNA sequencing 
technology, whole genome sequence (WGS) data, which 
contain genetic variants in high LD with or theoretically 
covering all causative mutations that are responsible for 
complex traits, provides an opportunity to increase the 
prediction accuracy in GP. However, it has been shown 
that using the complete WGS data did not result in sig-
nificant improvement in prediction accuracy in com-
parison with that using SNP chip panels [12–14]. For 
purebred population, a study in a purebred commercial 
brown layer chicken line showed that no increase was 
gained in prediction accuracy when complete WGS data 
was used in GP scheme compared to using SNP array 

data [15]. For crossbred population, very little improve-
ment over 50K SNP chip prediction was observed when 
using all WGS data in a crossbred sheep population [16]. 
Many factors have an influence on the prediction accu-
racy with WGS data including the genetic structure of 
trait and LD [17]. These findings implied that marker 
density has an essential influence on prediction accuracy 
in GP. Therefore, it is of important theoretic and practi-
cal significance to optimize the marker density in GP 
scheme. Moreover, another reason for poor prediction 
accuracy using complete WGS data is that additional 
insertion-deletion (INDEL) variants that capturing miss-
ing heritability for complex traits were not incorporated 
into prediction models, although it also has high LD with 
causative mutations [18]. Recent results has shown that 
prediction accuracies were increased using INDEL com-
pared with that using SNPs [18].

The aim of this study was to (i) evaluate the predic-
tion accuracy of genomic best linear unbiased predic-
tion (GBLUP) and MultiBLUP [19] for meat quality traits 
(including meat color score, marbling score, L*: lightness, 
a*: redness, and b*: yellowness) in 1,469 crossbred com-
mercial DLY pigs using WGS data and optimized the 
marker density in GP scheme; (ii) capture missing herit-
ability of meat quality traits using INDEL variants from 
WGS data. Genotype imputation, leveraging LD to infer 
genotypes at undetected polymorphic loci [20], has been 
proven to a cost-effective approach that greatly increase 
the density of genotypes to WGS level data and is widely 
used in the genetic studies. We therefore performed gen-
otype imputation in the same population to acquire the 
accuracy of imputation from commercial medium-den-
sity marker panel (50K) to WGS level data.

Material and methods
Ethics statement
The procedure for collecting tissue samples from pigs 
was performed with the approval of the ethics commit-
tee of South China Agricultural University (Guangzhou, 
China) under 2018F098.

Experiment animals, sample collection and phenotyping
In the current study, 1,469 crossbred commercial 
DLY pigs (born from 2018 to 2019) that raised on four 
farms of Wen’s Foodstuffs Group Co., Ltd. (Guangdong, 
China) were used to collect phenotypes and genotypes 
as described previously [21]. Briefly, a total of 84 Duroc 
boars of U.S. origin (S21), Canadian origin (S22), and 
Taiwan province of China origin (S23) were mated to 
397 Landrace × Yorkshire sows to produce offspring. 
Then, the piglets were moved to the fattening pen. All 
1,469 animals were slaughtered for phenotype record-
ing at an average body weight of 115  kg in 13 batches. 
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Firstly, in order to collect phenotypic values of pork 
quality, longissimus thoracis (LT) muscle was removed 
from the left side of each carcass and samples of LT 
were kept at 4 ℃ inside the refrigerator until the mar-
bling score, meat color score, L*, a*, and b* were meas-
ured at 12 h post mortem. Marbling score and meat color 
traits (meat color score, L*, a*, and b*) measurements 
were performed on LT muscle as described previously 
[22]. Briefly, three meat color parameters (L*, a*, and b*) 
were measured on the exposed cut surface after bloom-
ing for 30 min of the LT at 12  h post mortem using a 
CM-2600d/2500d Minolta Chromameter (Tokyo, Japan) 
with an 8-mm measuring port, D65 illuminant, and one 
trained observer. Meat color score (MC, from 1 to 6; 
pale to dark) and marbling score (from 1 to 10; devoid 
to overly abundant), which also refers to intramuscular 
fat content (IMF), were rated by one trained personnel 
on the same cut surface of LT muscle following the U.S. 
National Pork Producer Council guidelines [23].

A single-trait animal model was used to calculate cor-
rected phenotypic values (Yc) for meat quality traits using 
PREDICTF90 module in BLUPF90 software [24]. Fixed 
effects included farm (level = 4), sex (level = 2), and 
slaughter batch (level = 13). Then, the corrected pheno-
typic value Yc was used for subsequent analyses.

Whole‑genome sequencing, variant detection and filtering
For the 1,469 DLY pigs, each individual was sequenced 
(~10 × coverage) on Illumina Hiseq platforms pro-
vided by the Novogene Biotech Co., Ltd. (Beijing, China) 
with 150 bp paired-end reads. Firstly, the FASTQ for-
mat sequence reads were aligned to the pig reference 
genome assembly Sscrofa11.1 via BWA-MEM-0.7.12 
[25] with default settings. Secondly, the mapping results 
were sorted using SAMtools 1.9 [26]. Then, the Sen-
tieon DNAseq pipeline (version 202010) [27] were used 
to conduct variant calling following the “best practices” 
algorithms of GATK (Genome Analysis Toolkit), and 
followed functions (mainly used) from Sentieon were 
applied: “--algo LocusCollector” and “--algo Realigner” 
functions were applied to remove duplicate reads and rea-
ligned indels; “--algo QualCal” function was invoked to 
conduct base quality score recalibration (BQSR); “--algo 
Haplotyper” function was used to call variants in GVCF 
format; “--algo GVCFtyper” function was used to conduct 
joint calling by combining GVCFs across all samples and 
consequently, a population VCF was generated. Further, 
GATK v4.0.2.1 [28] with “VariantFiltration” module was 
used to detect SNPs using following criteria: “QD < 2.0, 
FS > 60.0, SOR > 3.0, MQ < 40.0, MQRankSum < −12.5, 
ReadPosRankSum < −8.0”; For INDEL excluding, we used 
the parameters “QD < 2.0, QUAL < 50.0, FS > 100.0, and 
ReadPosRankSum < −20.0”, as recommended by GATK’s 

best practices. After filtering, 27,777,985 autosomal SNPs 
and 5,341,470 autosomal INDELs were detected. Finally, 
21,708,028 SNPs and 3,000,017 INDELs were remained 
for subsequent analyses with call rate higher than 0.9 and 
minor allele frequencies (MAF) higher than 0.01 using 
PLINK 1.9 [29].

Chip‑variants genotyping and genotype imputation
It is expected to use imputed-based WGS data to 
improve the power and prediction accuracy of GP for 
many studies that lack of WGS level data. To this end, 
we performed genotype imputation using a public web 
server (swimg eno. org) and estimated the accuracy of 
imputation from commercial medium-density marker 
panel (50K) to WGS level data [30]. Firstly, the 1,469 DLY 
pigs were genotyped using the Geneseek GGP Porcine 
50 K SNP chip (Neogen, Lincoln, NE, USA). Next, the 
genotype dataset was converted to Sscrofa11.1 after gen-
otyping. Then, the PLINK ped/map formatted SNP array 
genotypes were submitted to SWIM web server (swimg 
eno. org) to conduct genotype imputation procedure. By 
doing genotype imputation, 30,489,782 autosomal SNPs 
and 4,125,579 autosomal INDELs were acquired. Qual-
ity control (QC) were conducted using PLINK 1.9 [29] 
following the criteria with call rate higher than 0.9 and 
minor allele frequencies (MAF) higher than 0.01, and 
results in final 19,348,898 SNPs and 2,725,851 INDELs 
remaining for subsequent analyses.

Estimation of genotype imputation accuracy
To validate the performance of pig haplotype reference 
panel (termed SWIM), we randomly selected 294 (20% 
of the sequenced 1,469) sequenced pigs to calculate its 
imputation accuracy for DLY pigs. Herein, we defined the 
imputation accuracy using two values including the over-
all concordance rate (CR) between imputed and observed 
genotypes, which refers to the percentage of genotypes 
imputed correctly divided by total imputed genotypes, 
and the squared Pearson correlation coefficient (r2) 
between imputed and observed genotypes. We meas-
ured CR and r2 on a per SNP basis and averaged them 
over SNPs in MAF bins (0.01 in size) or across the whole 
genome.

Phylogenetic and population structure analyses
Genetic distances between individuals of the 1,469 DLY 
pigs were calculated using an identity-by-state (IBS) simi-
larity kinship matrix by PLINK 1.9. In an aim to analyze 
the population structure of the DLY pigs in this study, we 
pruned SNPs with LD using PLINK 1.9 with the param-
eters “-indep-pairwise 50 10 0.6” (r2 < 0.6) to remain 
3,216,966 variants. Principal component analysis (PCA) 
was conducted on the pruned SNPs dataset using GCTA 

https://www.swimgeno.org
https://www.swimgeno.org
https://www.swimgeno.org
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1.93.2 [31] for 1,469 pigs. Linkage disequilibrium was cal-
culated via PopLDdecay software [32] on animals within 
the S21, S22, and S23 Duroc boars-produced populations 
with SNPs of MAF > 0.05. Additionally, we calculated the 
Euclidean distance between individuals using “distances” 
package in R.

Pre‑selection of SNPs and INDELs
From the 21,708,028 SNPs and 3,000,017 INDELs 
of WGS data and the 19,348,898 SNPs and 2,725,851 
INDELs of imputed-based WGS data after QC, 
respectively, common SNPs (18,695,907) and INDELs 
(2,106,902) that were present on the two sequence 
datasets were selected as final subsets of WGS data 
and were used for subsequent analyses. These dif-
ferent variant panels also can be used to access the 
prediction accuracy of GP when using variants from 
imputed-based WGS data. In an attempt to optimize 
the marker density of variants in GP scheme and com-
pare the prediction accuracy when different variant 
types (SNP and INDEL) were incorporated into model, 
we constructed three levels density of marker subsets, 
including low-density variant panels (1K, 3K, 10K, 30K 
for SNPs and INDELs), medium-density variant panels 
(100K, 500K for SNPs and INDELs), and high-density 
variant panels (1,000K, 5,000K, 10,000K for SNPs; 
1,000K for INDELs) using PLINK 1.9 with parameter 
“--thin” (e.g., --thin 0.0005 means to keep only a ran-
dom 0.05% of variants, modify this parameter to get 
panels with different number of variants). Accord-
ingly, we make a combination of the SNPs and INDELs 
in the sequenced datasets selected above with the 
same marker density into one model. Besides, it has 
been shown that the degree of LD of WGS data had 
an effect on prediction accuracy of GP [17]. We subse-
quent pruned SNP datasets with LD (r2 < 0.2, 0.3, 0.6, 
0.8) using common WGS data to construct LD-based 
SNPs panels. Finally, a total of 28 panels (the complete 
WGS SNP data was included) that represent differ-
ent marker density, categories of variants were gener-
ated. The GBLUP and MultiBLUP models were used 
for genomic prediction to estimate the GEBV of meat 
quality traits with these different variant panels.

Estimation of heritability
The proportion of phenotypic variance explained by pre-
selected SNP and INDEL panels with different marker 
density were calculated using GCTA 1.93.2 software with 
“GREML” function [31]. The pre-adjusted phenotypes Yc 
were used as response variable in the model. For parti-
tioning contributions to heritability by different types and 
different marker densities of variants, we estimated the 

genetic relationship matrix (GRM) between pairs of ani-
mals from a set of SNPs and INDELs, respectively. In this 
step, we set the parameter with “--make-grm-alg 1” to cal-
culate GRM using the equation as describe in [9]. Then, 
REML (restricted maximum likelihood) analysis was per-
formed to calculate the variance explained by the variant 
datasets.

Genomic prediction models
The GEBV was calculated using GBLUP model described 
as follows [9]:

where y is an N × 1 vector of Yc, 1 is the N × 1 vector of 
ones, µ is the overall means, Z refers to a design matrix 
relating phenotypes to the additive genetic values, g is 
the vector of the genomic values captured by the genetic 
variants (SNP or INDEL), following a normal distribution 
of g ~ N(0, Gσ 2

g  ), where σ 2
g  is the additive genetic vari-

ance and G is the genomic relationship matrix derived by 
SNPs or INDELs; e is the vector of random residual with 
e ~ N(0, Iσ 2

e  ), where  σ 2
e  is the random residual variance 

and I is an identity matrix.
The MultiBLUP model including two random genetic 

effects was described as follows [19]:

where y, 1, µ and e are same as GBLUP model, g f  and gr 
are the vectors of the genomic values captured by the 
genetic variants INDELs and SNPs, respectively. g f  fol-
lows a normal distribution of g f~N(0, Ggf

σ 2
gf  ), where σ 2

gf  
is the additive genetic variance and Ggf  is the genomic 
relationship matrix derived by INDELs; gr follows a nor-
mal distribution of gr ~ N(0, Ggr

σ 2
gr ), where σ 2

gr is the 
additive genetic variance and Ggr is the genomic relation-
ship matrix derived by SNPs; Zf  and Zr refer to design 
matrices relating phenotypes to the additive genetic val-
ues. The G, Ggf , and Ggr matrices were calculated as fol-
lows [9]:

where M is the matrix of genotypes from sequenced data,  
D is the identify matrix (the same to I ), m is the number 
of markers in the panel and pi is the MAF of ith marker 
(SNP or INDEL).

Cross‑validation and prediction bias
In this study, prediction accuracy was defined as the 
Pearson correlation coefficient between Yc and GEBV 
in the validation population, and was obtained by a 

y = 1µ+ Zg + e,

y = 1µ+ Zf g f + Zrgr + e,

G =
MDMT

2 m
i=1pi(1− pi)

,
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five-fold cross-validation (CV) with five repetitions. 
Briefly, for each repetition, the 1,469 individuals were 
randomly split into five subgroups. In each round of five-
fold CV, the five subgroups were successively treated as a 
validation population, and the remaining four subgroups 
were treated as the reference population. The slope of 
the regression of Yc on GEBV for animals in the valida-
tion population was calculate to measure the degree of 
inflation or deflation of GP. Average prediction accuracy 
and the bias values for the 25 CV round per trait were 
reported.

Results
Population structure and relationship between kinship 
and phenotypes among pig reference populations
To better elucidate the population structure and genetic 
distance among the studied populations, we showed 
the two-dimensional principal components plot of the 
three DLY subpopulations and the relationship between 
individuals for all pairs. As shown in Fig. 1a, the three 
lines were separated into distinct clusters, the first prin-
cipal component of the genotypes separated the S21, 
S23 boar Duroc lines and S22 boar Duroc line, and the 

Fig. 1 Genetic structure of the DLY pig populations. a Scatter plot of the first two principal components of genotypes matrix for common (MAF 
> 0.01) and LD-pruned SNPs. b Genetic distances between individuals of the 1,469 DLY pigs that calculated using an identity-by-state similarity 
kinship matrix by PLINK v1.9. The individuals are sorted based on pedigree information to make littermates in tandemly order. c Pair-wise LD in three 
DLY subpopulations. Linkage disequilibrium was calculated via PopLDdecay software on animals within the S21, S22, and S23 subpopulations with 
SNPs of MAF > 0.05. d The relationship between individuals based on phenotype distance
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second principal component of the genotypes separated 
the S21 boar Duroc line and S23 boar Duroc line. Simi-
lar pattern of genetic diversity was observed from IBS 
matrix, and the genetic distance values ranged from 
0.75 to 1 (Fig. 1b). The individuals are sorted based on 
pedigree information to make littermates in tandemly 
order. However, LD between variants in the three sub-
populations was extensive but has similar LD decay 
trend among lines (Fig.  1c). Furthermore, the relation-
ship between individuals based on phenotype distance 
also shown the three DLY pig subpopulations did not 
have high phenotypic distance (Fig. 1d). Summary sta-
tistics of meat quality traits in pigs are listed in Addi-
tional file  1: Table  S1. The relationship between the 
Euclidean distance calculated with IBS matrix and phe-
notype values shown that genetic data and phenotypes 
was slightly anticorrelated, but the degree was minor 
(Additional file 2: Fig. S1).

Accuracy of genotype imputation
A total of 294 pigs were extracted as target popula-
tion to evaluate the imputation accuracy. We achieved 
an average CR across all variants in excess of 95.28% 
and r2 of 0.81, as shown in Fig.  2a. These results sug-
gested that the imputed-based WGS data have high 
genotype imputation precision and is sufficient for 
genetic analyses. Moreover, the average CR is sensi-
tive to MAF as the curve goes down faster with MAF 
higher than 0.40. For the variants with a MAF lower 
than 0.40, the CR was greater than 90%. Accordingly, 
proportion of variants over distribution of MAF for all 

variants in the target population also suggested that the 
count of variants with MAF higher than 0.4 was small 
(Fig.  2b). Generally, the accuracy of genotype imputa-
tion increased along with the number of markers in 
MAF bins increased (Fig. 2b).

Heritability captured by different categories of variants
In the current study, common SNPs (18,695,907) and 
INDELs (2,106,902) that were present on the WGS and 
imputed-based WGS datasets were selected as final sub-
sets of variants datasets for subsequent genomics analy-
ses. The number of variants of the totally 28 panels that 
represent different marker density, categories of variants 
are listed in Table 1 and Additional file 3: Table S2. The 
estimated heritability of the meat quality traits captured 
by SNPs and INDELs with different marker densities are 
listed in Table 1. In Table 1, SNP+INDEL panels refer to 
variants that used in MultiBLUP model. The estimated 
heritability for meat quality traits using LD pruned SNPs 
are listed in Additional file 4: Table S3. Briefly, the esti-
mated heritability of the meat quality traits did not have 
substantial difference within low-density, medium-den-
sity and high-density SNP panels and INDEL panels, but 
the INDEL panels explained higher phenotypic variance 
of meat quality than that explained by SNP panels in 
some cases, implying that INDELs can captured miss-
ing heritability. However, the estimated heritability of 
the meat quality traits has substantial difference between 
low-density and medium-density, high-density SNP pan-
els and INDEL panels. We observed substantial increase 
in heritability when marker density was increased to at 

Fig. 2 Accuracy of genotype imputation over MAF and distribution of allele frequency for all variants from WGS. a Concordance rate and r2 of 
imputed versus observed genotypes. b Distribution of MAF for all variants in the reference panel



Page 7 of 15Zhuang et al. Journal of Animal Science and Biotechnology           (2023) 14:67  

Ta
bl

e 
1 

Th
e 

nu
m

be
r o

f p
re

se
le

ct
ed

 S
N

Ps
 a

nd
 IN

D
EL

s 
fro

m
 c

om
m

on
 v

ar
ia

nt
s 

da
ta

se
t t

ha
t w

er
e 

pr
es

en
t o

n 
th

e 
W

G
S 

an
d 

im
pu

te
d-

ba
se

d 
W

G
S 

an
d 

es
tim

at
ed

 h
er

ita
bi

lit
y

a  IM
F 

In
tr

am
us

cu
la

r f
at

 c
on

te
nt

 (a
ls

o 
re

fe
rs

 to
 m

ar
bl

in
g 

sc
or

e 
in

 th
is

 s
tu

dy
), 

M
C 

M
ea

t c
ol

or
, L

* 
Li

gh
tn

es
s, 

a*
 R

ed
ne

ss
, b

* Y
el

lo
w

ne
ss

b  S
E 

St
an

da
rd

 e
rr

or
c  S

N
P+

IN
D

EL
: v

ar
ia

nt
s 

us
ed

 in
 M

ul
tiB

LU
P

Tr
ai

ts
a

Va
ria

nt
s’ 

nu
m

be
r a

nd
  h

er
ita

bi
lit

yb
Va

ri
an

ts
  ty

pe
c

M
ar

ke
r d

en
si

ty

1K
3K

10
K

30
K

10
0K

50
0K

1,
00

0K
5,

00
0K

10
,0

00
k

N
um

be
r o

f p
re

se
le

ct
io

n 
va

ria
nt

s
SN

P
1,

01
7

2,
96

8
10

,0
09

29
,9

31
10

0,
07

0
50

0,
00

6
1,

00
0,

00
6

4,
99

9,
68

6
10

,0
01

,7
34

IN
D

EL
1,

01
8

3,
06

3
9,

97
3

30
,1

22
10

0,
13

0
50

0,
97

1
1,

00
0,

56
5

IM
F

Es
tim

at
ed

 h
er

ita
bi

lit
y 

(M
ea

n 
±

 S
E)

SN
P

0.
13

 ±
 0

.0
3

0.
18

 ±
 0

.0
4

0.
23

 ±
 0

.0
4

0.
14

 ±
 0

.0
5

0.
25

 ±
 0

.0
5

0.
26

 ±
 0

.0
5

0.
26

 ±
 0

.0
5

0.
26

 ±
 0

.0
5

0.
26

 ±
 0

.0
5

IN
D

EL
0.

13
 ±

 0
.0

3
0.

18
 ±

 0
.0

3
0.

24
 ±

 0
.0

4
0.

25
 ±

 0
.0

5
0.

25
 ±

 0
.0

5
0.

26
 ±

 0
.0

5
0.

27
 ±

 0
.0

5

SN
P+

IN
D

EL
0.

16
 ±

 0
.0

5
0.

20
 ±

 0
.0

4
0.

25
 ±

 0
.0

5
0.

25
 ±

 0
.0

5
0.

26
 ±

 0
.0

5
0.

26
 ±

 0
.0

5
0.

27
 ±

 0
.0

5

M
C

SN
P

0.
15

 ±
 0

.0
3

0.
20

 ±
 0

.0
4

0.
29

 ±
 0

.0
5

0.
28

 ±
 0

.0
5

0.
28

 ±
 0

.0
5

0.
30

 ±
 0

.0
5

0.
30

 ±
 0

.0
5

0.
30

 ±
 0

.0
5

0.
30

 ±
 0

.0
5

IN
D

EL
0.

12
 ±

 0
.0

3
0.

21
 ±

 0
.0

4
0.

24
 ±

 0
.0

4
0.

29
 ±

 0
.0

5
0.

29
 ±

 0
.0

5
0.

30
 ±

 0
.0

5
0.

30
 ±

 0
.0

5

SN
P+

IN
D

EL
0.

17
 ±

 0
.0

3
0.

24
 ±

 0
.0

4
0.

28
 ±

 0
.0

5
0.

29
 ±

 0
.0

5
0.

29
 ±

 0
.0

5
0.

30
 ±

 0
.0

5
0.

30
 ±

 0
.0

5

L*
SN

P
0.

07
 ±

 0
.0

3
0.

12
 ±

 0
.0

3
0.

15
 ±

 0
.0

4
0.

14
 ±

 0
.0

4
0.

14
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4

IN
D

EL
0.

07
 ±

 0
.0

2
0.

12
 ±

 0
.0

3
0.

13
 ±

 0
.0

4
0.

14
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4

SN
P+

IN
D

EL
0.

08
 ±

 0
.0

3
0.

14
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4
0.

15
 ±

 0
.0

4

a*
SN

P
0.

28
 ±

 0
.0

3
0.

34
 ±

 0
.0

4
0.

51
 ±

 0
.0

5
0.

56
 ±

 0
.0

5
0.

59
 ±

 0
.0

5
0.

61
 ±

 0
.0

5
0.

61
 ±

 0
.0

5
0.

61
 ±

 0
.0

5
0.

61
 ±

 0
.0

5

IN
D

EL
0.

27
 ±

 0
.0

3
0.

39
 ±

 0
.0

4
0.

47
 ±

 0
.0

5
0.

54
 ±

 0
.0

5
0.

60
 ±

 0
.0

5
0.

62
 ±

 0
.0

5
0.

62
 ±

 0
.0

5

SN
P+

IN
D

EL
0.

36
 ±

 0
.0

4
0.

44
 ±

 0
.0

4
0.

55
 ±

 0
.0

5
0.

58
 ±

 0
.0

5
0.

60
 ±

 0
.0

5
0.

62
 ±

 0
.0

5
0.

62
 ±

 0
.0

5

b*
SN

P
0.

04
 ±

 0
.0

2
0.

08
 ±

 0
.0

3
0.

11
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

11
 ±

 0
.0

4

IN
D

EL
0.

05
 ±

 0
.0

2
0.

09
 ±

 0
.0

3
0.

09
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

12
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

12
 ±

 0
.0

4

SN
P+

IN
D

EL
0.

06
 ±

 0
.0

3
0.

10
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

11
 ±

 0
.0

4
0.

12
 ±

 0
.0

4
0.

12
 ±

 0
.0

4
0.

12
 ±

 0
.0

4



Page 8 of 15Zhuang et al. Journal of Animal Science and Biotechnology           (2023) 14:67 

least 100K level (by an increase of 100% ~ 175%). For 
example, the heritability estimated by low-density vari-
ants panels for IMF was 0.13 (1K), however, the herit-
ability estimated by medium and high-density variants 
panels was 0.26. The heritability estimated by low-density 
variants panels for a* was 0.28 (1K), however, the value 
was 0.61 estimated by medium and high-density variants 
panels. In addition, we observed no increase in heritabil-
ity when the marker density of WGS data was reached 
to more than 5 million (5,000K). These results demon-
strated that medium and high-density marker panels and 
variant category are beneficial for the estimation of herit-
ability for meat quality traits.

Genomic prediction accuracy of GBLUP and MultiBLUP 
of meat quality traits
Box plots of the accuracy of five-fold cross-validation 
with five repetitions against variants numbers for meat 
quality traits are shown in Fig.  3. The results of same 
marker densities between SNPs and INDELs are shown. 
The mean accuracy and bias values of both GBLUP and 
MultiBLUP using SNPs and INDELs is shown in Table 2 
and Fig. 4a–b. For IMF trait, the results showed that the 
accuracy of GBLUP using low-density SNP panels and 
INDEL panels ranged from 0.23 to 0.26, 0.23 to 0.27, 
respectively. The accuracy of GBLUP using medium-
density and high-density SNP panels and INDEL panels 
was same and reached to 0.27. Compared with the accu-
racy of GBLUP using 1K variant panels, the best accu-
racy values of GBLUP and MultiBLUP with 1,000K SNPs 
(INDELs) were represented by increases of 17.39% in 
IMF. For the MC trait, the results showed that the accu-
racy of GBLUP using low-density SNP panels and INDEL 
panels ranged from 0.22 to 0.27 and 0.21 to 0.28, respec-
tively. The values of accuracy of GBLUP using medium-
density and high-density SNP panels (INDEL panels) 
ranged from 0.28 to 0.29 (INDEL panels: 0.28). By using 
SNPs with high-density panels, the best accuracy values 
were represented by increases of 31.82% for GBLUP and 
MultiBLUP, compared to GBLUP with 1K panel. For L* 
trait, GBLUP using low-density SNP panels and INDEL 
panels resulted in low prediction accuracy, ranged from 
0.12 to 0.16 and 0.13 to 0.16, respectively. The results of 
accuracy of GBLUP using medium-density and high-den-
sity SNP panels and INDEL panels were same, reached 
to 0.16. By using SNPs with high-density panels, the best 
accuracy values were represented by increases of 33.33% 
for GBLUP and MultiBLUP, compared to GBLUP with 
1K panel. For a* trait, the results showed that the accu-
racy of GBLUP using low-density SNP panels and INDEL 
panels ranged from 0.38 to 0.46 and 0.36 to 0.44, respec-
tively. The values of accuracy of GBLUP using medium-
density and high-density SNP panels and INDEL both 

ranged from 0.46 to 0.47. Compared with the accuracy of 
GBLUP using 1K variant panels, the best accuracy values 
of GBLUP and MultiBLUP with 1,000K SNPs (INDELs) 
were represented by increases of 23.68% in a*. For b* 
trait, the best accuracy value was 0.14 for GBLUP using 
30K (10K) SNP panel and 100K (1,000K) INDEL panel 
and for MultiBLUP using low-density panels (except for 
1K panel). Compared to GBLUP with 1K SNP panel, 
the best accuracy value of GBLUP and MultiBLUP were 
represented by increases of 75% in b* trait. In general, 
compared with the GBLUP using complete WGS data, 
we observed no increases in accuracy for all meat qual-
ity traits, except for the b* trait, when the density of 
WGS data was reached to more than 500,000 (500K). 
The results of accuracy of GBLUP and MultiBLUP were 
increased with the increase of heritability of meat qual-
ity traits (Fig.  4a and b). Notably, it is surprising that 
the GEBV accuracy of MultiBLUP model outperform 
GBLUP model for all the analyzed meat quality traits 
when using low-density variant panels (less than 30,000 
markers) (Fig. 4b).

Accuracy from different marker densities with LD‑pruned
In the current study, the impact of LD-based marker 
pruning of WGS data on prediction accuracy for meat 
quality traits were investigated using GBLUP model. Four 
different r2 cutoffs of LD were set to prune SNPs of WGS 
data. The results of prediction accuracy of GBLUP for 
meat quality traits with different LD-based SNPs pruning 
are shown in Additional file 3: Table S2. For IMF, a*, and 
b*, the accuracy of LD pruned SNPs reached the high-
est accuracy values to 0.27, 0.47, and 0.13, respectively, 
compared to GBLUP with the complete WGS data. For 
L* trait, the prediction accuracy of LD pruned SNPs (r2 
< 0.6, 0.3, and 0.2) were increased by 6.25%, compared 
with GBLUP using complete WGS data. In contrast, the 
prediction accuracy of LD pruned SNPs (r2 < 0.6 and 0.8) 
decreased in comparison with that using complete WGS 
data for MC trait. For all meat quality traits, the predic-
tion accuracy of LD pruned SNPs (r2 < 0.3 and 0.2) could 
reach the highest level of prediction ability of GBLUP, 
implying that LD pruned SNPs can substantially improve 
computing efficiency in constructing G matrix, as the 
similar pattern as we observed in studying the impact of 
marker density on accuracy of genomic prediction.

Discussion
Impact of genetic structure of reference population, 
marker density and LD on genomic prediction 
and heritability estimation for meat quality
Improving the meat quality is of importance for satisfy-
ing the needs of high-quality products of consumers and 
consequently affecting the purchase decision [7]. Despite 
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the promise of improving meat quality using GP, signifi-
cant challenges have remained to overcome. Meat qual-
ity phenotypes usually are measured post-mortem, owing 
to high phenotyping costs of meat quality and the diffi-
culty in obtaining a large-scale pig WGS dataset, genetic 
improvement had been slow using genetic strategy espe-
cially for GP. This limitation led to insufficient integrat-
ing of genomic information, although meat quality should 

be an essential element in the breeding programs. To 
address this issue, we herein constructed a large-scale pig 
reference population for meat quality traits (including 
marbling score, meat color score, L*, a*, and b*) consist-
ing of 1,469 whole genome sequenced pigs to implement 
GP. The genetic structure of this reference population 
consisted of three admixed genomic relationship sub-
populations, however, population structure did not have 

Fig. 3 Box plots of genomic prediction accuracy over marker density for meat quality traits. The prediction accuracy was defined as the Pearson 
correlation coefficient between adjusted phenotypes and GEBV in the validation population, and was obtained by a five-fold cross-validation with 
five repetitions. “SNP” represents the accuracy of GBLUP using different SNP panels. “INDEL” represents the accuracy of GBLUP using different INDEL 
panels. “SNP+INDEL” refers to the accuracy of MultiBLUP using INDEL as a random effect
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substantial influence on meat quality traits (Fig. 1d), since 
the three subpopulations have similar LD decay trend 
(Fig. 1c). Results of previous studies have shown that the 
genomic prediction accuracy may be limited when using a 
small population of purebred, but incorporating genomic 
data from different breeds or populations might result in 
higher prediction accuracy [33–35]. GP scheme benefit a 
lot from incorporating data from multiple genomic rela-
tionship closely related subpopulations into large-scale 
reference population [35]. Moreover, using crossbreed 
commercial DLY pigs to construct reference population 
in terms of improving meat quality has an advantage of 
breed complementarity and heterosis, compared to tra-
ditionally conducted GP scheme within purebred nucleus 
lines [6]. Another highlight of this study is the sufficient 
utilization of WGS data, which was produced from cost-
expensive next generation sequencing technology, to 
study the prediction accuracy of GP for meat quality traits 
in pigs. Thus, the results of our study suggested that meat 
quality traits can be incorporated in GP scheme and the 
GEBV accuracy can be improved by using WGS data. 
Our results also demonstrated that the genomic predic-
tion accuracy of meat quality traits depend on marker 
density and GP models. However, there was no essential 
difference of accuracy among LD-based SNPs with dif-
ferent r2 cutoffs pruned. One basic assumption of GP 
is that each QTL affecting complex traits is in LD with 
at least one variant and too many SNPs or INDELs may 
led to biased genomic prediction for complex traits [36]. 
Our results showed that the prediction accuracy of LD-
based SNPs with r2 < 0.2 pruned could reach the highest 
level of prediction ability of GBLUP in comparison with 

that using complete WGS data, resulting in substantially 
improving of computing efficiency in constructing G 
matrix as we point out above. In the current study, our 
results implied that WGS data can be utilized to explore 
the relationship between missing heritability and predic-
tion accuracy of meat quality traits. Missing heritability 
in genome-wide association study is a major problem that 
limited the detection power in genomic analysis for com-
plex traits [37]. Herein, our results showed that missing 
heritability may also be an important factor that limiting 
the prediction accuracy of GP (Fig.  4). For instance, the 
prediction accuracy values for meat quality traits differed 
between the heritability levels for a* and L*, b*, with pre-
diction accuracies being higher for the high heritability 
trait (a*) than for the low heritability traits (L*, b*). The 
highest increase of accuracy in the analyzed meat quality 
traits was the up to 75% increase for b*. Furthermore, the 
power of genomic prediction can probably be improved 
by incorporating INDELs from WGS data. Our results 
also demonstrated that medium and high-density marker 
panels and variant category are beneficial for the estima-
tion of heritability for meat quality traits.

The superiority of MultiBLUP model that considered two 
random variance components over GBLUP model
In this study, we investigated the superiority of Multi-
BLUP model that considered different genomic infor-
mation from WGS data as two random variance 
components over GBLUP model. Owing to the difficulty 
in obtaining a large-scale pig WGS dataset, the predic-
tion accuracy of MultiBLUP incorporating INDELs from 
WGS data has rarely been explored. We compared the 

Fig. 4 Average accuracy of genomic prediction using GBLUP and MultiBLUP for meat quality traits. Points showed the average accuracy of each 
five-fold cross-validation with five repetitions. a The average accuracy of GBLUP using different SNP panels versus average accuracy of GBLUP using 
different INDEL panels. b The average accuracy of GBLUP using different SNP panels versus average accuracy of MultiBLUP using different INDEL 
panels as random effects
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increase in prediction accuracy that can be improved 
by including INDELs from WGS data as additionally 
random variance component. The results of accuracy 
of MultiBLUP were increased with the increase of her-
itability of meat quality traits in pigs. Our results show 
that MultiBLUP model outperform GBLUP for all the 
analyzed meat quality traits when using low-density 
variant panels and yield a higher prediction accuracy 
improvement of the most 75% in b* trait. Furthermore, 
MultiBLUP and GBLUP models have equivalent pre-
dictive ability of meat quality traits in pigs when using 
medium-density and high-density SNP panels. The pos-
sible reason is that the modified genomic relationship 
matrix derived by the two random variance components 
were allowed to add higher weights to exhibit the kin-
ship between pairs of animals [38, 39], especially for 
low-density panels. The advantage of MultiBLUP over 
GBLUP is the more the proportion of phenotypic vari-
ance explained by INDEL is larger than that explained 
by the remaining SNP dataset. MultiBLUP, an expansion 
model for GBLUP that including two random genetic 
effects, has an extensive use for genomic prediction in 
livestock animals and plant breeding. Another model 
that including two random genetic effects is termed as 
GFBLUP (genomic feature BLUP), in which a separate 
random genetic effect is preselected base on prior infor-
mation. The performance of use MultiBLUP and GFB-
LUP method varied among traits. Previous studies have 
demonstrated that the value and superiority of GFBLUP 
model using prior information from WGS data, known 
QTLs, GWAS results, and Gene Ontology (GO) terms 
over GBLUP mode for reproduction traits and produc-
tion traits in pigs [36], milk fatty acid composition in 
Holstein cows [40], body weights in broilers [41], dis-
ease resistance and growth traits in aquaculture species 
[42], and also for growth-related traits in crop breeding 
(Arabidopsis thaliana) [43]. However, prediction accu-
racy of GFBLUP differed in different scenarios [44]. The 
accuracy of GFBLUP may affected by the composition 
of genomic features. Ye et  al. [45] found that GFBLUP 
did not yield accuracy improvement using preselected 
SNPs from WGS based on GWAS results, but improved 
the prediction accuracy with the most 60.66% increase 
for the starvation resistance in Drosophila when using 
preselected SNPs from eQTL (expression QTL) map-
ping. In this study, the MultiBLUP outperform GBLUP, 
at least not loss power in compared with GBLUP, for 
estimating the GEBV of meat quality traits. The lack 
of improvement in prediction accuracy of MultiBLUP 
using medium- and high-density variant panels may 
be owing to only INDELs from WGS data was used, 
the assignment of different weights to the  Ggf  and Ggr 
matrices did not have substantial differences [39]. Thus, 

it is expected that use the results of GWAS and eQTL 
mapping to yield higher accuracy increase of MultiBLUP 
and GFBLUP models, because these strategies may pro-
vide valuable insights into elucidating the genetic archi-
tecture of meat quality traits.

Accuracy of genotype imputation and performance of GP 
using imputed‑based WGS data
Genotype imputation is used to predict or impute the gen-
otypes at the SNPs that are not directly genotyped in the 
study sample using a reference panel of haplotypes with 
high-density SNPs [20]. It has been proven to a cost-effec-
tive approach that greatly increase the density of genotypes 
to WGS level data and is widely used in the genetic studies 
to boost power such as in GWAS and GP. To date, several 
genotype imputation haplotype reference panels have been 
developed for animal [46], plant [47], and aquaculture spe-
cies [48]. With the aid of genotype imputation, exploration 
of the combining admixed population into single reference 
population or improving the genomic prediction accuracy 
of combined populations is feasible and convenient in ani-
mals, such as in cattle and pig [36]. In practice, the geno-
typing strategy in most studies and breeding industries is 
to genotype animals using low-density chip, then, geno-
type imputation was used to improve the marker density 
to WGS level [10, 17, 49, 50]. However, the results of many 
studies demonstrated that no increase and even decrease of 
prediction accuracy were observed when using imputed-
based WGS data in GP [12–14]. Accuracy of genotype 
imputation can have an effect on the prediction accu-
racy of GP [10]. Several factors can affect the accuracy of 
genotype imputation, including the genotype imputation 
methods used in the software [20], MAF of the imputed 
variants [51], and SNP array density [52]. In this study, we 
performed genotype imputation in the same population 
to acquire the accuracy of imputation from commercial 
medium-density marker panel (50K) to WGS level data. We 
found average CR to exceed 95.28% and r2 = 0.81 whereas 
the accuracy of genotype imputation of the used haplo-
types panel is CR =  95.84% and r2 =  0.89. We observed 
that the average CR increased along with the number of 
markers in MAF bins increased. The average CR is sensi-
tive to MAF maybe due to the count of variants with MAF 
higher than 0.4 in the reference panel was also small [30]. 
Another possible reason is that the accuracy of imputation 
in composite animals is related to genetic group [53, 54]. 
Our results showed that the accuracy of genotype imputa-
tion in crossbred populations is slightly lower than that in 
purebred populations [30], but it is sufficient to show the 
reliability of using imputed WGS data for genomic analy-
ses. Importantly, the goal of performing genotype imputa-
tion in this study is to discard missing SNPs and INDELs 
in some samples and made the remained variants do not 
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have undetected genotypes in the 1,469 sequenced pigs. 
From the 21,708,028 SNPs and 3,000,017 INDELs of WGS 
data and the 19,348,898 SNPs and 2,725,851 INDELs of 
imputed-based WGS data produced by genotype impu-
tation after QC, 86.12% (18,695,907) SNPs and 70.23% 
(2,106,902) INDELs were present on the two sequence 
datasets. Thus, the efficiency of using imputed-based WGS 
data will be a useful strategy in GP scheme.

Challenges for genomic prediction of meat quality traits 
in swine
In many cases, sequencing all animals in the reference pop-
ulation is not realistic owing to cost-expensive collecting of 
phenotypes and genotypes. However, GP of economically 
important traits in livestock benefits a lot from genomic 
data and accurately measurement of phenotypic records 
of animals, especially in pigs [6]. The genetic improvement 
of meat quality is hindered by the poorly ability to collect 
phenotypes from purebred pigs, which is not realistic to 
measure meat quality post-mortem in a large-scale pure-
bred pig population. Then, it is expected to conduct GP 
scheme of meat quality in crossbred pig population. Due to 
the differences in genetic variants between purebred and/
or crossbred pigs [55], the performance of using purebred 
and crossbred individuals genotypic and phenotypic data 
to estimate the GEBV of meat quality traits may varies in 
GP. The use of genotypes of crossbred pigs is non-conven-
tional because the DLY pigs were not used in the breeding 
population. However, a study had shown the value of the 
inclusion of crossbred genomic information in the refer-
ence population when implementing GP but the prediction 
accuracy differed across traits [6]. Moreover, the advan-
tage of including genotypes and phenotypes of the cross-
bred pigs is seemingly depending on the high correlation 
between purebred and crossbred individuals [56, 57]. In 
this respect, it is recommended to construct reference pop-
ulation using both purebred and crossbred individuals, but 
the performance of GP when selecting purebred animals 
in the valid population should be further explored. In this 
study, we sequenced all DLY pigs in reference population 
and conducted GP for meat quality. The inability to includ-
ing purebred genomic data and phenotypic data may limit 
us to make deep study for further investigating of meat 
quality in pigs. Last but not least, the estimated heritability 
of meat quality in pigs is low, although full genetic variants 
were obtained from the inclusion of WGS data. In future 
research, we look forward to improve the prediction accu-
racies of meat quality traits by performing GWAS to map 
possible causal variants using WGS data and subsequently 
add those causal variants to a SNP panel [58]. Beyond GP of 
meat quality using genomic-level information, multi-omics 
data may contribute to a lot for improving the prediction 
accuracy of meat quality in swine in the future.

Conclusions
In this study, we produced WGS data from 1,469 
sequenced pigs to call variants and developed a reference 
panel for meat quality of GP in pigs. Results from this 
study showed that the accuracy of MultiBLUP model out-
perform GBLUP model for meat quality when using low-
density variant panels. We optimized the marker density 
and found medium and high-density marker panels and 
variant category are beneficial for the estimation of her-
itability for meat quality traits. We conducted genotype 
imputation from commercial SNP panel (50K) to WGS 
level in the same population and found average concord-
ance rate to exceed 95% and r2 = 0.81.
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