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Abstract 

Colonization and development of the gut microbiome are crucial for the growth and health of calves. In this review, 
we summarized the colonization, beneficial nutrition, immune function of gut microbiota, function of the gut barrier, 
and the evolution of core microbiota in the gut of calves of different ages. Homeostasis of gut microbiome is benefi-
cial for nutritional and immune system development of calves. Disruption of the gut microbiome leads to digestive 
diseases in calves, such as diarrhea and intestinal inflammation. Microbiota already exists in the gut of calf fetuses, and 
the colonization of microbiota continues to change dynamically under the influence of various factors, which include 
probiotics, diet, age, and genotype. Colonization depends on the interaction between the gut microbiota and the 
immune system of calves. The abundance and diversity of these commensal microbiota stabilize and play a critical 
role in the health of calves.
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Introduction
Microbiota in the gut is involved in the health and devel-
opment of ruminants [1], and it is crucial for the develop-
ment of calves [2]. The rumen microbiome of calves forms 
rapidly after birth and begins to establish during early life. 
With the development of the gastrointestinal tract (GIT), 
the gut microbiome of calves changes gradually, especially 
during weaning [3, 4]. These changes in the gut microbi-
ome, along with nutritional and immune functions, have 
potential effects on host metabolism. Therefore, to opti-
mize the health and production efficiency of ruminants, 
it is important to understand the factors that affect the 

development of the GIT. The development of the gut 
microbiome is mainly manipulated through probiotics, 
diet, age, and genotype of the calf [5–7]. Nevertheless, 
there is a dynamic balance among the gut microbiome, 
host physiology, and diet. This dynamic balance of the 
gut microbiome directly influences the initial acquisition, 
continued development, and final stability of rumen and 
intestinal ecosystems [8].

Application of metabolomics, metatranscriptomics, 
and single-cell RNA sequencing have enabled a more 
accurate understanding of the composition of the GIT 
microbiome at different stages of calf growth along with 
further exploration of their functional analysis through 
mapping in KEGG databases. These sequencing results 
suggested that complex microbial communities colo-
nized the GIT of newborn calves. The early settlement of 
gut microbiota influenced the performance and lifelong 
health of animals [9–11]. There are interactions between 
the gut microbiome and calf growth, and these interac-
tions are vital to the development, growth, and health of 
the calf. Thus, the causal relationship between the gut 
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microbiome and calf health and the core microbiota that 
links host genetics and phenotypes needs to be explored. 
Many investigators have focused on temporal changes 
in the gut microbiome of newborn ruminants, particu-
larly after weaning [12]. However, there is still a lack of 
understanding of the changes and development of the 
gut microbiome in young ruminants. This review sum-
marizes recent developments in our knowledge of the gut 
microbiome of young ruminants and aims to understand 
the patterns of microbiome development in young rumi-
nants and to provide novel insights to improve gut health 
and production of ruminants.

Nutritional and immune function of the gut 
microbiome
Many studies on ruminants have focused on how the 
microbiome affected host nutrition and immunity, 
which ultimately enhanced host performance and health 
(Fig.  1) [13–16]. Gut microbiota provides nutrition for 

the host through fermentation. The rumen microbiome 
preserves the health of its host by destroying harm-
ful byproducts of fermentation. If the structure of the 
rumen microbiota is disordered, the health of rumi-
nants is threatened. For example, when ruminant diets 
contained a high proportion of concentrate, lactic acid 
bacteria increased rapidly to produce lactic acid, which 
led to the death of Gram-negative bacteria; this released 
lipopolysaccharides and caused gastrointestinal diseases 
in calves [17]. Rumen microbiota was indispensable 
for the degradation of plant fibers [18]. Among them, 
hemicellulose was degraded mainly by Prevotella spp., 
whereas cellulose was degraded mainly by Clostridium 
spp. In addition, certain dominant bacteria in the rumen 
were related to feed efficiency [19]. In calf rumen, Lach-
nospiraceae, Lactobacillaceae, and Veillonellaceae were 
related negatively with high feed utilization, whereas 
Methanomassiliicoccales was related positively to feed 
utilization [20], suggesting that the feed efficiency may 

Fig. 1 The function of the gut microbiome in calves. Created with BioRender.com
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be related to specific genes of carbohydrate-active 
enzymes in host.

GIT microbiota influences GIT development and 
function by producing short-chain fatty acids (SCFAs), 
amino acids (AAs) or their derivatives, and bacterioc-
ins. SCFAs were produced by the rapid fermentation of 
carbohydrates and were the main energy-supply sub-
stances in the epithelial cells of the GIT. Acetate coordi-
nated interactions between epithelial and immune cells 
by inducing B cells to produce T-cell-dependent immu-
noglobulin A (IgA), which altered bacterial localization 
within the colon [21]. Propionate participated directly 
in gluconeogenesis to provide energy to calves. Supple-
mentation with propionate induced mRNA expression 
of genes involved in gluconeogenesis in immortalized 
bovine intestinal epithelial cells [22]. In the rumen, 80% 
of butyrate was converted into ketone bodies, which 
provided > 80% of the energy for the growth of rumen 
epithelial cells [23]. In the intestine, butyrate provided 
70% of the energy for intestinal epithelial cells through 
β-oxidation [24]. Butyrate increased the expression of 
cell cycle-related genes and decreased the expression of 
apoptosis-related genes, thereby regulating the prolif-
eration of rumen epithelial cells [25]. In colonic epithe-
lial cells, butyrate arrested the cell cycle at the G1 phase. 
SCFAs also regulated mitogen-activated protein kinases, 
sphingolipids, insulin, oxytocin, calcium, cell prolifera-
tion, and apoptosis by inhibiting histone deacetylases 
and activating G-protein-coupled receptors. Moreover, 
butyrate increased plasma GLP-2 concentration, total 
tract dry matter, and organic matter digestibility in lac-
tating dairy cows [26]. Valerate increased the TEER of 
Caco-2 cells and reduced the paracellular permeability 
[27]. In rodents, valerate was correlated negatively with 
allobaculum, and serum valerate was potentially harm-
ful to the health of rats [28]. In weaned piglets, with 
increased levels of valerate after the supplement of Sac-
charomyces boulardii, the feed conversion ratio increased 
and diarrhea was decreased [29]. However, no studies 
have focused mainly on the effects of valerate on calf 
development, therefore, further exploration is required.

Not all proteins were absorbed fully and utilized in 
the mammalian small intestine, and the remaining pro-
teins passed through the hindgut of animals as proteins 
or peptides after preliminary digestion [30]. These pro-
teins and AAs were transformed into other forms of 
AAs and their derivatives after fermentation by hindgut 
microbiota. Microbiota was involved in the metabolism 
of branched-chain amino acids (BCAAs). BCAAs were 
important for calf performance; supplementation with 
BCAAs (2  g/kg body weight/d; 1:1:1 of valine, leucine, 
and isoleucine) during nursing increased average daily 
weight gain in calves significantly [31]. In addition, the 

content of BCAAs in feces was correlated positively with 
calf diarrhea; however, the BCAA content in serum was 
correlated negatively with diarrhea, which indicated that 
diarrhea impaired the ability to absorb BCAAs [32].

A similar phenomenon was observed for other AAs 
(e.g., alanine, glycine, arginine, ornithine, and glutamic 
acid) [32]. The content of BCAAs and other AAs, such 
as plasma diamine oxidase, were biomarkers of calf diar-
rhea due to the negative correlation between the AA sta-
tus in plasma and calf diarrhea in other studies [33, 34]. 
Mechanistically, angiotensin I-converting enzyme 2 was 
linked to AAs, microbial ecology, and intestinal inflam-
mation by activating the mTOR signaling pathway. In the 
hindgut, microbiota degraded proteins and produced 
bioactive AA derivatives, such as tryptamine, histamine, 
dopamine, phenylacetylglutamine, and phenylacetylg-
lycine [30]. In addition, tryptophan derivatives, such as 
indole, indoleamine-2,3-dioxygenase 1 and 2, and tryp-
tophan-2,3-dioxygenase, were involved in the kynurenine 
pathway and had important implications for intestinal 
homeostasis [35]. Mechanistically, tryptophan derivatives 
acted mainly on aryl hydrocarbon receptors to partici-
pate in pro-inflammatory and tolerance responses, which 
meant that the remaining bacteria, such as Limosilacto-
bacillus reuteri and Lactobacillus, exerted nutritional 
and immune effects on the host by altering tryptophan 
metabolism [36–38].

Bacteriocins are bactericidal proteins or polypeptides 
encoded by bacterial or archaeal genes that are synthe-
sized by ribosomes. Bacteriocin-producing bacteria are 
immune to their own bacteriocins. Bacteriocins have 
received substantial attention because of their ability to 
protect the host gut against harmful bacteria [39, 40]. 
Lactobacillus frumenti prevented early weaned piglet 
diarrhea by secreting gassericin A, which is a class of 
bacteriocins [41]. In addition, when the concentration of 
this bacteriocin was sufficient, Lacticin 3147 prevented 
staphylococcal mastitis infections in cows [42].

Gut microbiota also interacts with bile acids in the 
host. In recent years, limited research has been con-
ducted on the effect of bile acids on the intestinal health 
of calves, while the studies of bile acids have been very 
popular in other animals [43–46]. However, a recent 
study showed that gut microbial-derived ursodeoxy-
bile acid ameliorated diarrhea effectively and improved 
the growth performance of calves [47]. Ursodeoxybile 
acid isolated from calves that were successfully treated 
with fecal microbiota transplantation (FMT) reduced 
colitis-induced Escherichia (E.) coli infection and hind-
gut microbial damage in a mouse model [47]. This study 
showed that the bile acids were associated with calf 
diarrhea, which provided pioneering insights into the 
development of bile acids and microbial stability in calf 
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intestines. Overall, microbiota in the calf GIT plays a 
nutritional and immune role through its own metabo-
lites, and additional, yet unknown, metabolites and their 
mechanisms are expected to be discovered in the future.

Role of the microbiome on the gut barrier in calves
The protective barrier of the gut consists of mechani-
cal, chemical, and immune components. Microbiota is 
necessary for the development and differentiation of the 
intestinal epithelium and immune system and regulates 
the innate and acquired immune systems in the intestine. 
A healthy structure of the gut microbial community is 
critical for host health. Under normal physiological con-
ditions, the microbial structure in the intestine remains 
relatively stable, and it forms an intestinal biological bar-
rier that inhibits the colonization of harmful bacteria and 
ensures calf health. Changes in gut acetate concentration 
also altered the responsiveness of the IgA pool to various 
types of bacteria [21]. IgA uncoupled and manipulated 
colonization during pathogenesis to promote homeo-
stasis by neutralizing bacterial toxins or by enhancing 
the growth of targeted bacterial species [21, 48–51]. 
Intestinal bacteria, especially Gram-negative bacteria, 
activated intestinal dendritic cells, thereby further stim-
ulating intestinal mucosal plasma cells to secrete IgA 
[52]. Moreover, intestinal commensal bacteria used their 
components or secretions to induce intestinal Paneth 
cells to synthesize antibacterial peptides through pat-
tern recognition receptors. The resulting interactions of 
the microbe-related molecular pattern activated multiple 
signaling pathways to improve the intestinal mucosal bar-
rier function and to promote the secretion of IgA, mucus 
glycoproteins, and antibacterial peptides [53], which con-
tributed to the formation and protection of the gut bar-
rier. For example, nisin that was obtained by calves in 
colostrum formed pores in the mycobacterial cell wall 
that reduced membrane integrity to kill M. paratubercu-
losis [54].

Intestinal commensal bacteria regulate the activity 
of their respective cytokines. For example, the level of 
IL-6 revealed the alterations in the inflammatory sta-
tus of calves and cows when they suffered from GIT 
diseases [55, 56]. These bacteria regulated innate lym-
phocytes, which responded quickly to cytokine signals 
produced by the epithelium, such as  Foxp3+ regula-
tory T cells [19, 57]. Microbial cell wall peptidoglycans 
maintained the structure and function of tight junc-
tions through Toll-like receptor 2 [58]. The Gram-nega-
tive bacterium Akkermansia muciniphila increased the 
endocannabinoid content, which regulated the function 
of the intestinal barrier by reducing metabolic endotox-
ins [59]. Gut microbiota promoted the development of 
intestinal microvasculature by inducing angiopoietin-3 

transcription factors [60]. As a result, the gut microbiota 
plays an important role in maintaining the structural and 
functional integrity of the epithelium.

The disruption of the gut barrier was accompanied by 
the disorder of microbial structure [61–64]. Supplemen-
tation with probiotics modulated the microbial structure 
through interactions with other microbiota to protect 
the gut barrier in newborn calves [65]. However, not all 
microbiota in the gut is beneficial to host health. Some 
genus or species of microbiota were the key biomarkers 
to determine the disorder of the gut microbial structure. 
Clostridioides difficile and Clostridium perfringens, which 
produced toxins, had a stonger colonization after the 
disorder of microbial structure [66, 67]. Key biomarkers 
in gut microbiota were also used to predict calf health, 
such as Ruminococcaceae, Lachnospiraceae, and Pho-
caeicola, Bacteroides, Prevotella, Faecalibacterium, and 
Butyricicoccus [68]. However, Enterococcus, Ligilactoba-
cillus, Lactobacilus, Gallibacterium streptococcus, and 
Escherichia/Shigella were more abundant in diarrheic 
calves than those in healthy calves [68]. At the species 
level, Eggerthella lenta, Bifidobacterium longum, and Col-
linsella aerofaciens were associated with healthy status of 
calves, but E. coli and Lactobacillus species were associ-
ated with GIT diseases [69, 70].

Some viruses also impair the gut barrier and health of 
calves. Rotavirus is one of the main pathogens that cause 
diarrhea in calves. This infection not only reduced the 
richness and diversity of the intestinal microbiota sig-
nificantly, but it also further disturbed the physiological 
homeostasis of calves [71–73]. These results suggested 
that the colonization of harmful microbiota interfered 
seriously with the stability of the host immune system, 
whereas beneficial microbiota improved gut health and 
immunity of the host.

Dynamics of the colonization process of microbiota 
in calf guts
Colonization of the gut microbiota in calves is a dynamic, 
gradual transition from colonization to stability. The 
colonization of GIT microbes of calves is influenced or 
changed by various factors, such as dams, environment, 
diet, and feed supplements [74]. The process of micro-
biota colonization generally exhibits a certain regular-
ity. Four processes of gut microbiota assembly have been 
defined in early life: dispersal, selection, drift, and diver-
sification, which determined the priority of the infant 
colonization process [75]. First, high levels of aerobes 
and facultative anaerobes (e.g., Lactobacillus and Bifido-
bacteria) appeared in the GIT of the calf that consumed 
oxygen in the form of separate molecules, which cre-
ated hypoxic conditions [76]. Subsequently, strict anaer-
obes (e.g., Firmicutes, Bacteroidetes, Proteobacteria, and 
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Actinobacteria) gradually colonized and stabilized the 
gut.

The time at which microbiota colonized the GIT 
of ruminants has been a controversial research ques-
tion. However, the colonization of gut microbiota was 
observed in ruminants at birth, and recent studies have 
shown that gut microbiota was already present in the 
gut of ruminants from the fetal period; microbiota were 
detected in the rumen, caecum, meconium, and amni-
otic fluid of calves at 5 months of gestation [77, 78]. The 
gut microbiota of newborn calves that were not licked by 
the dam was highly similar to the maternal oral microbes 
rather than the microbiota of the dam’s vagina, which 
indicated that the hindgut of newborn calves may rely 
on the placenta to obtain the dam’s oral or proximal GIT 
microbiota [79]. These studies illustrated that diverse 
microbiota colonized the gut before birth and changed 
rapidly in the early life of the calf [79–83].

Escherichia, Salmonella, Catellicoccus, Pseudomonas, 
and Phagocytophilum are the primary bacteria that 
colonized the fetuses of ruminants [84]. The intesti-
nal bacteria of calves mainly consisted of Firmicutes, 
Proteobacteria, Bacteroidetes, and a small number of 
Actinomycetes. Numerous studies have shown that the 
proportion of Proteobacteria was high soon after the 
birth, but gradually decreased with an increase in Firmi-
cutes and Bacteroidetes (Fig. 2) [8, 86, 87]. This may be 
because most Proteobacteria are facultative anaerobes, 
while Firmicutes and Bacteroidetes are strict anaerobes. 
Approximately 8  h after birth, E. coli and Streptococci 

colonized all GIT regions (i.e., stomach, small intestine, 
and cecum) of the calf, and Lactobacillus was detected 
later, and Clostridium perfringens was detected in the 
cecum; however, colonization in the other parts of the 
intestine was not detected at 18  h after birth [88]. Bac-
teria were only observed in the cecum and feces on the 
 2nd day after birth, and in the  1st week, Lactobacillus was 
dominated throughout the GIT. Faecalibacterium was 
one of the bacteria with the highest content in 1-week-
old calves (21.7%); however, Faecalibacterium decreased 
with an increase in calf age. The fecal microbiota of 
3-week-old calves was dominated by Bacteroides, Prevo-
tella, Coccus-Useriella, and Faebacillus [89]. Bacteroides 
(15.3% ± 1.0%), Prevotella (21.6% ± 1.4%), and Faecali-
bacterium (10.3% ± 0.3%) were found in the colons of 
calves at the same age; however, the relative abundance of 
Clostridium XIV was only 1.6% ± 1% compared with that 
of the above three genera [90]. Lactococcus flavus and cel-
lulolytic bacteria appeared only 5 weeks after birth; how-
ever, Streptococcus and Lactococcus were not detected 
[89]. Bacteroides prevotella, Clostridium coccoides, and 
Eubacterium rectale constituted the major fraction of the 
microbiota within 12 weeks after birth. These observa-
tions suggested that the fecal microbial community had 
the greatest similarity to the bacterial community in the 
colon; however, it did not represent the composition of 
the entire GIT. Bifidobacteria and Lactobacilli were able 
to enter the small intestine from the stomach more easily 
than E. coli, and these beneficial bacteria had a high den-
sity in the GIT of 20-week-old calves [76]. In addition, the 

Fig. 2 Different levels of core microbiota at different growth stages of calves. ("f_" represents family levels and "g_" represents genus 
levels). Adapted from previous reports [8, 12, 77, 79, 85]. Created with BioRender.com
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diversity metrics (i.e., observed species, Faith’s PD, Shan-
non index, and evenness) were changed rapidly from 1 to 
9 days of age in calves, and diarrheic status did not affect 
these metrics [91]. This evidence indicated that the gut 
microbiota changed with age.

Rumen has rich microbiota that plays a crucial role in 
digestion and fermentation, hence, colonization of the 
rumen has been the subject of most investigations on 
ruminant microbiota. Newborn calves are thought to be 
pseudo-monogastric creatures as the rumen is still in 
development. Gut microbes play a more important role 
in the early stages of life than later in the rumen. Inter-
estingly, there are significant differences in microbial 
structure in different regions of the GIT of ruminants 
[92]. Prevotella and Fibrobacter were predominant in the 
stomach, while Bacteroides, Clostridium, Alistipes, and 
Ruminococcus were prevalent in the large intestine, and 
E. coli was high abundant in the small intestine [93]. Pre-
sumably, this difference was due to the structural charac-
teristics and functional differences of each region of the 
GIT. The intestine is important for feed digestion, nutri-
ent absorption, and the immune system of young rumi-
nants. The main bacteria in the feces of adult cows were 
Firmicutes (63.7%), Proteobacteria (18.3%), Bacteroides 
(7.6%), and Actinomycetes (6.8%) [94].

Compared with the dominant bacteria in the rumen, 
species of Firmicutes were more abundant in the intes-
tine (i.e., duodenum, jejunum, ileum, cecum, colon, and 
feces), while Spirochaetes and Bacteroidetes were less 
abundant, and Tenericutes were lower only in the large 
intestine (i.e., cecum, colon, and feces) [92]. At the family 
level, Firmicutes and Proteobacteria were more abundant 
in the small intestine than in other GIT compartments, 
and bacteria such as Fibrobacter, Treponema, and Metha-
nobrevibacte were present in the rumen but not in feces 
[92]. However, Methanobrevibacte was much more abun-
dant in the small intestine (3.7%) than in the stomach 
(0.71%) or large intestine (1.1%) [93]. This indicated that 
even if bacteria were present in the rumen, the microbi-
otic difference between the intestine and rumen would 
make bacterial colonization difficult and influence bacte-
rial abundance.

The expression pattern of Toll-like receptor (TLR) may 
be one of the reasons for regional differences in gut bac-
teria [90, 95]. The expression of TLR1 was highest in the 
ileum, followed by the jejunum, and lowest in the gas-
tric mucosa of 3-week-old calves [95]. The hindgut of 
young ruminants is the main site of microbial fermenta-
tion in early life. Pioneer colonization by microbiota in 
the hindgut may be of maternal origin, which provides 
the basis for a newborn calf to utilize nutrients in milk 
[96]. Firmicutes, Bacteroidetes, and Proteobacteria are 
the dominant microbial phyla in the hindgut. The relative 

abundances of microbial genes involved in AA metabo-
lism, carbohydrate metabolism, and energy metabolism 
were enriched in these microbiota, which indicated the 
importance of hindgut microbiota in fermentation dur-
ing the pre-weaning period [97]. As neonatal calves 
have an underdeveloped rumen during this period, they 
rely on hindgut microbial fermentation to decompose 
undigested dietary components. This results in the pro-
duction of key metabolites such as SCFAs, AAs, and vita-
mins, which may be absorbed by the hindgut to promote 
calf growth and development.

In fact, individual differences in the hindgut micro-
biome affected the growth status of calves [98]. The 
mucosa-adherent microbiota were significantly different 
from the microbiota in the lumen of human and rodent 
guts [99–101], which was also true for ruminants [102]. 
The distribution of microbiota in mucosa and lumen is 
also different. Bifidobacteria and Lactobacilli were the 
most abundant microbiota that adhered to the mucous 
membranes in the GIT of calves (9–11 months old) and 
sheep (6–9 months old) [103]. At 3 weeks after birth, 
different bacteria have adhered to the gut mucosa of 
the calves [90, 104]. The bacterial abundance in the ileal 
mucosa was higher than that in other regions of calves 
[104], although most mucus-attached microbiota cannot 
be classified at the genus level. Above all, the dominant 
microbiota in different regions of the calf GIT is differ-
ent at the phylum and genus levels, which is due to niche 
exclusion and the difference in the morphological struc-
ture of each region. Therefore, an in-depth understanding 
of the early colonization of gut microbes and the factors 
that influence the establishment of microbiota can pro-
vide a basis for reasonable control of calf gut health.

Factors that affect the developmental process 
of microbiota in calf GIT
The change in the type and quantity of microbiota is a 
complex process, which is attributed to the interactions 
between the microbiome and the host, probiotics, diet, 
and age. A systematic study of microbial development in 
the GIT of young ruminants could improve feeding strat-
egies, health, and calf production (Table 1).

Probiotics
Probiotics have been used widely to improve rumen 
fermentation and to prevent pathogen colonization in 
calves. Administering probiotics to calves promotes the 
establishment of a beneficial gut microbiota, maintains 
microbiota stability, and inhibits pathogen growth. More-
over, these effects are important before weaning, which 
indicates that probiotic supplements are more effective 
in newborn ruminants than in mature gastrointestinal 
environments. The colonization of E. coli O157:H7 in 
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the intestines of pre-weaned calves decreased with pro-
biotic feeding [105]. The activity of carboxymethyl cellu-
lase and xylanase in the rumen of North American cattle 
increased with the feeding of anaerobic bacteria, which 
improved the digestibility of crude protein and cellu-
lose, daily weight gain, and feed efficiency [119]. Active 
dry yeast increased the abundance of Vibrio spp. in the 
rumen of calves during the first 28 days of life, which 
resulted in an elevated butyrate concentration [120]. Sup-
plementation with yeast cultures also increased bacterial 
diversity in calf rumens, and this effect was especially sig-
nificant in diets with high fiber levels [121]. Yeast cultures 
also increased the total number of bacteria, fungi, and 
protozoa in an artificial rumen [122], which suggested 
that yeast cultures promoted the multiplication of fiber-
degrading bacteria in the rumen and laid the foundation 
to start feeding calves a fiber-based diet [123].

Commensal E. coli utilized epithelial-derived nitrates, 
which have an advantage when competing for nitrates 
with Salmonella; these bacteria invaded the niche of Sal-
monella to provide resistance to colonization [124]. This 
demonstrates the concept of niche pre-emption and the 
priority effect of the infant bacteria. As an action mecha-
nism, probiotics can prevent the colonization of patho-
gens by pre-empting the space in the GIT. That is, they 
compete with harmful bacteria for nutrients or produce 
antibacterial substances, which reduced rumen acid-
ity, improved milk yield, and reduced E. coli excretion in 
dairy cows [125–127]. Based on these theories, we can 
artificially intervene in and modulate the gut microbiota 
of newborn calves through probiotic supplementation. 
A negative correlation between E. coli  and  Shigella was 
found in the feces of healthy calves, which was further 
confirmed in vitro [128]. This suggested that Lactobacil-
lus supplementation inhibited pathogen colonization to 
reduce calf diarrhea [129, 130].

Compound probiotics, a supplement contains multiple 
strains of live bacteria rather than just only one or two, 
promoted the gut bacterial communities of calves and 
made their microbial community composition more sim-
ilar [65]. In addition, a high concentration of compound 
probiotics improved the immunity of calves by increas-
ing the concentration of total serum proteins and immu-
noglobulin [131]. Compound probiotics also improved 
the fermentation capacity of calf rumens by producing 
SCFAs. The average daily weight gain of calves that were 
fed probiotics also increased significantly; however, with 
an increase in calf age, the effect of adding probiotics 
gradually decreased, presumably due to the preferential 
effect of pioneer microbiota [132]. However, there is still 
a lack of information regarding the effects of probiotics 
on the composition, metabolism, and immune function 
of the gut microbiota. Therefore, further exploration of 

probiotics is necessary to develop novel, valuable, and 
safe methods for improving the gut health of young 
ruminants.

Diet
Weaning is the most stressful and important transitional 
period in the life of calves. At this time, multiple micro-
organisms have attached to the feed and colonized the 
calf GIT. The developing guts of the calves before wean-
ing contained similar dominant phyla (Bacteroidetes, 
Firmicutes, and Proteobacteria). The intake of solid feed 
accelerated the initiation of rumen fermentation and 
substantially changed gut microbial components. In par-
ticular, fecal microbiota was richer and more uniform 
after weaning than the rumen microbiota [133]. Changes 
in dietary and feeding patterns before weaning had sig-
nificant and lasting effects on the composition of the 
gastrointestinal microbiome of young ruminants [134–
136]. Therefore, in terms of establishing the microbiota 
and cultivating the fermentation capacity of the rumen 
microbiome, diet management before weaning is impor-
tant for young ruminants. Adding oat hay did not change 
the diversity of rumen microbes in calves; however, it 
changed the proportion of different microbial popula-
tions and affected the rumen pH indirectly [137]. Molas-
ses beet pulp increased the concentration of VFA more 
than corn grain and promoted hindgut development in 
lactating cows; however, its application in calves requires 
further verification [138]. These studies have shown that 
changes in dietary composition greatly affected the com-
position of the gut microbiome in calves.

Age
The diversity and stability of gut microbes increase grad-
ually with increased age of a calf [70]. In the rumen, the 
proportions of Bacteroidetes, Firmicutes, and Proteobac-
teria varied greatly with calf age [113]. In feces, anaero-
bic species of bacteria increased with calf age, whereas 
aerobic species decreased gradually in the GIT of calves 
[8]. The expression of TLRs in the gastrointestinal tract 
of calves decreased significantly with age, which reduced 
the secretion of AMPs in the gut to facilitate colonization 
by various microorganisms [95]. However, when the gut 
microbial structure has not yet been stabilized, it facili-
tated invasion by pathogens.

Calf rumen microbiota showed age-related changes in 
different classifications and functions [113]. The abun-
dance of Bacteroidetes in the rumen contents of calves 
increased from 18.1% at 2 weeks to 74.8% at 6 weeks of 
age, and this age-related difference was even more signifi-
cant at the bacterial genus level [87]. Prevotella (33.1%) 
dominated the calf at 2 weeks of age; however, the pro-
portion decreased significantly to 5.1% at 6 weeks of age 
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[87]. These results suggested that the bacterial composi-
tion of the rumen in the immediate postnatal period was 
markedly heterogeneous; however, the composition of 
gastrointestinal microbes converged in similarity with 
maturation [90, 134, 139]. The increase in the number of 
anaerobes in 3-day-old calves indicated the emergence of 
a new anaerobic environmental niche in the early life of 
calves [8]. It is certain that these gastrointestinal micro-
biome changes and their physiological functions mature 
with the increase of calf age. In the future, the varia-
tion in rumen microbiota by age, the origin of these gut 
microbes, and the route of transfer to a newborn calf 
need to be studied further.

Genotype
Genotype might also be an important factor that influ-
enced changes in the rumen microbial community in 
ruminants [140, 141]. Differences in genotypes may influ-
ence the selection of certain species by affecting indi-
vidual metabolic or physiological mechanisms. The effect 
of genotype on intestinal bacteria has recently been con-
firmed in pigs. The genotype significantly affected the 
abundance of Erysipelotrichaceae in the gut of pigs by 
regulating the concentration of N-acetyl-galactosamine, 
which indicated that the composition and abundance 
of intestinal bacteria were inherited to a certain extent 
[142]. In addition, the microbial community structure 
of twin calves under the same feeding conditions was 
the same according to metagenomics, and this structure 
was determined by the genotype of the host [115]. The 
diversity and community structure of intestinal anaero-
bic fungi in ruminants and non-ruminants were different, 
which indicated that different host genotypes have differ-
ent microbial communities [116].

Interactions between the gut microbiome and host 
immunity
A large number of microbiota in the intestine have an 
important impact on calf growth. The richness and activ-
ity of these gut microbiota are influenced by various 
factors, which include the intestinal environment, nutri-
tional level, and health conditions. Therefore, there is an 
interaction exists between the gut microbiome and calf 
health.

The gut microbiome can maintain normal physiologi-
cal activity and functions of the immune system in ani-
mals, which also affect the central nervous system. As 
discussed above, the dominant microbiomes in differ-
ent GIT regions are significantly different, which leads 
to regional differences in the microbiome that may in 
turn affect immune function in different regions of the 
GIT that include the development and maturation of 
the mucosal immune system [140]. IgA, particularly 

secretory IgA (SIgA) is an important component of the 
intestinal mucosal immune system in animals. Most 
pathogenic bacteria release toxins by adhering to lumi-
nal epithelial cells, and SIgA can screen bacteria that are 
beneficial to the host by coating bacteria or eliminating 
harmful bacteria. However, owing to the special placental 
structure of ruminants, IgA cannot pass directly from the 
mother to the fetus, except through the colostrum. This 
means that newborn calves acquires IgA by consuming 
colostrum, and then IgA selects beneficial microbiota to 
colonize the gut, which is a host behavior for selecting for 
intestinal microbiota. However, when the host immune 
system has matured over time and produced sufficient 
IgA, the production of IgA and the ability to coat bacte-
ria were regulated by bacterial metabolites and cytokines, 
such as acetate and TGF-β [21, 143].

In addition to screening colonizers using IgA, the host 
also achieves similar effects through the release of miR-
NAs, a group of small endogenous RNA molecules that 
are indispensable for regulating rumen development 
in newborn calves. They bind to coding RNA, block 
the translation process to regulate gene expression, and 
influence the integrity of the host immune function. 
miRNAs related to bacterial density were regulators of 
lymphoid tissue development that regulated the matu-
ration of dendritic cells and development of immune 
cells [144]. Specific miRNAs exist in the calf GIT. Spe-
cifically, the expression levels of miR-l5/16, miR-29, and 
miR-196 were correlated positively with the 16S rRNA 
gene copy numbers in Bifidobacterium and Lactobacil-
lus [144]. High concentrations of miRNAs were found in 
colostrum, which indicated that miRNAs also acted as 
signaling molecules that were transmitted from mothers 
to calves to stimulate intestinal epithelial cell prolifera-
tion, stem cell activity, and development of the immune 
system [145–147]. These results suggested that the gut 
microbiome mediated gene expression by regulating the 
expression level of miRNAs and then regulated the devel-
opment of immune function in the early life of the calves.

The immune system of the calves can actively select 
the microbiota colonized in the intestine, and stimu-
lation of the exogenous microbiota is essential for the 
development of the immune system of newborn calves. 
In particular, FMT is an effective treatment for diarrhea 
in young animals [41]. Owing to the different protocols, 
results may also be different. FMT increased haptoglobin 
and paraoxonase levels in the serum of calves; however, 
another study showed that FMT aggravated gastrointes-
tinal diseases in calves [69, 148]. Therefore, screening 
high-quality donor feces and standardizing FMT proce-
dures may be the key to the success of FMT. Evidence for 
the remission of diarrhea in calves by FMT suggested that 
successful FMT alleviated diarrheic symptoms by altering 
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the composition and metabolites of microbiota, some of 
which were used as biomarkers to evaluate the effect of 
FMT, such as Sporobacter and Selenomonas in donors 
and Lactobacillus in recipients [32, 47, 149]. However, it 
remains unclear which microbial species play a decisive 
role in the remission of symptoms in calves with diarrhea 
and their specific mechanisms.

Conclusions and further perspectives
The colonization of the gut microbiota (e.g., bacteria, 
archaea, fungi, protozoa, and viruses) in the early life of 
calves has attracted much attention. The gut microbiota, 
with nutritional and immune functions, plays a vital role 
in the behavior, immune system, growth, and rumen 
fermentation of calves. The composition, diversity, and 
richness of gut microbiota vary with age, species, diet, 
probiotics, sampling location (i.e., contents, mucous 
membrane, and feces), and gut segment (i.e., rumen and 
large and small intestines) of calves. There is an interac-
tion between the gut microbiome (metabolites) and the 
calves (i.e., breed, immune system, and development). 
However, the causal relationship between the gut micro-
biome and biological health, their contribution to pheno-
typic variations, and the short- and long-term effects of 
microbial regulation remain unclear and require further 
study. The core gut microbiota that links host genetics 
(breeds) and phenotypes (e.g., methane emissions, gas-
trointestinal development, feed conversion rate, and milk 
production efficiency) also requires further exploration.
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