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Abstract 

Background Dairy cows’ lactation performance is the outcome of the crosstalk between ruminal microbial metabo-
lism and host metabolism. However, it is still unclear to what extent the rumen microbiome and its metabolites, as 
well as the host metabolism, contribute to regulating the milk protein yield (MPY).

Methods The rumen fluid, serum and milk of 12 Holstein cows with the same diet (45% coarseness ratio), parity (2–3 
fetuses) and lactation days (120–150 d) were used for the microbiome and metabolome analysis. Rumen metabolism 
(rumen metabolome) and host metabolism (blood and milk metabolome) were connected using a weighted gene 
co-expression network (WGCNA) and the structural equation model (SEM) analyses.

Results Two different ruminal enterotypes, with abundant Prevotella and Ruminococcus, were identified as type1 
and type2. Of these, a higher MPY was found in cows with ruminal type2. Interestingly, [Ruminococcus] gauvreauii 
group and norank_f_Ruminococcaceae (the differential bacteria) were the hub genera of the network. In addition, 
differential ruminal, serum and milk metabolome between enterotypes were identified, where the cows with type2 
had higher L-tyrosine of rumen, ornithine and L-tryptophan of serum, and tetrahydroneopterin, palmitoyl-L-carnitine, 
S-lactoylglutathione of milk, which could provide more energy and substrate for MPY. Further, based on the identi-
fied modules of ruminal microbiome, as well as ruminal serum and milk metabolome using WGCNA, the SEM analysis 
indicated that the key ruminal microbial module1, which contains the hub genera of the network ([Ruminococcus] 
gauvreauii group and norank_f_Ruminococcaceae) and high abundance of bacteria (Prevotella and Ruminococcus), 
could regulate the MPY by module7 of rumen, module2 of blood, and module7 of milk, which contained L-tyrosine 
and L-tryptophan. Therefore, in order to more clearly reveal the process of rumen bacterial regulation of MPY, we 
established the path of SEM based on the L-tyrosine, L-tryptophan and related components. The SEM based on the 
metabolites suggested that [Ruminococcus] gauvreauii group could inhibit the energy supply of serum tryptophan 
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to MPY by milk S-lactoylglutathione, which could enhance pyruvate metabolism. Norank_f_Ruminococcaceae could 
increase the ruminal L-tyrosine, which could provide the substrate for MPY.

Conclusion Our results indicated that the represented enterotype genera of Prevotella and Ruminococcus, and the 
hub genera of [Ruminococcus] gauvreauii group and norank_f_Ruminococcaceae could regulate milk protein synthesis 
by affecting the ruminal L-tyrosine and L-tryptophan. Moreover, the combined analysis of enterotype, WGCNA and 
SEM could be used to connect rumen microbial metabolism with host metabolism, which provides a fundamental 
understanding of the crosstalk between host and microorganisms in regulating the synthesis of milk composition.

Keywords Dairy cows, Microbial and host metabolome, Milk protein, Ruminal microbiota enterotype, Structural 
equation model, Weighted gene co-expression network

Introduction
As the world population and demand for high-qual-
ity animal protein continue to increase, dairy milk has 
become an indispensable high-nutritional animal protein 
product [1]. Rumen microbial digestion and metabolism 
provide energy and precursors for milk composition 
synthesis in dairy cows [2]. It has been proven that com-
pared to the rumen microbiome of low milk protein 
yield (MPY) cows, the rumen microbial KEGG function 
of high MPY cows enriched in the pyruvate metabolism 
and reduced in the methane metabolism [3]. Further, the 
methane emission and feed efficiency were reported to be 
affected by ruminal microbiome and metabolome [4, 5]. 
The milk protein biosynthesis in dairy cows is a compli-
cated biological process that involves not only the rumen, 
but also host metabolic processes [3]. The milk protein 
biosynthesis could be briefly affected by several biologi-
cal processes of ruminal dietary crude protein degrada-
tion, ruminal microbial protein and amino acid synthesis, 
intestinal dietary protein and microbial protein degrada-
tion, intestinal digested and microorganism synthesized 
amino acid absorption, and hepatic and mammary 
gland amino acid metabolism and biotransformation 
[6]. Hence, when focusing overall on the metabolome 
changes from rumen-blood-mammary gland axis insight, 
the roles of key bacteria and key bacteria-driven ruminal 
microbiome in regulating the milk protein synthesis-
related metabolism pathways were still insufficient.

Reproducible patterns of variation in the microbiota, 
like the major proportions such as Bacteroides and Prevo-
tella, have been observed in the human gut [7]. When 
separated into different clusters, they have been identi-
fied as the “enterotypes” [7] and proposed as a useful 
method to stratify human gut microbiomes. Later, other 
studies found stratification in other ecosystems, such as 
the vagina [8] and other body sites [9, 10]. By revisiting 
the enterotype concept, three enterotypes of humans, 
which were separately driven by Bacteroides, Prevotella, 
and Ruminococcus were identified [11, 12]. An investiga-
tion of the properties of each enterotype revealed net-
works of co-occurring microbes centered around the 

indicator (driver) genera as well, which could be linked to 
phenotype changes, such as the body weight of humans 
[11, 12]. Hence, we presume that enterotype analysis can 
help in identifying key bacteria and link the key bacteria 
driven ruminal microbiome to the milk protein synthe-
sising ability.

In order to systemically analyze the metabolome 
changes of rumen-blood-mammary gland axis and 
identify the contribution of ruminal microbiome and 
metabolome to the milk protein synthesis, clustering 
analyses were performed using the weighted gene co-
expression network (WGCNA) and the structural equa-
tion model (SEM) analyses. These could help to link the 
ruminal microbiome as well as the ruminal, serum, and 
milk metabolome, and identify the pathway that rumi-
nal microbiome affected in the milk protein synthesis by 
changing the microbial and host metabolome. Therefore, 
we grouped the dairy cows according to ruminal entero-
types and explored the relationship between enterotypes 
and MPY by analysing the overall ruminal microbiome, 
as well as ruminal, serum, and milk metabolome, using a 
combined analysis of WGCNA and SEM.

Materials and methods
Ethics approval statement
This experiment was conducted at the Animal Research 
and Technology Centre of Northwest A&F University 
(Yangling, Shaanxi, China). It was performed in accord-
ance with the guidelines recommended by the Admin-
istration of Affairs Concerning Experimental Animals 
(Ministry of Science and Technology, China, revised 
2004). The protocol was approved by the Institutional 
Animal Care and Use Committee at Northwest A&F 
University.

Animal, study design, and sample collection
A cohort of 871 healthy lactating Holstein cows housed 
at a commercial dairy farm in Ning Xia, China. Of 
these, the 12 lactating Holstein cows involved in the 
study were randomly selected from the 97 Holstein 
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cows with the same parity  (2nd litter), similar lactation 
days (120–150 d), and similar body condition (body 
condition score from 2.5 to 3). The 12 selected cows 
were raised from early to middle lactation (21–200 d 
after calving). The animals were given the same feed-
lot diet with a 45% coarseness ratio (dry matter basis). 
All the cows were fed and milked thrice a day at 06:00, 
14:00 and 22:00, and were given free access to water and 
feed. The daily milk quality and dairy yield of these 12 
selected lactating Holstein cows were analysed. Briefly, 
the feed (including the alfalfa and starter feed) offered 
was adjusted daily to ensure at least 10% orts. The feed 
intake of the cows was recorded for three consecutive 
days by artificially recording the initial feed weight and 
the weight of the remaining material after each free 
intake of each cow.

In this study, the milk samples of the 12 cows were 
collected during the lactation period of 130–150 
d. The milk yield (MY), MPY, milk fat yield (MFY), 
and lactose of the 12 dairy cows were recorded as 
29.64 ± 0.290 kg/d, 1.16 ± 0.050 kg/d, 1.12 ± 0.016 kg/d, 
and 1.46 ± 0.023  kg/d (mean ± standard error of the 
mean) respectively. During the experimental sampling 
period (lactation period of 130–150 d), the rumen fluid 
was sampled using oral stomach tubes and filtered 
through four layers of cheesecloth, and then used for 
16S rRNA gene sequencing and metabolome analy-
sis. Blood samples from all dairy cows were collected 
in tubes without anticoagulants. Then, serum sam-
ples were separated by centrifugation at 3,500 × g for 
15  min at 4  °C (using Centrifuge 5810R, Eppendorf, 
Germany) to measure the chemical parameters and 
metabolome in the serum. The milk was sampled for 
milk quality detection and metabolome analysis.

Determination of milk composition
The fat, protein, and lactose contents in the milk were 
measured using infrared analysis through a spectro-
photometer (Foss-4000; Foss Electric A/S, Hillerød, 
Denmark).

Determination of volatile fatty acids (VFA) concentrations 
in ruminal fluid
The rumen fluid samples were centrifuged at 13,000 × g 
for 10 min at 4 °C. The supernatant samples were analysed 
for volatile fatty acids (VFA) concentration using an Agi-
lent 6850 gas chromatograph (Agilent Technologies Inc., 
Santa Clara, CA, USA) equipped with a polar capillary 
column (HP-FFAP, 30 m × 0.25 mm, 0.25 μm) and a flame 
ionisation detector, as previously described [13, 14].

Determination of serum biochemical metabolites 
composition
The total protein (TP), glucose (GLU), total cholesterol 
(TC), and triglyceride (TG) were determined using com-
mercial kits as per the manufacturer’s instructions (Bei-
jing Huaying Co., Ltd., Beijing, China).

DNA extraction
The total genomic DNA was extracted from rumen con-
tents using the repeat bead-beating plus column method 
[15]. Nuclease-free water was used for the blank. The 
final DNA concentration and purification were deter-
mined through fluorometry using a Qubit 2.0 fluorome-
ter (Life Technologies, Grand Island, NY, USA). The total 
DNA was eluted in 50 μL of elution buffer and stored in 
a −80  °C freezer until further library preparation and 
sequencing.

Microbiota 16S rRNA gene sequencing, analysis 
and identification of rumen bacterial enterotypes
The V3–V4 regions of the 16S rRNA genes were ampli-
fied with Illumina sequencing index-binding primer 
pairs 338F (5’-ACT CCT ACG GGA GGC AGC AG-3’) 
and 806R  (5’-GGA CTA CHVGGG TWT CTAAT-3’) [16] 
in the following PCR conditions: 30  s at 95  °C, 30  s at 
55  °C, and 45  s at 72  °C for 27 cycles. PCRs were per-
formed using 4 μL 5 × TransStart FastPfu buffer, 2 μL 
2.5 mmol/L deoxynucleoside triphosphates (dNTPs), 0.8 
μL of each primer (5 μmol/L), 0.4 μL TransStart FastPfu 
DNA polymerase, 10  ng of extracted DNA, and extra 
 ddH2O in a 20-μL system. Agarose gel electrophoresis 
was performed to verify the size of amplicons. The com-
pleted libraries were quantified using Quant-iT fluoro-
metric assay (Thermo Fischer Scientific, Waltham, MA, 
USA). Two of 48 sample libraries with concentrations 
less than 2  nmol/L were discarded. Thereafter, paired-
end sequences (2 × 300 bp) of the remaining 46 prepared 
sample libraries were generated on an Illumina MiSeq 
sequencing platform (Illumina,  San Diego, CA, USA), 
using MiSeq Reagent Kit v3 (Illumina).

Raw FASTQ files were de-multiplexed using an in-house 
perl script, and then quality-filtered by fastp version 0.19.6 
[17] and merged by FLASH version 1.2.7 [18] with the fol-
lowing criteria: (i) the 300 bp reads were truncated at any 
site receiving an average quality score of < 20 over a 50 bp 
sliding window, and the truncated reads shorter than 
50  bp were discarded, reads containing ambiguous char-
acters were also discarded; (ii) only overlapping sequences 
longer than 10 bp were assembled according to their over-
lapped sequence, the maximum mismatch ratio of overlap 



Page 4 of 18Zhang et al. Journal of Animal Science and Biotechnology           (2023) 14:63 

region is 0.2, and reads that could not be assembled were 
discarded; (iii) samples were distinguished according to 
the barcode and primers, and the sequence direction was 
adjusted, exact barcode matching, 2 nucleotide mismatch 
in primer matching. To minimize the effects of sequenc-
ing depth on alpha and beta diversity measures, the num-
ber of sequences from each sample was rarefied to 28,788 
(the lowest read). Then the high-quality sequences were 
de-noised and the amplicon sequence variants (ASVs) was 
assembled using DADA2 [19] in the QIIME2 [20] pipeline 
under default parameters, which gave single nucleotide res-
olution based on error profiles within samples. Finally, 693 
ASVs per sample were used to rarefaction and downstream 
analysis. Taxonomic assignment of ASVs was performed 
using the Naive Bayes consensus taxonomy classifier imple-
mented in QIIME2 and the SILVA 16S rRNA database 
(v138, https:// www. arb- silva. de/ silva- licen se- infor mation/) 
[21].

The following analysis on alpha and beta diversity was 
performed on the filtered data (rarefied abundance table) 
using USEARCH alpha_div [22] and UniFrac metrics [23] 
in QIIME2, respectively. ASV richness estimates (Chao 1, 
Abundance-based Coverage Estimator: ACE) and diver-
sity indices (Simpson) were used to measure microbiota 
alpha diversity in all the samples. Beta diversity from dif-
ferent samples were compared via PCoA analysis based 
on Bray-Curtis distance matrices.

Partitioning Around Medoids (PAM) clustering was 
performed based on the Jensen-Shannon divergence 
(JSD). The best clustering K number was calculated using 
the Calinski-Harabasz (CH) index [7]. The ruminal bacte-
rial enterotypes were analysed using between-class analy-
sis (BCA) [7].

Construction of the genera interaction network
Network graphs were calculated based on the correla-
tion of the abundance of all the tested genera using the 
R package ggClusterNet [24], which could complete the 
whole microbiome and bipartite network analysis from 
correlations calculation, network visualisation, network 
properties calculation, and node properties and con-
struction of the random networks and comparation. 
Based on the network properties calculation and node 
properties, the key genera of the network were identified. 
The genera with high igraph.degree value in the network 
graph are identified as key genera.

Shotgun metagenome sequencing and data processing
The same DNA samples were used for metagenome 
sequencing. The DNA extracts were fragmented to an 
average size of about 400 bp using Covaris M220 (Gene 
Company Limited, China) for paired-end library con-
struction. Paired-end library was constructed using 

NEXTFLEX Rapid DNA-Seq (Bioo Scientific, Austin, 
TX, USA). Adapters containing the full complement of 
sequencing primer hybridisation sites were ligated to the 
blunt end of fragments. Paired-end sequencing was per-
formed on Illumina NovaSeq/Hiseq Xten(Illumina Inc., 
San Diego, CA, USA) using NovaSeq Reagent Kits/HiSeq 
X Reagent Kits, according to the manufacturer’s instruc-
tions (www. illum ina. com).

The quality control of each dataset was performed 
using Sickle (version 1.33, https:// github. com/ najos hi/ 
sickle) to trim the 3’-end of reads and 5’-end of reads, cut 
low-quality bases (quality scores < 20), and remove short 
reads (< 50 bp) and “N” records. The reads were aligned 
to the bovine genome (bosTau8 3.7, https:// doi. org/ 10. 
18129/ B9. bioc. BSgen ome. Btaur us. UCSC. bosTa u8) using 
BWA (http:// bio- bwa. sourc eforge. net) to filter out the 
host DNA [25]. The filtered reads were de novo assem-
bled for each sample using Megahit (https:// github. com/ 
voutcn/ megah it) [26]. MetaGene (http:// metag ene. cb.k. 
u- tokyo. ac. jp/) was used to predict open reading frames 
(ORFs) from assembled contigs of length > 300  bp [27]. 
The assembled contigs were then pooled and non-redun-
dancies were constructed based on the identical con-
tigs using CD-HIT with 95% identity (http:// www. bioin 
forma tics. org/ cd- hit/) [27]. The original sequences were 
mapped to the predicted genes and the abundances were 
estimated using SOAPaligner (http:// soap. genom ics. org. 
cn/) [28].

The contigs were annotated using DIAMOND against 
the KEGG database (http:// www. genome. jp/ kegg/), with 
an E value of 1e−5 [29]. Abundances of the KEGG path-
way were normalised into Trans Per Million reads (TPM) 
for downstream analysis. KEGG pathways with TPM > 5 
in at least 50% of the animals within each group were 
used for the downstream analysis.

Metabolomic analysis
The rumen fluid, serum and milk samples from the 12 
cows were used for metabolomic analysis. Approximately 
100 μL of rumen fluid and milk samples were preproc-
essed for metabolomic analyses. All sample scans were 
acquired using the LC-MS system, following the manu-
facturer’s instructions. Briefly, the metabolites were 
extracted using 400 µL methanol:water (4:1, v/v) solu-
tion. The mixture was allowed to settle at −20  °C and 
treated using a high-throughput tissue crusher, Wonbio-
96c (Shanghai Major biotechnology Co., LTD), at 50 Hz 
for 6 min, followed by vortex for 30 s and ultrasound at 
40  kHz for 30  min at 5  °C. The samples were placed at 
−20 °C for 30 min to precipitate proteins. After centrifu-
gation at 13,000 ×   at 4  °C for 15  min, the supernatant 
was carefully transferred to sample vials for LC-MS/MS 
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analysis. Meanwhile, as part of the system conditioning 
and quality control process, a pooled quality control sam-
ple (QC) was prepared by mixing equal volumes of all 
samples. The QC samples were disposed of and tested in 
the same manner as the analytic samples.

Chromatographic separation of the metabolites 
was performed on an  ExionLCTM  AD system (AB 
Sciex, Framingham, MA, USA) equipped with an Acquity 
UPLC BEH C18 column (100 mm × 2.1 mm i.d., 1.7 µm; 
Waters, Milford, USA). The mobile phases consisted of 
0.1% formic acid in water with formic acid (0.1%) (solvent 
A) and 0.1% formic acid in acetonitrile:isopropanol (1:1, 
v/v) (solvent B). The solvent gradient changed according 
to the following conditions: from 0 to 3 min, 95% (A):5% 
(B) to 80% (A):20% (B); from 3 to 9 min, 80% (A):20% (B) 
to 5% (A):95% (B); from 9 to 13 min, 5% (A):95% (B) to 
5% (A):95% (B); from 13 to 13.1 min, 5% (A):95% (B) to 
95% (A):5% (B), from 13.1 to 16 min, 95% (A):5% (B) to 
95% (A):5% (B) for equilibrating the systems. The sample 
injection volume was 20 μL and the flow rate was set to 
0.4  mL/min. The column temperature was maintained 
at 40 °C. During the period of analysis, all these samples 
were stored at 4 °C.

The UPLC system was coupled with a quadrupole-
time-of-flight mass spectrometer (Triple  TOFTM 5600 + , 
AB Sciex) equipped with an electrospray ionisation (ESI) 
source operating in positive and negative modes. The 
optimal conditions were set as followed: source tem-
perature, 500  °C; curtain gas (CUR), 30 psi; Ion Source 
GS1 and GS2, 50 psi; ion-spray voltage floating (ISVF), 
−4000 V in negative mode and 5000 V in positive mode, 
respectively; declustering potential, 80  V; a collision 
energy (CE), 20–60  V rolling for MS/MS. Data acquisi-
tion was performed in the Data Dependent Acquisition 
(DDA) mode. The detection was carried out over a mass 
range of 50–1000 m/z.

After UPLC-TOF/MS analyses, the raw data were 
imported into Progenesis QI 2.3 (Nonlinear Dynamics, 
Waters, USA) for peak detection and alignment. The pre-
processing results generated a data matrix that consisted 
of the retention time (RT), mass-to-charge ratio (m/z) 
values, and peak intensity. Any set of samples in which at 
least 80% metabolic features were detected were retained. 
After filtering, minimum metabolite values were imputed 
for specific samples in which the metabolite levels fell 
below the lower limit of quantitation and each metabolic 
features were normalised using sum. The internal stand-
ard was used for data QC (reproducibility). Metabolic 
features for which the relative standard deviation (RSD) 
of QC > 30% were discarded. Following normalisation 
procedures and imputation, statistical analysis was per-
formed on log-transformed data to identify significant 
differences in metabolite levels between comparable 

groups. Mass spectra of these metabolic features were 
identified by using accurate mass. MS/MS fragments 
spectra and isotope ratio difference were searched on 
reliable biochemical databases such as Human Metabo-
lome Database (HMDB) (http:// www. hmdb. ca/) and 
Metlin database (https:// metlin. scrip ps. edu/). Con-
cretely, the mass tolerance between the measured m/z 
values and the exact mass of the components of interest 
was ±10 ppm. For metabolites having MS/MS confirma-
tion, only the ones with MS/MS fragments score above 
30 were considered as confidently identified. Otherwise, 
metabolites were given only tentative assignments.

The analysis methods used were principal component 
analysis (PCA) and orthogonal partial least-squares dis-
criminant analysis (OPLS-DA). Supervised OPLS-DA 
was conducted through metaX [30] to discriminate the 
different variables between groups. The variable impor-
tant for the projection (VIP) value was calculated, and a 
VIP cut-off value of 1.0 was used to select important fea-
tures (VIP ≥ 1; ratio ≥ 2 or ratio ≤ 1/2; q value ≤ 0.05).

Differential metabolites were summarised and mapped 
into their biochemical pathways through metabolic 
enrichment and pathway analysis, based on the KEGG 
database (http:// www. genome. jp/ kegg/). The scipy.
stats (Python packages) ( https:// docs. scipy. org/ doc/ 
scipy/) was exploited to identify statistically significantly 
enriched pathways using Fisher’s exact test.

Weighted gene co‑expression network analysis (WGCNA)
WGCNA was used to identify key phenotype-related 
metagenomic and metabolic modules based on correla-
tion patterns. WGCNA was performed using R pack-
ages WGCNA [31] and vegan [32], after going through 
official tutorials (https:// horva th. genet ics. ucla. edu). To 
describe the MGB metabolic network features compre-
hensively, we integrated peripheral and central metabo-
lites into a scale-free network topology, and normalised 
the abundance with logarithmic conversion and robust 
quantile normalisation. We used a ‘step-by-step network 
construction’ for metabolic network topology, adjusted 
network type to a ‘signed hybrid’ and set the soft thresh-
olding power to 7 (rumen microbiome, Additional file 1: 
Fig. S1A), 18 (rumen metabolome,  Additional file  1: 
Fig. S1B), 16 (blood metabolome, Additional file  1: Fig. 
S1C) and 20 (milk metabolome,  Additional file  1: Fig. 
S1D) to obtain the best topological overlap matrix, and 
kept other parameters as default. Based on the distance 
matrix, genes were subsequently clustered using the 
average linkage hierarchical clustering method using 
hclust, and the expression modules were detected using 
dynamicTreeCut. Modules with similar patterns were 
further clustered and merged into consensus modules. 
The correlation between the consensus modules and milk 
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composition was calculated using corPvalueStudent. 
Pairwise Pearson correlation coefficients were calculated 
for all the selected genes. The resulting Pearson correla-
tion matrix was transformed into a matrix of connection 
strengths (an adjacency matrix) using a power function, 
which was then converted into a topological overlap 
matrix. WGCNA seeks to identify modules of densely 
interconnected genes using hierarchical clustering based 
on topological overlap.

Structural equation modelling construction (SEM) analysis
SEM was constructed to evaluate the direct link among 
rumen microbiome modules, rumen metabolome mod-
ules, serum metabolome, milk metabolome modules, and 
milk compositions, as well as among identified differen-
tial genera, ruminal, serum, and milk differential metabo-
lites. The goodness-of-fit of the SEM was checked using 
the χ2 test, the root mean square error (RMSE), and the 
comparative fit index (CFI). The model had a good fit 
when the CFI value was close to 1 and the P values of the 
statistics were high (traditionally, > 0.05) [33]. SEM was 
conducted using the lavaan package [34].

Statistics
The statistical analyses were performed using the “stats” 
package in R (https:// www.r- proje ct. org) [35]. The 
homogenized microbial abundance (relative abundance) 
was used for subsequent analysis. The Mann-Whitney 
U test with multiple comparisons adjusted by the Ben-
jamini-Hochberg FDR was performed to compare the 
microbial alpha diversity and the different bacteria of 
16S rRNA gene sequencing results between two groups 
(P < 0.05). ANOSIM analysis based on Bray-Curtis dis-
tance matrices was used to identify the beta diversity 
between two or more compared groups. The one-way 
analysis of variance (ANOVA) was performed to com-
pared to the different lactating performance (milk yield, 
fat, protein, and lactose) between groups (P < 0.05). Pair-
wise correlations of network in ggClusterNet were cal-
culated using Spearman’s correlation, and P < 0.05 and 
Spearman’s correlation indices > 0.5 were used to gener-
ate all significant relationships in the present study.

Results
Identification of ruminal microbiota enterotypes, 
and microbial and phenotypes features of differential 
enterotypes
In order to establish the relationship between rumen 
bacteria and lactating performance under the same 
feeding and management, the rumen microbiome was 
divided into type1 (n = 4) and type2 (n = 8) using ente-
rotype identification (Fig.  1A). No significant differ-
ence of dry matter intake was identified (21.21 ± 0.82 vs. 

20.37 ± 0.86  kg/d). Next, the lactating performances of 
cows in the type1 and type2 groups were compared. The 
MPY and milk protein composition of cows in the type2 
ruminal microbiota enterotype were found to be higher 
than that of the cows in type1 (P = 0.044), while the other 
lactation performances had not significantly changed 
(Fig.  1B). Further, only the serum total protein content 
tended to increase (P = 0.054) in cows with type2 ruminal 
microbiota enterotypes; the ruminal VFA and serum glu-
cose, total cholesterol, and triglyceride had not changed 
between different enterotypes (Tables  1 and 2). Herein, 
we supposed that these 12 dairy cows, with similar lac-
tation yield under the same dietary, parity, and lactation 
phases, provide a suitable model to illuminate the rumi-
nal microbiota enterotypes’ roles in regulating MPY.

For α-diversity, no difference was identified between 
the Shannon index of cows with type1 and type2 ente-
rotypes (Fig.  2A). Obviously, the rumen microbiome of 
type1 and type2 enterotypes showed a significant dis-
tinct clustering in the PCoA plot (ANOSIM: R = 0.74, 
P = 0.004) (Fig.  2B). With respect to microbial com-
positions, the most abundant genera presented in 
the type1 and type2 enterotypes were Prevotella and 
Ruminococcus respectively (Additional file  1: Fig. 
S2). Differential bacteria were also observed (Fig.  2C 
and Additional file  2: Table  S1). Prevotella, [Erysip-
elotrichaceae] UCG-002 group, Syntrophococcus, 
[Eubacterium] ruminantium group, Shuttleworthia, 
Ruminococcus gauvreauii group, unclassified_f__Lachn
ospiraceae, Lachnospira, Saccharofermentans, [Eubac-
terium] hallii group, and unclassified_c__Clostridia 
were higher in type1 (P < 0.05), while Ruminococcus, 
norank_f__F082, norank_f__Ruminococcaceae, UCG-005, 
norank_f__Bacteroidales_RF16 group, CAG-352 group, 
unclassified_f__Ruminococcaceae, Tyzzerella, [Eubac-
terium] siraeum group, [Erysipelotrichaceae] UCG-002 
group, and norank_f__UCG-010 were higher in type2 
(P < 0.05).

Identification of the core genera of microbial network 
and the related microbial functions
Although Prevotella and Ruminococcus were the repre-
sentative bacteria in the enterotypes, they were not the 
core bacteria in the microbiome network established 
by the 12 cows. [Ruminococcus] gauvreauii group 
and norank_f_Ruminococcaceae, which were also the 
significantly differential genera between the entero-
types, were identified as the hub genera of the network 
according to the identified betweenness and degree 
(Fig. 3A and Additional file 2: Table S2). Moreover, the 
microbiome networks established by the four cows of 
type1 (Additional file 1: Fig. S3A and Additional file 2: 
Table S3) and the eight cows of type2 (Additional file 1: 

https://www.r-project.org
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Fig. S3B and Additional file  2: Table  S4) were also 
identified. Ruminococcus and Prevotella were iden-
tified as the hub genera of type1 enterotype, while 
norank__f__Ruminococcaceae and [Ruminococcus] 
gauvreauii group were identified as the hub genera of 
type2 enterotype. As the hub genera, we also provided 
the ASVs sequence of norank_f_Ruminoccous (Addi-
tional file 2: Table S17). Notably, when compared with 
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Fig. 1 12 cows were grouped according to ruminal enterotype. A The enterotype grouping for the rumen fluid samples of 12 cows using 16S 
rRNA sequence data based on the Bray-Curtis distance. B The differences of milk composition yield between enterotypes. C The differences of milk 
composition proportion between enterotypes. **P < 0.01

Table 1 Rumen volatile fatty acids of type1 and type2 cows

a TVFA Total volatile fatty acids, A/P Acetate/ Propionate
b SEM Standard error mean

Itemsa Mean SEMb P‑value

Type1 Type2

Acetate, mol/L 81.96 84.56 3.537 0.736

Propionate, mol/L 34.46 33.14 1.962 0.757

Isobutyrate, mol/L 0.93 1.04 0.0629 0.397

Butyrate, mol/L 15.22 15.49 0.864 0.884

Isovalerate, mol/L 1.60 1.84 0.114 0.299

Valerate, mol/L 2.30 2.28 0.117 0.937

TVFA, mol/L 136.47 138.36 6.175 0.889

A/P 2.43 2.57 0.0816 0.426

Table 2 Serum biochemical level of type1 and type2 cows

a TP Total protein, GLU Glucose, TC Total cholesterol, TG Triglyceride
b SEM Standard error mean

Itemsa Mean SEMb P‑value

Type1 Type2

TP, g/L 78.66 83.075 2.276 0.054

GLU, mmol/L 1.90 2.39 0.245 0.217

TC, mmol/L 5.32 6.18 0.410 0.345

TG, mmol/L 0.14 0.13 0.0116 0.960
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the type2 enterotypes, the genera network of type1 was 
found to have more crosstalk among identified genera.

In order to further investigate the effect of the ente-
rotypes on the rumen microbial function, metagen-
ome sequencing was performed. A total of 592,766,308 
reads, with 53,667,000 ± 2,048,010 reads (mean ± SD) 
per sample were generated. The microbial functions 
of the enterotypes were determined using genomes 
(KEGG) profiles. The “one carbon pool by folate” and 
“fluid shear stress and atherosclerosis” profiles were 
found to be significantly enriched and increased in the 
type1 enterotypes (P < 0.05) (Fig.  3B). Next, the cor-
relation analysis between differential genera and dif-
ferential KEGG pathway (level3) was performed 
(Fig.  3C). The “one carbon pool by folate” profile was 
negatively related to Saccharofermentans and [Rumi-
nococcus] gauvreauii group, and positively related to 
norank__f__Ruminococcaceae. The “fluid shear stress 
and atherosclerosis” profile was negatively related to 
Saccharofermentans, unclassified_f__Lachnospiraceae 
and [Ruminococcus] gauvreauii group. Hence, it was 
concluded that [Ruminococcus] gauvreauii group and 
norank_f_Ruminococcaceae may be the core bacte-
ria that play potential regulatory roles in the type1 and 
type2 enterotypes, respectively, and are worth further 
study.

Rumen metabolome profiles of the two enterotypes
A total of 260 compounds were identified in the rumen 
metabolome. They were classified based on the two 
enterotypes using the PLS-DA analysis (R2X = 0.872, 
Q2Y = −0.263) (Fig.  4A). After performing a t-test 
with FDR < 0.05 and VIP > 1 filtering for the relative 
concentrations of rumen metabolites, 15 metabo-
lites (Additional file 2: Table  S5), mainly belonging to 

amino acids, peptides, and analogues, fatty acids and 
conjugates, hydroxycoumarins, pyranones and deriva-
tives, and triterpenoids classifications, were found to 
be significantly changed between the two enterotypes 
(Fig.  4B). Metabolic pathway analysis (MetPA) based 
on these 15 significantly differential ruminal metabo-
lites revealed the enrichment of 28 pathways, out of 
which 19 pathways were significantly different path-
ways (P < 0.05) (Fig.  4C, Additional file  2: Table  S6). 
Notably, all these 19 pathways, namely, prolactin 
signaling pathway, biosynthesis of vancomycin group 
antibiotics, biosynthesis of enediyne antibiotics, novo-
biocin biosynthesis, isoquinoline alkaloid biosynthesis, 
thiamine metabolism, melanogenesis, methane metab-
olism, betalain biosynthesis, Parkinson’s disease, dopa-
minergic synapse, monobactam biosynthesis, alanine, 
aspartate and glutamate metabolism, cocaine addic-
tion, amphetamine addiction, ubiquinone and other 
terpenoid-quinone biosynthesis, phenylalanine, tyros-
ine and tryptophan biosynthesis, and alcoholism were 
enriched by two metabolites, namely, N-acetylaspar-
tate and L-tyrosine.

Considering the underlined causal relationship 
between ruminal metabolome and rumen microbial 
fermentation, a correlation analysis between ruminal 
differential metabolome and microbiome driven by 
enterotypes was performed (Additional file 1: Fig. S4). 
The results revealed that, among the above metabo-
lites involved in different pathways (N-acetylaspartate 
and L-tyrosine), Prevotella, which was found in highest 
abundance in type1, was negatively related to L-tyros-
ine. Ruminococcus, which was found in highest abun-
dance in type2, was positively related to L-tyrosine. 
Further, the hub genera of the network, [Ruminococ-
cus] gauvreauii group, was negatively correlated with 
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L-tyrosine, and norank_f_Ruminococcaceae was posi-
tively correlated with L-tyrosine (Additional file 1: Fig. 
S4a).

Serum metabolome was differed between the two 
different enterotypes
A total of 113 compounds were identified in the 
rumen metabolome. They were classified based on 
the two enterotypes using the OPLS-DA analysis 
(R2X = 0.950, Q2Y = −0.163) (Fig.  5A). Further, 50 sig-
nificantly differential metabolites, mainly belonging 

to “glycerophosphoethanolamines”, “glycerophos-
phocholines”, “amino acids, peptides, and analogues”, 
“bile acids, alcohols and derivatives”, “amines”, “trit-
erpenoids”, “fatty acids and conjugates”, “fatty acyl 
glycosides”, “fatty acid esters”, “indolyl carboxylic 
acids and derivatives”, “isoflavonoid O-glycosides”, 
“monoradylglycerols” “cholestane steroids”, “oxos-
teroids”, “phosphate esters”, “terpene glycosides”, 
and “1-hydroxy-2-unsubstituted benzenoids” clas-
sifications were identified between the two entero-
types (Fig.  5B). MetPA based on these 50 significantly 
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different serum metabolites (Additional file 2: Table S7) 
revealed the enrichment of 31 pathways, out of which 
13 pathways were significantly different pathways 
(P < 0.05) (Fig.  5C, Additional file  2: Table  S8). The 
13 pathways, namely, choline metabolism in can-
cer, glycerophospholipid metabolism, D-arginine and 
D-ornithine metabolism, retrograde endocannabi-
noid signaling, tryptophan metabolism, serotonergic 
synapse, autophagy—other, glycosylphosphatidylino-
sitol (GPI)-anchor biosynthesis, autophagy—animal, 
African trypanosomiasis, gap junction, bile secre-
tion, and synaptic vesicle cycle were mainly enriched 
by PE(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)), ornithine, 
phosphocholine, serotonin, L-tryptophan, deoxycholic 
acid, lysoPC(15:0), lysoPC(22:4(7Z,10Z,13Z,16Z)), 
PC(18:3(6Z,9Z,12Z)/P-16:0), and 3-indoleacetic acid.

Similarly, the relationships between ruminal micro-
biome and serum metabolome, and between rumi-
nal and serum metabolome were also identified. The 
results revealed that, among the above metabolites 
involved in different pathways, Prevotella was nega-
tively related to ornithine and lysoPC(15:0). Rumino-
coccus was positively related to ornithine, lysoPC(15:0), 
L-tryptophan, and phosphocholine. Further, the hub 
genera of the network, [Ruminococcus] gauvreauii group, 
was positively correlated with deoxycholic acid and 
negatively correlated with serotonin and lysoPC(15:0). 
norank_f_Ruminococcaceae was positively corre-
lated with phosphocholine, serotonin, L-tryptophan, 
lysoPC(15:0), lysoPC(22:4(7Z,10Z,13Z,16Z)), and 
PC(18:3(6Z,9Z,12Z)/P-16:0), and negatively correlated 
with deoxycholic acid (Additional file  1: Fig. S4b). We 
also found that ruminal N-acetylaspartate was negatively 
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correlated with L-tryptophan. Ruminal L-tyrosine was 
positively correlated with L-tryptophan and lysoPC(15:0), 
and was negatively correlated with deoxycholic acid 
(Additional file 1: Fig. S4C).

Identification of the milk metabolome
A total of 94 compounds were identified in the rumen 
metabolome. They were classified based on the two 
enterotypes using the OPLS-DA analysis (R2X = 0.828, 
Q2Y = −0.287) (Fig. 6A). After t-test and VIP filtering for 
the relative concentrations of milk metabolites, 37 signifi-
cantly different metabolites (Additional file 2: Table S9), 
mainly belonging to “glycerophosphoinositols”, “carbo-
hydrates and carbohydrate conjugates”, “benzoic acids 
and derivatives”, “fatty acid esters”, “fatty acids and con-
jugates”, “fatty acyl glycosides”, “pregnane steroids”, and 
“pyrimidines and pyrimidine derivatives”, were found to 
be significantly different between the two enterotypes 
(Fig. 6B). MetPA based on these 37 significantly different 
milk metabolites revealed the enrichment of 12 pathways 
(Fig. 6C, Additional file 2: Table S10). The 12 pathways, 
namely, autophagy-other, glycosylphosphatidylinositol 

(GPI)-anchor biosynthesis, ubiquinone and other ter-
penoid-quinone biosynthesis, fatty acid degradation, 
autophagy-animal, sphingolipid metabolism, primary 
bile acid biosynthesis, pyruvate metabolism, tyrosine 
metabolism, retrograde endocannabinoid signaling, glyc-
erophospholipid metabolism, and bile secretion were 
enriched by cholic acid, PE(14:0/22:6(4Z,7Z,10Z,13Z,16Z
,19Z)), tetrahydroneopterin, palmitoyl-L-carnitine, S-lac-
toylglutathione, glucosylceramide (d18:1/16:0), hydroxy-
phenyl acetic acid, and galactosylceramide (d18:1/14:0).

Further, the relationships between milk metabolome 
and protein composition, between ruminal microbi-
ome and milk metabolome, between serum and milk 
metabolome, and between ruminal and milk metabo-
lome were also identified. The results revealed that, 
among the above metabolites involved in pathways, 
MP and MPY were positively correlated with hydroxy-
phenyllactic acid, tetrahydroneopterin, and S-lactoyl-
glutathione (Additional file  1: Fig. S4d). Ruminococcus 
was negatively correlated with cholic acid and PE(14
:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) (Additional file  1: 
Fig. S4e). Ruminal L-tyrosine was positively correlated 
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with tetrahydroneopterin (Additional file  1: Fig. S4f ). 
The serum serotonin was positively correlated with 
palmitoyl-L-carnitine and negatively correlated with 
glucosylceramide (d18:1/16:0), hydroxyphenyllactic 
acid, galactosylceramide (d18:1/14:0), and tetrahy-
droneopterin. The serum phosphocholine was posi-
tively correlated with cholic acid, PE (14:0/22:6(4Z,
7Z,10Z,13Z,16Z,19Z)), palmitoyl-L-carnitine, and 
S-lactoylglutathione, and was negatively correlated 
with hydroxyphenyllactic acid, galactosylceramide 
(d18:1/14:0), and tetrahydroneopterin. The serum orni-
thine was positively correlated with galactosylceramide 
(d18:1/14:0) and negatively correlated with palmitoyl-
L-carnitine and S-lactoylglutathione. The serum PE(O-
18:1(1Z)/20:4(5Z,8Z,11Z,14Z)) was positively correlated 
with galactosylceramide (d18:1/14:0) and tetrahydrone-
opterin. The serum PC(18:3(9Z,12Z,15Z)/22:1(13Z)) 
was negatively correlated with hydroxyphenyllactic 
acid and tetrahydroneopterin. The serum 3-indoleacetic 
acid was positively correlated with glucosylceramide 
(d18:1/16:0). The serum lysoPC(22:4(7Z,10Z,13Z,16Z)) 
and lysoPC(15:0) was negatively correlated with 
S-lactoylglutathione. The serum deoxycholic acid 

was positively correlated with glucosylceramide 
(d18:1/16:0), hydroxyphenyllactic acid, galactosylcera-
mide (d18:1/14:0) and tetrahydroneopterin. The serum 
L-tryptophan was positively correlated with galactosyl-
ceramide (d18:1/14:0) (Additional file 1: Fig. S4g).

Explanation of pathways established based 
on the relationships among the ruminal microbiome 
and metabolome, and serum metabolome and milk 
metabolome, to the MPY
The SEM based on the WGCNA analysis was estab-
lished to link the different modules of each omics based 
on the logic of “rumen-serum-milk-MPY”. For WGCNA 
analysis, the rumen microbiome was divided into 
five microbial modules (Fig.  7A and Additional file  2: 
Table  S11). Micro1 included Prevotella and [Rumi-
nococcus] gauvreauii group (which drives type1), and 
Ruminococcus and norank_f_Ruminococcaceae (which 
drives type2). Moreover, the rumen, serum, and milk 
metabolomes were divided into 10, 5, and 7 metabolomic 
modules respectively (Fig.  7B–D and Additional file  2: 
Table S12–14).
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Next, in order to explore the relationship between 
multiple omics, the SEM was established to analyse the 
core metabolomic module based on the expression level 
of the modules and their relationships (Additional file 1: 
Fig. S5A and Additional file 2: Table S15). Finally, a met-
abolic pathway from micro1 to MPY was established 
(RMSE = 0.000, CFI = 1.000;  Fig.  7E). The metabolic 
pathway was “micro1-rumentab7-bloodmetab2-milk-
metab7-MPY”. For micro1, the correlation analysis 
showed that Prevotella and [Ruminococcus] gauvreauii 
group positively regulated micro1, Ruminococcus 
and norank_f_Ruminococcaceae negatively regulated 
micro1 (Additional file 1: Fig. S5B). Moreover, [Rumino-
coccus] gauvreauii group and norank_f_Ruminococcaceae, 

but not Prevotella and Ruminococcus, were found to be 
the hub genera in the network of micro1 (Additional 
file  1: Fig. S6A and Additional file  2: Table  S16). The 
function of micro1 mainly included “biosynthesis of 
amino acids”, “purine metabolism”, “carbon metabolism”, 
“ABC transports” and “starch and sucrose metabolism” 
(TOP5) (Additional file 1: Fig. S6B). For rumetab7 (Addi-
tional file  1: Fig. S7A), the metabolites mainly belonged 
to “sesquiterpenoids”, “amino acids, peptides, and ana-
logues” and “carbohydrates and carbohydrate conju-
gates” (TOP3). These metabolites were mainly enriched 
in “tyramine metabolites”, “toluene degradation”, “protein 
digestion and absorption”, “prolactin signaling pathway” 
and so on. For bloodmetab2 (Additional file 1: Fig. S7B), 
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the metabolites mainly belonged to “lipids and lipid-like 
molecules”, “organic acids and derivatives” and “phenyl-
propanoids and polyketides” (TOP3). These metabolites 
were mainly enriched in “choline metabolism in can-
cer”, “autophagy-animal”, “protein digestion and absorp-
tion”, “glycerophospholipid metabolism” and so on. For 
milkmetab7 (Additional file 1: Fig. S7C), the metabolites 
mainly belonged to “glycerophosphoinositols” and “car-
bohydrates and carbohydrate conjugates” (TOP3). These 
metabolites were mainly enriched in “prolactin signaling 
pathway”, “steroid hormone biosynthesis”, “aldosterone 
synthesis and secretion”, and “pathways in cancer”.

Combined with the SEM established by the modules 
and the identified differential metabolites and enriched 
metabolome pathways, the L-tyrosine in the rumetab7 
and L-tryptophan in the bloodmetab2 and their poten-
tial roles in regulating the MPY were studied. To do 

this, we established the SEM based on the L-tyrosine 
of rumen and L-tryptophan in the blood (Fig.  8 and 
Additional file  1: Fig. S8). [Ruminococcus] gauvreauii 
group and norank_f_Ruminococcaceae could estab-
lish the module with high fitness, which indicated that 
these two genera can regulate the milk protein yield by 
affecting the L-tyrosine and L-tryptophan biosynthesis 
(RMSE = 0.000, CFI = 1.000). On the other hand, the 
module established by Ruminococcus and Prevotella 
had poor fitness (RMSE = 0.500, CFI = 0.741).

Discussion
By integrating ruminal microbiome and metabolome, 
serum metabolome, and milk metabolome, we investi-
gated the effect of rumen enterotypes on lactation per-
formance. The results suggested that the enterotypes 
could affect the microbial metabolome (rumen) and host 

0.64

0.05

−0.11

0.31

−0.56

0.61 −0.66

0.851.11

Element1 Element2

Element3Element4Element5
   Milk
Protein

Element1: norank_f_Ruminococcaceae 
Element2: [Ruminococcus] gauvreauii group 
Element3: L-Tyrosine
Element4: L-Tryptophan
Element5: S-Lactoylglutathione

Microbiome

Rumen metabolome

Blood metabolome

Milk metabolome

Model assessment:
0.10>P>0.05 *
0.01<P<0.05 *
0.001<P<0.01 **
P<0.001 ***
RMSE=0.000
CFI=0.100

*** ***

 * *

**

**

Fig. 8 SEM established by the Ruminococcus_gauvreauii, norank_f_Ruminococcus, tyrosine, tryptophan, S-lactoylglutathione, and milk protein. 
Numbers adjacent to arrows are indicative of the effect size of the relationship.  R2 denotes the proportion of variance explained. Red arrows 
represent positive paths and green arrows represent negative paths. Significance levels are as follows: *P < 0.05; **P < 0.01; ***P < 0.001. RMSEA, root 
mean square error of approximation; CFI, comparative fit index



Page 15 of 18Zhang et al. Journal of Animal Science and Biotechnology           (2023) 14:63  

metabolome (serum and milk), which further led to dif-
ferences in MPY biosynthesis. In a previous study, bac-
teria had been proved to serve as the most important 
contributors to MPY, when compared to other microbial 
kingdoms [3]. Hence, we focused on the rumen bacterial 
enterotypes based on 16S rRNA gene amplicon sequenc-
ing, with an aim to identify key bacteria and link the key 
bacteria driven ruminal microbiome to the milk protein 
synthesis ability.

In this study, two enterotypes were identified from 
12 dairy cows —type1 driven by Prevotella and type2 
driven by Ruminococcus. These two enterotypes are most 
common in gastrointestinal microbiological research. 
The enterotypes could be prominently found in the key 
microbiota associated with phenotype [36]. In wild fauna 
and humans, gastrointestinal microorganisms may not 
obviously cluster to be explained by enterotypes, because 
of the influence of external environmental factors, which 
cannot be avoided [12]. But in the case of domestic ani-
mals, enterotypes analysis can be more advantageous, as 
the physiological state, diet and environment can be con-
trolled. In this study, we found the key microbiota regu-
lating MPY in dairy cows, using enterotype analysis. The 
enterotype driven by Prevotella was associated with the 
degradation of structural carbohydrate (e.g., fibre). How-
ever, the enterotype driven by Ruminococcus was associ-
ated with the degradation of non-structural carbohydrate 
(e.g., starch) [7]. It is to be noted that Prevotella was often 
positively related with amino acid metabolism, especially 
for branched-chain amino acids (BCAA) [37]. More 
importantly, Prevotella was an important contributor to 
the precursor of milk protein synthesis in dairy cows [3]. 
In this study, the MPY of type2 enterotypes was higher 
than the MPY of type1 enterotypes. In type1, the relative 
abundance of Prevotella and Ruminococcus was 36.76% 
and 4.74%, respectively. In type2, the relative abundance 
of Prevotella and Ruminococcus was 22.46% and 24.67%, 
respectively. Hence, the high MPY could not be attrib-
uted just to Prevotella; the synthesis of microbial protein 
was also needed for energy supply. Ruminococcus played 
an important role in releasing energy through the degra-
dation of high grain diet (high starch) [38]. The relative 
abundance of Ruminococcus was close to Prevotella in 
type2, which is more consistent with the rumen energy-
nitrogen balance principle [39]. Hence, rumen microbi-
ota driven by Ruminococcus may improve the synthesis 
of microbial protein by creating a better balance between 
energy and nitrogen in rumen, which further increased 
the MPY of dairy cows. Here, we also inferred that the 
rumen energy-nitrogen balance principle not only con-
sidered the energy degradation rate and protein degrada-
tion rate of feed raw materials [40], but also ensured the 

balance of rumen microbial community, for example, the 
ratio between Prevotella and Ruminococcus.

The enterotypes altered the rumen, serum, and milk 
metabolite compositions. In the rumen, L-tyrosine was 
increased in type2. L-tyrosine treatment could increase 
the milk yield, milk protein and conception rate in dairy 
cows during the early lactation period [41]. Tyrosine has 
had a wide range of effects on lactation in dairy cows. 
Tyrosine is an important precursor of neurotransmitter 
synthesis, such as catecholamine, which could increase 
the energy intake of mammary gland cells by activating 
growth hormones [42, 43]. Tyrosine is also an important 
source of casein, which is the main component of milk 
protein [44]. Moreover, tyrosine is also an important raw 
material for bacteria to synthesize thiamine, which could 
stabilize the bacterial community as well as increase 
the pH of rumen [45]. Notably, thiamine metabolism of 
rumen microbiota could help host tolerant high grain 
diet [46, 47], which could produce more energy for lac-
tation. In the blood, the type2 enterotypes had higher 
L-tryptophan, 3-indoleacetic acid and serotonin, which 
facilitate stronger tryptophan metabolism. Rumen-pro-
tected tryptophan supplementation can increase lacta-
tion performance [48]. Serotonin can regulate maternal 
and mammary calcium homeostasis through a serotonin-
calcium feedback loop involving endocrine and auto-
crine/paracrine [49]. More importantly, serotonin could 
increase feed intake [50], which is closely related to lac-
tation of dairy cows. Moreover, the type2 enterotypes 
had higher serum ornithine, which indicates a stronger 
urea cycle of the body [51]. For ruminants, the urea cycle 
could provide more urea nitrogen for rumen microbial 
protein [52]. In the milk, increased palmitoyl-L-carni-
tine in the type2 enterotypes could promote the energy 
supply of fatty acid oxidation via the transportation of 
long-chain fatty acids to ATP [53]. Increased S-lactoyl-
glutathione in the type2 enterotypes is oxidized to pyru-
vate via D-lactate dehydrogenase and as a consequence, 
electrons flow to oxygen, producing energy and ATP 
synthesis [54]. Moreover, increased tetrahydroneopterin 
in the type2 enterotypes was an essential cofactor for 
tyrosine metabolism and tryptophan metabolism. Tet-
rahydroneopterin was also an obligate cofactor of nitric 
oxide (NO) synthases. For mammary, the NO could regu-
late milk compositions transport by controlling the mam-
mary blood flow [55]. Thus, increased metabolites of 
rumen, serum, and milk could provide the raw materials 
and energy for milk protein synthesis.

Host traits, including methane production [4], feed 
efficiency [5], and milking traits [56] were attained as a 
result of the crosstalk between rumen microbiota and the 
host. Hence, we focused not only on the rumen microbial 
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metabolome, but also on the serum and milk metabo-
lome. However, the relationship between microbial 
composition and metabolism with host metabolism was 
not thoroughly studied. Hence, the conjoint analysis of 
WGCNA and SEM combined with the rumen microbial 
metabolism and host metabolism was done to explain 
the MPY. Firstly, the rumen microbiome was divided 
into five modules, based on the WGCNA analysis. Out 
of these modules, micro1 included enterotype-driving 
bacteria such as Prevotella, [Ruminococcus] gauvreauii 
group, Ruminococcus and norank_f_Ruminococcaceae, 
which suggested that the microbiota of micro1 may be 
the core microbiota driven by the enterotypes. Hence, the 
SEM was used to untangle the metabolic pathway from 
micro1 to MPY. Here, we think that the SEM could find 
the host metabolic modules that were not directly regu-
lated by the rumen microbiota. Finally, we concluded 
that rumetab7, bloodmetab2, and milkmetab7 may be 
the key modules responsible for the regulation of MPY 
by micro1. In the SEM established by the modules of 
WGCNA, the significantly increased tyrosine and tryp-
tophan were clustered to rumetab7 and bloodmetab2, 
respectively. In order to clarify the relationship between 
omics, the SEM was established by Prevotella, [Rumino-
coccus] gauvreauii group, norank_f_Ruminococcaceae, 
tyrosine, and tryptophan. The SEM module with high 
fitness suggested that the norank_f_Ruminococcaceae 
of type1 could increase the rumen tyrosine, which pro-
vides the substrate and energy for milk protein synthesis. 
The tryptophan metabolism (eg., melatonin and sero-
tonin) was found to enhance the glyoxalase system [57, 
58]. S-lactoylglutathione, which is an intermediate of the 
glyoxalase system, could provide energy for milk protein 
synthesis [59]. [Ruminococcus] gauvreauii group in the 
type1 enterotypes could inhibit the regulation of trypto-
phan on milk protein synthesis. Interestingly, Prevotella 
and Ruminococcus could not derive the metabolite to reg-
ulate milk protein synthesis in the SEM module (Addi-
tional file 1: Fig. S8). But they could derive the micro1 to 
regulate milk protein synthesis, which suggested that the 
Prevotella and Ruminococcus may not function alone.

There are several limitations in the present study. First, 
our study provides evidence that ruminal enterotypes, 
especially Ruminococcus, which may act with the other 
ruminal bacteria, can regulate the MPY by affecting the 
ruminal tyrosine. This result is logically reliable and can 
provide a novel insight to link ruminal microbiota with 
the MPY, which was worthy to validate in a larger cohort. 
Furthermore, although the host metabolome could 
reflect the host genetics information to some degree, 
except for the ruminal microbiota and metabolome, and 
the host metabolome. Study of the interaction between 
host genetics and microbiome that contributed to the 

MPY is still lacking. Hence, additional studies of a larger 
cohort, focusing on the interaction between host genetics 
and ruminal metagenome changes and their contribution 
to the MPY are worth performing.

Conclusions
Taken together, based on the enterotype analysis, the joint 
analysis of multi-omics based on the WGCNA and SEM 
suggest that the represented enterotype genera of Prevo-
tella and Ruminococcus, and the hub genera of [Rumino-
coccus] gauvreauii group and norank_f_Ruminococcaceae 
could regulate milk protein synthesis. Rumen tyrosine 
and serum tryptophan play an important role in the path 
analysis of the structural equation model. The structural 
equation model established by metabolites suggested that 
norank_f_Ruminococcaceae, not Ruminococcus could 
increase the rumen tyrosine, which provides the substrate 
for milk protein synthesis. [Ruminococcus] gauvreauii 
group, not Prevotella could inhibit serum tryptophan by 
providing pyruvate metabolic raw material (S-lactoylglu-
tathione) for the mammary gland. In summary, the study 
achieved joint analysis of multi-omics through weighted 
gene co-expression network analysis and structural equa-
tion model, which provide new insights into host-micro-
biota crosstalk for milk protein synthesis in dairy cows.
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