
Marrella and Biase  
Journal of Animal Science and Biotechnology           (2023) 14:62  
https://doi.org/10.1186/s40104-023-00861-0

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Animal Science and
Biotechnology

Robust identification of regulatory variants 
(eQTLs) using a differential expression 
framework developed for RNA-sequencing
Mackenzie A. Marrella1 and Fernando H. Biase1*   

Abstract 

Background A gap currently exists between genetic variants and the underlying cell and tissue biology of a trait, 
and expression quantitative trait loci (eQTL) studies provide important information to help close that gap. However, 
two concerns that arise with eQTL analyses using RNA-sequencing data are normalization of data across samples and 
the data not following a normal distribution. Multiple pipelines have been suggested to address this. For instance, 
the most recent analysis of the human and farm Genotype-Tissue Expression (GTEx) project proposes using trimmed 
means of M-values (TMM) to normalize the data followed by an inverse normal transformation.

Results In this study, we reasoned that eQTL analysis could be carried out using the same framework used for dif-
ferential gene expression (DGE), which uses a negative binomial model, a statistical test feasible for count data. Using 
the GTEx framework, we identified 35 significant eQTLs (P < 5 ×  10–8) following the ANOVA model and 39 significant 
eQTLs (P < 5 ×  10–8) following the additive model. Using a differential gene expression framework, we identified 
930 and six significant eQTLs (P < 5 ×  10–8) following an analytical framework equivalent to the ANOVA and additive 
model, respectively. When we compared the two approaches, there was no overlap of significant eQTLs between the 
two frameworks. Because we defined specific contrasts, we identified trans eQTLs that more closely resembled what 
we expect from genetic variants showing complete dominance between alleles. Yet, these were not identified by the 
GTEx framework.

Conclusions Our results show that transforming RNA-sequencing data to fit a normal distribution prior to eQTL 
analysis is not required when the DGE framework is employed. Our proposed approach detected biologically relevant 
variants that otherwise would not have been identified due to data transformation to fit a normal distribution.
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Background
A large body of studies have demonstrated that genetic 
variations have a direct or indirect impact on the devel-
opment of phenotypic variation [1–5]. Such studies 
advanced our understanding of the genetic architecture 
of complex traits. More recently, the integration of large-
scale genetic studies with transcriptome data have also 
identified genetic variants that explain variance in tran-
script abundance of specific genes (reviewed in [6]). The 
integration of multiple omics datasets, including geno-
types, is an important step toward closing the biological 
gap that exists between genotypes and phenotypes [7].

Recent publications from the human Genotype-Tis-
sue Expression (GTEx) [8, 9] and the cattle GTEx [10] 
projects have shed light on the genetic control of gene 
expression in large mammals. The recent findings indi-
cate that genomic variants have a greater impact on gene 
expression than previously anticipated [11]. These studies 
have provided valuable information which will help close 
the critical gap between genomic variants and pheno-
typic variation [12, 13], especially those associated with 
health in humans and livestock.

Given the importance of identifying expression quan-
titative trait loci (eQTL) [14] to understand cell or tissue 
biology, several statistical approaches have emerged to 
allow the coordinated analysis of genomic variants and 
transcript abundance (reviewed by Nica and Dermitza-
kis [14]). While the first eQTL studies used microarray 
data [15], most of the analyses carried out in recent years 
use RNA-sequencing data. One emerging concern is the 
normalization of the data across samples. To that end, 
several methods have been used for data normalization 
across samples such as the trimmed mean of M-values 
(TMM) [16], fragments per kilobase per million reads 
(FPKM) [17], and transcript per million reads (TPM) 
[18]. These and other methods have been evaluated, and 
TMM might have an advantage over other methods [19]. 
Another concern related to eQTL analysis is that RNA-
sequencing data do not follow a normal distribution, 
however, all statistical approaches currently employed 
assume that the inputted data will follow a normal dis-
tribution. Researchers have addressed this by transform-
ing the data using the variance stabilization [20–22],  log2 
transformation [23, 24], or the inverse normal transfor-
mation [8, 10, 25, 26].

Because the principle of eQTL analysis is to identify 
differences in transcript abundance between genotypes 
[15], we reasoned that the analysis of eQTLs using tran-
script abundance estimated from RNA-sequencing could 
be carried out using the same framework used for dif-
ferential gene expression. A major benefit of using such 
a framework is that differences in transcript abundance 
are tested and estimated using a negative binomial model 

[20, 27, 28], which is suitable for sequence count data [29, 
30]. Thus, we hypothesized that biologically meaningful 
eQTLs would be identified without transforming RNA-
sequencing data to fit a normal distribution. Here, our 
objective was to identify eQTLs in cattle peripheral white 
blood cells (PWBCs) using RNA-sequencing data and the 
Bioconductor [31] package “edgeR” [27, 32], which was 
designed for DGE analysis using the general linear model 
framework.

Methods
All bioinformatics and analytical procedures are pre-
sented in Additional file 1.

Data processing for variant detection, and variant filtering
We analyzed RNA-sequencing data from 42 heifers 
(Bos taurus, Angus × Simmental) publicly available in 
the GEO database: GSE103628 [33, 34] and GSE146041 
[35]. First, we trimmed sequencing adapters and retained 
reads with an average quality score equal to or greater 
than 30 using Trimmomatic (v. 0.39) [36]. Then, we used 
Hisat2 (v.2.2.0) [37] to align the pair-end short reads to 
the cattle genome [38, 39] (Bos_taurus, ARS-UCD1.2.99), 
obtained from the Ensembl database [40]. Next, we used 
Samtools (v.1.10) [41] to filter reads that did not map, 
secondary alignments, alignments from reads that failed 
platform/vendor quality checks, and were PCR or opti-
cal duplicates. Duplicates were removed using the func-
tion “bammarkduplicates” from biobambam2 (2.0.95) 
[42]. The function “SplitNCigarReads” from GATK 
(v.4.2.2.0) [43] was then used to separate sequences with 
a CIGAR string, which resulted from sequencing exon-
exon boundaries. Variants were then called in our data by 
using the functions “bcftools mpileup” and “bcftools call” 
from Samtools [41].

We filtered the variants with the function “bcftools 
view” from Samtools to select sites where 20 or more 
reads were used to identify a variant. Next, in R software 
(4.0.3) [44], we retained variant sites that were identified 
as single nucleotide polymorphisms and retained variants 
with genotypes called in at least 20 samples (Fig. 1A).

Variant annotation
After the list of significant SNP-gene pairs was generated 
from the eQTL analysis, attributes were read in from the 
Ensembl genome database. The attribute list was merged 
with the output from the eQTL analysis as well as the 
nucleotide genotypic data for all samples. Ensembl Vari-
ant Effect Predictor [45] was used to compare our data to 
the cattle genome (Bos taurus, ARS-UCD1.2) to identify 
the functional consequences of the SNPs.
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Quantification of transcript abundance
For the expression dataset, we obtained the raw read 
counts from our previous work [35]. First, we elimi-
nated one sample that had less than a million reads 
mapped to the annotation; second, we calculated 
counts per million reads (CPM) [27]; third, we retained 
protein-coding genes that had CPM greater than two 
in five or more samples. Next, we calculated TPM [46], 
which was used in all plots with transcript abundance.

eQTL analysis
First, we tested whether the samples presented a 
genetic stratification using plink [47] to calculate the 
eigenvectors [48]. Given the sample elimination due 
to low mapping to the annotation, we carried out an 
eQTL analysis with 41 samples. To prevent overinfla-
tion of effects when working with variants with low 
allelic frequencies [49] and conduct a robust analy-
sis with enough samples in each group of genotypes, 
we further retained those single nucleotide polymor-
phisms that had at least five animals in each of the two 
homozygotes and heterozygote genotypes, had a minor 
allelic frequency > 0.15, and followed Hardy–Wein-
berg equilibrium (false discovery rate = 0.05), which 
was tested with the R package “HardyWeinberg” [50]. 
In both approaches described below, eQTLs that over-
lapped between the ANOVA and additive model are 
only reported in the ANOVA model.

Approach 1: TMM normalized and normal‑transformed 
RNA‑seq data
In line with standard procedures adopted for eQTL 
analysis [8, 25, 26], we normalized expression abundance 
for 10,332 genes using the TMM method [16]. First, we 
used the function “calcNormFactors” from the R pack-
age “edgeR” [27, 32] to calculate the normalization fac-
tors then we multiplied the normalization factors by the 
respective library size. Next, we used the function “cpm” 
with the normalized library size to obtain TMM normal-
ized counts per million. Next, we carried out an inverse 
normal transformation [8, 25, 26] using the “RankNorm” 
function from the R package “RNOmni”. Additive and 
ANOVA analyses were carried out independently for 
eQTL analysis with the R package “MatrixEQTL” [51] 
using 6216 SNPs. In both models, we used genotypes as 
a fixed effect. We inferred a significant eQTL when the 
nominal P-value was less than 5 ×  10–8, which is a thresh-
old commonly applied to genome-wide association stud-
ies [52–56], and corresponded to a false discovery rate 
[57] of 4% and 12% for the ANOVA and additive model, 
respectively.

Approach 2: using a differential gene expression framework
We analyzed the RNA-sequencing data with a general 
linear model in “edgeR” and tested for differential gene 
expression using the quasi-likelihood F-test [58, 59]. We 
note that the normalization adopted by default in “edgeR” 
adjusts for library sequencing depth, but we added the 

Fig. 1 Overview of genotyping and variant discovery using RNA-sequencing data from PWBCs. A Schematics of bioinformatics procedures. B 
Distribution of allelic frequency of all variants genotyped in at least 26 samples. C Distribution of allelic frequency of all variants genotyped in at 
least 26 samples followed by filtering to retain 6,207 SNPs. (HW: Hardy–Weinberg; MAF: minimum allele frequency)
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TMM normalization factors calculated by the function 
“calcNormFactors” to the procedure for identification of 
eQTLs.

As part of our proposed approach, we also eliminated 
genes that had outlier values of transcript abundance, 
which reduced the transcriptome data to 4,149 genes. 
For these analyses, gene expression data were used as the 
dependent variable. Genotypes and collection sites were 
included in the model as independent variables (fixed 
effects). For additive analysis, the genotypes were input 
as numerical variables. For ANOVA-like analysis, we car-
ried out a two-tier analysis. First, we tested the associa-
tion between SNP and gene transcript abundance using 
all three genotypes as a factor variable. Next, we subset 
SNPs that were significantly associated with gene tran-
script abundance and pseudo-coded the genotypes to 
establish two contrasts [60]. The first contrast compared 
the homozygote genotype from the reference allele versus 
the heterozygote and the homozygote genotype from the 
alternate allele (i.e., AA versus AB, BB). The second con-
trast compared the homozygote genotype from the alter-
nate allele versus the heterozygote and the homozygote 
genotype from the reference allele (i.e., AA, AB versus 
BB). We also inferred a significant eQTL when the nomi-
nal P-value was less than 5 ×  10–8 [52–56].

Visualization of the results
We used the R packages “ggplot2”, “cowplot” [61], or 
“plotly” [62] for plotting [63] and used Cytoscape [64] to 
visualize eQTLs in network style.

Analysis of gene ontology enrichment
We tested several lists of genes for the enrichment of 
gene ontology using the R package “GOseq”[65]. In order 
to account for multiple hypothesis testing, P-values were 
adjusted by family wise error rate (FWER) [66]. Results 
were maintained if they had FWER < 0.05.

Results
Overview of SNP identification
We compiled genotype data at 23,506,613 nucleotide 
positions. Not surprisingly, 99.6% of the genomic posi-
tions were homozygous for the reference allele and 2,167 
positions were homozygous for the alternate allele. Our 
pipeline identified 91,006 nucleotide positions show-
ing polymorphisms in our samples. After testing for the 
deviation of Hardy–Weinberg equilibrium (Fig.  1B), we 
retained 6,207 SNPs further analysis (Fig. 1C).

Notably, 96% (n = 5964) of the SNPs have been previ-
ously identified and are recorded in the Ensembl variant 
database [45, 67], which includes the dbSNP ([68] ver-
sion 150), while 243 SNPs were not identified in Ensembl 
variant database (Additional file 2). Most of the SNPs are 

in 3 prime UTRs (n = 1553), and a smaller proportion 
(n = 483) were annotated as missense variants (Addi-
tional file 2). We observed no genetic substructure of the 
individuals based on the SNPs analyzed here (Additional 
file 3: Fig. S1).

eQTL analyses
For eQTL analysis, we obtained the matrix with raw 
counts from a previous study [35] from our group. After 
filtering for lowly expressed genes, we quantified the 
transcript abundance for 10,332 protein-coding genes. 
We then analyzed the transcriptome and the SNP data 
following the two frameworks.

Approach 1: TMM normalized and normal‑transformed 
RNA‑seq data
The inverse normal transformation within a gene and 
across samples [26] indeed normalized the RNA-
sequencing data (Additional file  3: Fig S2). Using the 
R package “MatrixEQTL” [69], the ANOVA and addi-
tive analyses concluded in 4.699 and 2.473 s respectively 
using one core processor (2.60 GHz).

We identified 35 significant eQTLs (P < 5 ×  10–8) fol-
lowing the ANOVA model (Fig.  2). Annotated SNPs 
mapped to the genes: ASCC1, BOLA-DQB, FAF2, IARS2, 
MGST2, MRPS9, NECAP2, TRIP11 (Additional file  4). 
We also identified 39 significant eQTLs (P < 5 ×  10–8) 
following the additive model (Fig.  3). Annotated SNPs 
mapped to the genes AHNAK, GLB1, TRIP11 (Additional 
file 5), and most of the SNPs on the gene TRIP11 com-
posed the majority of the eQTLs.

Approach 2: using a differential gene expression framework
Using the R package “edgeR” [27], all tests to deter-
mine dominance and additive models were completed 
in 36 and 9 min respectively using 34 core proces-
sors (2.60  GHz). We identified 936 significant eQTLs 
(P < 5 ×  10–8). These eQTLs were formed by 16 SNPs 
present in the dbSNP and one SNP that is a putatively 
new variant (Additional file 2) influencing the transcript 
abundance of 445 genes. The majority (98.6%) of the 
eQTLs were formed by SNPs on the gene TATA-Box 
binding protein associated factor 15 (TAF15), followed by 
6 eQTLs formed by SNPs on the gene SMG6 nonsense-
mediated mRNA decay factor (SMG6). The other anno-
tated genes with SNPs forming significant eQTLs were 
TRIP11, PI4KA, LMBR1L, and ZNF175. There was no 
overlap of significant eQTL between both approaches 
(Additional file 6, Additional file 3: Fig. S3).

It was also possible to separate the eQTLs into domi-
nance or additive allelic interaction. We determined 
that six of the eQTLs followed the pattern of an additive 
allelic relationship (Fig. 4A, Additional file 7). Two SNPs 



Page 5 of 11Marrella and Biase  Journal of Animal Science and Biotechnology           (2023) 14:62  

(rs41892216 and rs135008768) impacting the expression 
of the gene sialic acid-binding Ig-like lectin 14 are also 
present in the region containing the sialic acid-binding 
Ig-like lectin gene family on chromosome 18. One SNP 
is a missense mutation (18:57,565,792, Fig.  4B) on the 
gene SIGLEC5 and the SNP on nucleotide 18:57,498,163 
is a variant downstream to SIGLEC6. Two other SNPs 
were annotated to the genes PI4KA (17:72,208,968, 
rs133672368), TRIP11 (21:56,676,553, rs479089277) and 
ZNF175 (18:57,538,713, rs109161398).

We also identified 930 significant eQTLs follow-
ing a dominance allelic relationship (Additional 
file  8). Eight annotated SNPs mapped to the genes 
(LMBR1L, SMG6, TAF15, and TRIP11). Of notice, four 

intronic variants on the gene TAF15 (19:14,551,828, 
19:14,554,927, 19:14,554,403, and 19:14,553,701, Fig. 5A) 
were collectively associated with the expression of 427 
genes, with some examples depicted in Fig. 5B.

Given the number of genes expressed in PWBCs that 
were influenced by SNPs, we asked if there would be an 
enrichment of gene ontology [70] biological processes 
among these 427 genes. We observed that by setting a 
more stringent threshold of significance for the eQTLs 
(P < 5 ×  10–10), we subset 196 genes, which are enriched 
for two biological processes (FWER < 0.05: regulation of 
catalytic activity (fold-enrichment: 3.54; genes: APBA3, 
ARHGDIA ARHGEF1, CAPN1, DENND1C, EEF1D, 
EIF2B3, RAB3IP, RALGDS, RING1, Additional file  9), 

Fig. 2 eQTLs identified using ANOVA model on TMM normalized counts per million and normal-transformed RNA-seq data. Y axis for all graphs is 
TMM normalized transcripts per million
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and endocytic recycling (fold-enrichment: 7.81, genes: 
CCDC22, DENND1C, PTPN23, SNX12).

Discussion
The major goal of our work was to identify genes 
expressed in PWBCs of crossbred beef heifers whose 
transcript abundance is impacted by genetic variants. We 
used a gold standard approach presented by the GTEx 
consortium, but also analyzed the RNA-sequencing data 
without a transformation to force a Gaussian distribu-
tion of the counts. The framework for eQTL analysis 
presented here is motivated by the following rationale: (i) 
the vast majority of eQTL analyses carried out currently 
use RNA-sequencing data; (ii) by the nature of the pro-
cedures, RNA-sequencing data is count data, which is 

not normally distributed [71, 72]; and (iii) in principle, 
an eQTL analysis is an expansion of a differential gene 
expression (DGE) analysis, where samples are grouped 
by their genotypes, which is analogous to groups or treat-
ments typically used in DGE analysis. Compared to the 
latest GTEx framework, our analysis of RNA-sequencing 
data from cattle PWBCs using the DGE framework iden-
tified more eQTLs under the dominance model and an 
equivalent number of eQTLs under the additive model of 
allele interaction when compared to the framework used 
in the human or farm GTEx consortia.

Our study has a few limitations, but they do not 
hinder the validity of our findings. First, we identified 
SNPs using the RNA-sequencing data, thus we are not 
accounting for genomic variants in promoters or distal 

Fig. 3 eQTLs identified using additive model on TMM normalized counts per million and normal-transformed RNA-seq data. Y axis for all graphs is 
TMM normalized transcripts per million
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cis-regulatory elements. This is likely to have impacted 
the limited number of cis-eQTLs reported here. Sec-
ond, our transcriptome data represents a mixture of 
white cells identified in the blood. The proportion of 
different cells that compose the mixture of white cells 

was not accounted in our model. A genetic factor con-
tributing to a potential greater abundance of one spe-
cific cell type [73] is thus a confounding factor in our 
study. However, these two limitations do not directly 
impact our main take home message that there is no 

Fig. 4 Significant eQTLs were identified using the differential gene expression framework. A Network depicting the connectivity between SNPs 
and the genes whose genotypes are influencing their transcript abundance. B Bar plot of the frequency of genes containing SNPs forming eQTLs. 
Only SNPs that were annotated to genes with a symbol (within a gene model, or within 1,000 nucleotides on each side) are depicted in this figure

Fig. 5 Significant eQTLs were inferred using the differential gene expression framework following the additive relationship between alleles. A 
Eight eQTLs following the additive model determined by edgeR. Y axis for all graphs is TMM normalized transcripts per million. B Ensembl genome 
browser indicating the SNP position and examples of raw data used for the SNP’s identification
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need for researchers to normalize RNA-sequencing 
data in eQTL studies.

Variant genotyping using RNA‑sequencing data
RNA-sequencing data is feasible for the identification of 
genomic variants in a wide range of organisms, includ-
ing livestock [74–77], and multiple pipelines have been 
developed for variant discovery and genotype calling 
[74–77]. Here we opted for a hybrid approach, which uti-
lized the “SplitNCigarReads” function of GATK  followed 
by the functions “mpileup” and “call” from BCFtools . The 
reason for using BCFtools was that it calls genotypes at 
every nucleotide position by default so that individuals 
were genotyped regardless of the homozygote or het-
erozygote makeup.

Prior research showed that the efficacy of genotype 
calling using RNA-sequencing data is high [78]. Although 
we did not assess the specificity of genotype calling with 
an orthogonal method, we employed a stringent require-
ment for coverage equal to or greater than 20×, which 
is higher than the previously suggested 10× [75, 78] for 
high confidence genotype calling. In addition, 96% of 
the variants identified in our pipeline are present in the 
dbSNP ([68] version 150), and the variants have the same 
allelic composition reported in the dbSNP. Our hybrid 
pipeline efficiently genotyped individuals at homozygote 
and heterozygote genomic positions, although further 
confirmation is required for the variants called in our 
work that are not reported in the dbSNP.

eQTL analysis using RNA‑sequencing with and without 
forcing the data into a Gaussian distribution
Current statistical approaches employed for eQTL analy-
sis [79] assume that the data is normally distributed, and 
the transformation of RNA-sequencing data to enforce a 
normal distribution is employed in nearly all major eQTL 
studies. Our comparison of the RNA-sequencing data 
prior to and after transforming the data (Additional file 3: 
Fig. S1) does confirm that the inverse normal transfor-
mation [26] is highly effective in reducing skewness and 
shrinking the variance to reduce the impact of extreme 
values in the analysis [72], and thus making the data suit-
able for statistics tests requiring normally distributed 
data.

We first analyzed our data following the GTEx frame-
work [8], transforming the data to achieve a normal 
distribution. Our analysis yielded less significant associa-
tions between genotype and gene transcript abundance 
relative to previously published studies that worked with 
genes expressed in blood samples [80–83] and the recent 
results from the cattle GTEx consortium[10]. This large 
difference was expected because we only utilized 6207 
SNPs in our analysis, which yields less genotypic data as 

compared to high-throughput genotyping platforms or 
imputation of SNPs from reference populations. Another 
difference between our procedure and other reports was 
the stringent threshold to infer significance (P = 5 ×  10–8, 
−log10(5 ×  10–8) = 7.3).

We noted, however, that visual inspection of the data 
with significant eQTLs identified with the ANOVA 
model (see examples in Fig. 2C) does not clearly indicate 
patterns of data distribution that resemble the definition 
of allelic interaction characterized as complete domi-
nance [84, 85]. The dispersion of the data with significant 
eQTLs identified with the additive model (see examples 
in Fig. 3C) does indicate patterns of data distribution that 
resemble alleles interacting in additive mode [84, 85]. 
However, the distribution of heterozygotes showed two 
groups of samples with district profiles.

The graph profiles obtained from significant eQTLs 
using the GTEx framework prompted us to analyze the 
data using a DGE framework. To that end, we carried 
out an analysis using one of the commonly used statis-
tical algorithms coded in the R package “edgeR” [27, 32, 
86]. The comparison of our eQTL analysis using “edgeR” 
showed a striking contrast with the analysis using the 
GTEx framework and “MatrixEQTL” in many important 
aspects. First, there was no overlap of significant eQTLs 
obtained between the two approaches within this study. 
Here, we point out that identifying which eQTL is true is 
virtually impossible without further mechanistic experi-
ments that confirm the influence of allelic variants on 
gene expression [87, 88]. Our findings add to previous 
observations that the type of statistical analysis carried 
out is a critical contributor to the lack of replicability 
observed across eQTL studies [89, 90]. Second, work-
ing with specific contrasts, we were able to identify trans 
eQTLs that more closely resemble complete dominance, 
which were not identified by the standard framework. 
Our results are evidence that the number of genes whose 
expression are under genetic control and follow patterns 
of complete dominance [91, 92] is probably more com-
mon than previously expected [8]. The identification of 
groups of genes enriched for specific biological processes 
strongly supports that this genetic control under the 
dominance model may have a biological role in the func-
tion of PWBCs.

We identified two important aspects that show a con-
trast between the ANOVA framework and the DGE 
framework we propose here. First, the functions in 
"MatrixEQTL” require less computational resources and 
time to conclude the analysis relative to the calculations 
carried out using the DGE framework in “edgeR”. Our 
proposed approach is inherently more complex, as we 
carried out multiple tests to provide robust and valu-
able information about dominance interaction between 
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alleles. It is also very important to note that our study is 
not about the tools (“MatrixEQTL” or “edgeR”), because 
researchers can use other tools for the standard analy-
sis of eQTL such as “FastQTL” [93] or DESeq2 [20] for 
the DGE framework. Second, the transformation of the 
data to fit a normal distribution clearly shrinks the vari-
ance (Additional file 3, Fig. S4), reducing the differences 
in transcript abundance among genotypes thus reducing 
the likelihood of these eQTLs to be inferred as signifi-
cant. In the end, the most critical choice researchers need 
to make is between (i) forcing data that is not normally 
distributed and has many outlier data points [71, 72] into 
normality or (ii) utilizing a framework that employs a sta-
tistical test appropriate for count data.

Conclusions
In summary, different types of data normalization and 
analytical procedures lead to a variety of combinations 
that can be used for eQTL analysis using RNA-sequenc-
ing. Most of these approaches also transform the data to 
fit a normal distribution. Our analysis showed that it is 
possible to carry out eQTL studies using the concepts 
and analytical framework developed for differential gene 
expression that does not require data transformation to 
fit a normal distribution, thus it is likely more suitable 
for RNA-sequencing. The approach proposed here can 
uncover genetic control of gene expression that is biolog-
ically relevant for the tissue studied that otherwise may 
not be detected through data transformation and linear 
models.

Abbreviations
ANOVA  Analysis of variance
CPM  Counts per million reads
DGE  Differential gene expression
eQTL  Expression quantitative trait loci
FPKM  Fragments per kilobase per million reads
FWER  Family wise error rate
GTEx  Genotype-Tissue Expression
log2  Logarithm base 2
n  Number
P  Probability
PWBCs  Peripheral white blood cells
RNA  Ribonucleic acid
SNP  Single nucleotide polymorphism
TMM  Trimmed means of M-values
TPM  Transcript per million reads
UTRs  Untraslated regions

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40104- 023- 00861-0.

Additional file 1. Supplementary code to Robust identification of regula-
tory variants (eQTLs) using a differential expression framework developed 
for RNA-sequencing. All codes utilized for in our work to produce the 
results described in the paper.

Additional file 2. Distribution of the SNPs based on presence in the 
database and predicted consequence of the variant.

Additional file 3: Fig. S1. Principal component analysis of the samples 
based on the SNP data. Fig. S2. Representation of RNA-Sequencing data 
after (A) normalization of the count data with the TMM method and 
adjustment per million reads, and normalization as demonstrated by the 
(B) histogram and (C) qqplot. Fig. S3. Scatterplot of the of the raw P values 
(-Log10() transformed) for the eQTLs following the (A) ANOVA model, 
and (B) additive model. Fig. S4. Plots of significant eQTLs following the 
dominance mode of allelic interaction identified by the DGE framework. 
(A) Raw counts (B) Transcript per million (C) TMM normalized counts per 
million. (D) TMM normalized counts per million and normal transformed.

Additional file 4. Annotated results of eQTL analysis using the GTEx 
framework and ANOVA model.

Additional file 5. Annotated results of eQTL analysis using the GTEx 
framework and additive model.

Additional file 6. eQTL results with DGE framework and the standard 
approach using MatrixEQTL.

Additional file 7. Annotated eQTL results using edgeR framework and 
additive model.

Additional file 8. Annotated eQTL results with edgeR framework and 
ANOVA model.

Additional file 9. Gene ontology analysis of genes whose expression are 
influenced by SNPs.

Acknowledgements
We appreciate the input and suggestions by Jada Nix that improved our 
manuscript.

Authors’ contributions
FB conceptualized the study and supervised the research. FB and MM devel-
oped the bioinformatic pipeline, wrote the code for analytical procedures, and 
wrote the paper.

Funding
This work was partially funded by the Virginia Cattle Industry Board and the 
Virginia Agriculture Council. We also thank the VT Open Access Subvention 
Fund for the partial support of the publication fees.

Availability of data and materials
The datasets analyzed during the current study are available in the GEO 
repository, session identifiers: GSE103628 and GSE146041.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 17 November 2022   Accepted: 5 March 2023

References
 1. Shi H, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 

30 complex traits from summary association data. Am J Hum Genet. 
2016;99:139–53.

https://doi.org/10.1186/s40104-023-00861-0
https://doi.org/10.1186/s40104-023-00861-0


Page 10 of 11Marrella and Biase  Journal of Animal Science and Biotechnology           (2023) 14:62 

 2. Shi H, Burch KS, Johnson R, Freund MK, Kichaev G, Mancuso N, et al. Local-
izing components of shared transethnic genetic architecture of complex 
traits from GWAS summary data. Am J Hum Genet. 2020;106:805–17.

 3. Goddard ME, Kemper KE, MacLeod IM, Chamberlain AJ, Hayes BJ. 
Genetics of complex traits: prediction of phenotype, identification 
of causal polymorphisms and genetic architecture. Proc Biol Sci. 
2016;283:20160569. https:// doi. org/ 10. 1098/ rspb. 2016. 0569.

 4. Eyre-Walker A. Evolution in health and medicine Sackler colloquium: 
Genetic architecture of a complex trait and its implications for fitness and 
genome-wide association studies. P Natl Acad Sci USA. 2010;107(Suppl 
1):1752–6.

 5. Watanabe K, Stringer S, Frei O, UmicevicMirkov M, de Leeuw C, Polder-
man TJC, et al. A global overview of pleiotropy and genetic architecture 
in complex traits. Nat Genet. 2019;51:1339–48.

 6. Williams RB, Chan EK, Cowley MJ, Little PF. The influence of genetic varia-
tion on gene expression. Genome Res. 2007;17:1707–16.

 7. Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics integration 
in complex disease primary tissues. Trends Genet. 2023;39:46–58.

 8. Consortium GT. The GTEx Consortium atlas of genetic regulatory effects 
across human tissues. Science. 2020;369:1318–30.

 9. Kim-Hellmuth S, Aguet F, Oliva M, Munoz-Aguirre M, Kasela S, Wucher 
V, et al. Cell type-specific genetic regulation of gene expression across 
human tissues. Science. 2020;369:eaaz8528.

 10. Liu S, Gao Y, Canela-Xandri O, Wang S, Yu Y, Cai W, et al. A multi-tissue atlas 
of regulatory variants in cattle. Nat Genet. 2022;54:1438–47.

 11. The GTEx Consortium, Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young 
TR. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue 
gene regulation in humans. Science. 2015;348:648–60.

 12. Gregersen PK. Closing the gap between genotype and phenotype. Nat 
Genet. 2009;41:958–9.

 13. Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K, Cooper JD, et al. 
Cell-specific protein phenotypes for the autoimmune locus IL2RA using a 
genotype-selectable human bioresource. Nat Genet. 2009;41:1011–5.

 14. Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and 
future. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120362.

 15. Kendziorski CM, Chen M, Yuan M, Lan H, Attie AD. Statistical meth-
ods for expression quantitative trait loci (eQTL) mapping. Biometrics. 
2006;62:19–27.

 16. Robinson MD, Oshlack A. A scaling normalization method for differential 
expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

 17. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and 
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 
2008;5:621–8.

 18. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-
Seq data with or without a reference genome. BMC Bioinformatics. 
2011;12:323.

 19. Yang J, Wang D, Yang Y, Yang W, Jin W, Niu X, et al. A systematic com-
parison of normalization methods for eQTL analysis. Brief Bioinform. 
2021;22(6):bbab193. https:// doi. org/ 10. 1093/ bib/ bbab1 93.

 20. Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

 21. Mason VC, Schaefer RJ, McCue ME, Leeb T, Gerber V. eQTL discovery and 
their association with severe equine asthma in european warmblood 
horses. BMC Genomics. 2018;19:581.

 22. Zeng B, Lloyd-Jones LR, Montgomery GW, Metspalu A, Esko T, Franke 
L, et al. Comprehensive multiple eQTL detection and its application to 
GWAS interpretation. Genetics. 2019;212:905–18.

 23. Strunz T, Grassmann F, Gayan J, Nahkuri S, Souza-Costa D, Maugeais C, 
et al. A mega-analysis of expression quantitative trait loci (eQTL) provides 
insight into the regulatory architecture of gene expression variation in 
liver. Sci Rep. 2018;8:5865.

 24. Albert FW, Bloom JS, Siegel J, Day L, Kruglyak L. Genetics of trans-regula-
tory variation in gene expression. Elife. 2018;7:e35471. https:// doi. org/ 10. 
7554/ eLife. 35471.

 25. Kerimov N, Hayhurst JD, Peikova K, Manning JR, Walter P, Kolberg L, et al. 
A compendium of uniformly processed human gene expression and 
splicing quantitative trait loci. Nat Genet. 2021;53:1290–9.

 26. Beasley TM, Erickson S, Allison DB. Rank-based inverse normal trans-
formations are increasingly used, but are they merited? Behav Genet. 
2009;39:580–95.

 27. McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differen-
tial expression analysis of digital gene expression data. Bioinformatics. 
2010;26:139–40.

 28. Hardcastle TJ, Kelly KA. baySeq: empirical bayesian methods for identify-
ing differential expression in sequence count data. BMC Bioinformatics. 
2010;11:422.

 29. Robinson MD, Smyth GK. Moderated statistical tests for assessing differ-
ences in tag abundance. Bioinformatics. 2007;23:2881–7.

 30. Anders S, Huber W. Differential expression analysis for sequence count 
data. Genome Biol. 2010;11:R106.

 31. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. 
Bioconductor: open software development for computational biology 
and bioinformatics. Genome Biol. 2004;5:R80.

 32. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multi-
factor RNA-Seq experiments with respect to biological variation. Nucleic 
Acids Res. 2012;40:4288–97.

 33. Dickinson SE, Biase FH. Transcriptome data of peripheral white blood 
cells from beef heifers collected at the time of artificial insemination. Data 
Brief. 2018;18:706–9.

 34. Dickinson SE, Griffin BA, Elmore MF, Kriese-Anderson L, Elmore JB, Dyce 
PW, et al. Transcriptome profiles in peripheral white blood cells at the 
time of artificial insemination discriminate beef heifers with different 
fertility potential. BMC Genomics. 2018;19(1):129. https:// doi. org/ 10. 1186/ 
s12864- 018- 4505-4. (PMID: 29426285).

 35. Moorey SE, Walker BN, Elmore MF, Elmore JB, Rodning SP, Biase FH. Rewir-
ing of gene expression in circulating white blood cells is associated with 
pregnancy outcome in heifers (Bos taurus). Sci Rep. 2020;10:16786.

 36. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illu-
mina sequence data. Bioinformatics. 2014;30:2114–20.

 37. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome 
alignment and genotyping with HISAT2 and HISAT-genotype. Nat Bio-
technol. 2019;37:907–15.

 38. Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, et al. 
The genome sequence of taurine cattle: a window to ruminant biology 
and evolution. Science. 2009;324:522–8.

 39. Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng E, et al. De 
novo assembly of the cattle reference genome with single-molecule 
sequencing. GigaScience. 2020;9:giaa021.

 40. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl. 
2014;2014:42.

 41. Li H. A statistical framework for SNP calling, mutation discovery, associa-
tion mapping and population genetical parameter estimatin from 
sequencing data. Bioinformatics. 2011;27:2987–93.

 42. Tischler G, Leonard S. biobambam: tools for read pair collation based 
algorithms on BAM files. Source Code Biol Med. 2014;9:1–8.

 43. Auwera GAVd, O’Connor BD. Genomics in the cloud: using Docker, GATK, 
and WDL in Terra. 1st ed. O’Reilly Media; 2020.

 44. Ihaka R, Gentleman R. R: a language for data analysis and graphics. J 
Comput Graph Stat. 1996;5:299–314.

 45. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The 
ensembl variant effect predictor. Genome Biol. 2016;17:122.

 46. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using 
RNA-seq data: RPKM measure is inconsistent among samples. Theory 
Biosci. 2012;131:281–5.

 47. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. 
PLINK: a tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007;81:559–75.

 48. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 
Principal components analysis corrects for stratification in genome-wide 
association studies. Nat Genet. 2006;38:904–9.

 49. Huang QQ, Ritchie SC, Brozynska M, Inouye M. Power, false discovery rate 
and winner’s curse in eQTL studies. Nucleic Acids Res. 2018;46:e133.

 50. Graffelman J. Exploring diallelic genetic markers: The HardyWeinberg 
package. J Stat Softw. 2015;64:1–23.

 51. Shabalin AA. Matrix eQTL: Ultra fast eQTL analysis via large matrix opera-
tions. Bioinformatics. 2012;28:1353–8.

 52. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining 
the role of common variation in the genomic and biological architecture 
of adult human height. Nat Genet. 2014;46:1173–86.

 53. Vicente CT, Revez JA, Ferreira MAR. Lessons from ten years of genome-
wide association studies of asthma. Clin Transl Immunol. 2017;6:e165.

https://doi.org/10.1098/rspb.2016.0569
https://doi.org/10.1093/bib/bbab193
https://doi.org/10.7554/eLife.35471
https://doi.org/10.7554/eLife.35471
https://doi.org/10.1186/s12864-018-4505-4
https://doi.org/10.1186/s12864-018-4505-4


Page 11 of 11Marrella and Biase  Journal of Animal Science and Biotechnology           (2023) 14:62  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 54. Dudbridge F, Gusnanto A. Estimation of significance thresholds for 
genome-wide association scans. Genet Epidemiol. 2008;32:227–34.

 55. Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing 
burden for genome-wide association studies of nearly all common vari-
ants. Genet Epidemiol. 2008;32:381–5.

 56. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P, et al. 
A haplotype map of the human genome. Nature. 2005;437:1299–320.

 57. Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practi-
cal and powerful approach to multiple testing. J Roy Stat Soc B Met. 
1995;57:289–300.

 58. Lund SP, Nettleton D, McCarthy DJ, Smyth GK. Detecting differential 
expression in RNA-sequence data using quasi-likelihood with shrunken 
dispersion estimates. Stat Appl Genet Mol Biol. 2012;11(5). https:// doi. 
org/ 10. 1515/ 1544- 6115. 1826.

 59. Lun ATL, Chen YS, Smyth GK. It’s DE-licious: a recipe for differential expres-
sion analyses of RNA-seq experiments using quasi-likelihood methods in 
edgeR. Methods Mol Biol. 2016;1418:391–416.

 60. Horita N, Kaneko T. Genetic model selection for a case-control study and 
a meta-analysis. Meta Gene. 2015;5:1–8.

 61. cowplot: Streamlined plot theme and plot Annotations for ggplot2. 
https:// wilke lab. org/ cowpl ot/

 62. Sievert C. Interactive web-based data visualization with R, plotly, and 
shiny. 1st Edition. New York: Chapman and Hall/CRC; 2020. https:// doi. 
org/ 10. 1201/ 97804 29447 273.

 63. Wickham H. ggplot2: elegant graphics for data analysis. New York: 
Springer-Vergag; 2009.

 64. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecu-
lar interaction networks. Genome Res. 2003;13:2498–504.

 65. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis 
for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:1–2.

 66. Holm S. A simple sequentially rejective multiple test procedure. Scand 
Stat Theory Appl. 1979;6:65–70.

 67. Hunt SE, Moore B, Amode RM, Armean IM, Lemos D, Mushtaq A, et al. 
Annotating and prioritizing genomic variants using the ensembl variant 
effect predictor-a tutorial. Hum Mutat. 2021;43:986–97.

 68. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide 
polymorphisms and other classes of minor genetic variation. Genome 
Res. 1999;9:677–9.

 69. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix opera-
tions. Bioinformatics. 2012;28:1353–8.

 70. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene 
ontology: tool for the unification of biology. Gene Ontol Consortium Nat 
Genet. 2000;25:25–9.

 71. Noel-MacDonnell JR, Usset J, Goode EL, Fridley BL. Assessment of data 
transformations for model-based clustering of RNA-Seq data. PLoS ONE. 
2018;13:e0191758.

 72. Zwiener I, Frisch B, Binder H. Transforming RNA-Seq data to improve the 
performance of prognostic gene signatures. PLoS ONE. 2014;9:e85150.

 73. Jain D, Hodonsky CJ, Schick UM, Morrison JV, Minnerath S, Brown L, et al. 
Genome-wide association of white blood cell counts in Hispanic/Latino 
Americans: the Hispanic community health study/study of Latinos. Hum 
Mol Genet. 2017;26:1193–204.

 74. Jehl F, Degalez F, Bernard M, Lecerf F, Lagoutte L, Desert C, et al. RNA-Seq 
data for reliable SNP detection and genotype calling: interest for coding 
variant characterization and cis-regulation analysis by allele-specific 
expression in livestock species. Front Genet. 2021;12:655707.

 75. Lam S, Zeidan J, Miglior F, Suarez-Vega A, Gomez-Redondo I, Fonseca 
PAS, et al. Development and comparison of RNA-sequencing pipelines 
for more accurate SNP identification: practical example of functional 
SNP detection associated with feed efficiency in Nellore beef cattle. BMC 
Genomics. 2020;21:703.

 76. Lam S, Miglior F, Fonseca PAS, Gomez-Redondo I, Zeidan J, Suarez-Vega 
A, et al. Identification of functional candidate variants and genes for feed 
efficiency in Holstein and Jersey cattle breeds using RNA-sequencing. J 
Dairy Sci. 2021;104:1928–50.

 77. Bakhtiarizadeh MR, Alamouti AA. RNA-Seq based genetic variant discov-
ery provides new insights into controlling fat deposition in the tail of 
sheep. Sci Rep. 2020;10:13525.

 78. Brouard JS, Schenkel F, Marete A, Bissonnette N. The GATK joint genotyp-
ing workflow is appropriate for calling variants in RNA-seq experiments. J 
Anim Sci Biotechnol. 2019;10:44.

 79. Nodzak C. Introductory methods for eQTL analyses. Methods Mol Biol. 
2020;2082:3–14.

 80. van den Berg I, Hayes BJ, Chamberlain AJ, Goddard ME. Overlap between 
eQTL and QTL associated with production traits and fertility in dairy cat-
tle. BMC Genomics. 2019;20:291.

 81. Lee YL, Takeda H, Costa Monteiro Moreira G, Karim L, Mullaart E, Coppiet-
ers W, et al. A 12 kb multi-allelic copy number variation encompassing a 
GC gene enhancer is associated with mastitis resistance in dairy cattle. 
Plos Genet. 2021;17:e1009331.

 82. Fang L, Cai W, Liu S, Canela-Xandri O, Gao Y, Jiang J, et al. Comprehensive 
analyses of 723 transcriptomes enhance genetic and biological interpre-
tations for complex traits in cattle. Genome Res. 2020;30:790–801.

 83. Canive M, Fernandez-Jimenez N, Casais R, Vazquez P, Lavin JL, Bilbao 
JR, et al. Identification of loci associated with susceptibility to bovine 
paratuberculosis and with the dysregulation of the MECOM, eEF1A2, and 
U1 spliceosomal RNA expression. Sci Rep. 2021;11:313.

 84. Gjuvsland AB, Plahte E, Adnoy T, Omholt SW. Allele interaction–single 
locus genetics meets regulatory biology. PLoS ONE. 2010;5:e9379.

 85. Elston RC, Satagopan JM, Sun S. Genetic terminology. Methods Mol Biol. 
2012;850:1–9.

 86. Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al. 
Count-based differential expression analysis of RNA sequencing data 
using R and Bioconductor. Nat Protoc. 2013;8:1765–86.

 87. Hanson C, Cairns J, Wang L, Sinha S. Principled multi-omic analysis reveals 
gene regulatory mechanisms of phenotype variation. Genome Res. 
2018;28:1207–16.

 88. Doss S, Schadt EE, Drake TA, Lusis AJ. Cis-acting expression quantitative 
trait loci in mice. Genome Res. 2005;15:681–91.

 89. Loguercio S, Overall RW, Michaelson JJ, Wiltshire T, Pletcher MT, Miller BH, 
et al. Integrative analysis of low- and high-resolution eQTL. PLoS ONE. 
2010;5:e13920.

 90. Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, et al. 
Discovery of expression QTLs using large-scale transcriptional profiling in 
human lymphocytes. Nat Genet. 2007;39:1208–16.

 91. Wilkie AO. The molecular basis of genetic dominance. J Med Genet. 
1994;31:89–98.

 92. Kacser H, Burns JA. The molecular basis of dominance. Genetics. 
1981;97:639–66.

 93. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient 
QTL mapper for thousands of molecular phenotypes. Bioinformatics. 
2016;32:1479–85.

https://doi.org/10.1515/1544-6115.1826
https://doi.org/10.1515/1544-6115.1826
https://wilkelab.org/cowplot/
https://doi.org/10.1201/9780429447273
https://doi.org/10.1201/9780429447273

	Robust identification of regulatory variants (eQTLs) using a differential expression framework developed for RNA-sequencing
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Data processing for variant detection, and variant filtering
	Variant annotation
	Quantification of transcript abundance
	eQTL analysis
	Approach 1: TMM normalized and normal-transformed RNA-seq data
	Approach 2: using a differential gene expression framework

	Visualization of the results
	Analysis of gene ontology enrichment

	Results
	Overview of SNP identification
	eQTL analyses
	Approach 1: TMM normalized and normal-transformed RNA-seq data
	Approach 2: using a differential gene expression framework


	Discussion
	Variant genotyping using RNA-sequencing data
	eQTL analysis using RNA-sequencing with and without forcing the data into a Gaussian distribution

	Conclusions
	Anchor 25
	Acknowledgements
	References


